1
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
2
|
Halim SA, Abdel-Rahman MA. First-principles density functional theoretical study on the structures, reactivity and spectroscopic properties of (NH) and (OH) Tautomer's of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one. Sci Rep 2023; 13:8909. [PMID: 37264069 DOI: 10.1038/s41598-023-35933-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The tautomerizations mechanism of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one were inspected in the gas phase and ethanol using density function theory (DFT) M06-2X and B3LYP methods. Thermo-kinetic features of different conversion processes were estimated in temperature range 273-333 K using the Transition state theory (TST) accompanied with one dimensional Eckert tunneling correction (1D-Eck). Acidity and basicity were computed as well, and the computational results were compared against the experimental ones. Additionally, NMR, global descriptors, Fukui functions, NBO charges, and electrostatic potential (ESP) were discussed. From thermodynamics analysis, the keto form of 4-(methylsulfanyl)-3-[(1Z)-1-(2 phenylhydrazinylidene) quinoline-2(1H)-one is the most stable form in the gas phase and ethanol and the barrier heights required for tautomerization process were found to be high in the gas phase and ethanol ~ 38.80 and 37.35 kcal/mol, respectively. DFT methods were used for UV-Vis electronic spectra simulation and the time-dependent density functional theory solvation model (TDDFT-SMD) in acetonitrile compounds.
Collapse
Affiliation(s)
- Shimaa Abdel Halim
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt.
| | | |
Collapse
|
3
|
Ferlenghi F, Scalvini L, Vacondio F, Castelli R, Bozza N, Marseglia G, Rivara S, Lodola A, La Monica S, Minari R, Petronini PG, Alfieri R, Tiseo M, Mor M. A sulfonyl fluoride derivative inhibits EGFR L858R/T790M/C797S by covalent modification of the catalytic lysine. Eur J Med Chem 2021; 225:113786. [PMID: 34464874 DOI: 10.1016/j.ejmech.2021.113786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.
Collapse
Affiliation(s)
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Nicole Bozza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
5
|
Zhang X, Huang YM, Qin HL, Baoguo Z, Rakesh KP, Tang H. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS OMEGA 2021; 6:25972-25981. [PMID: 34660959 PMCID: PMC8515394 DOI: 10.1021/acsomega.1c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/06/2023]
Abstract
A CuO-promoted direct hydrocarboxylation of ethenesulfonyl fluoride (ESF) was developed using carboxylic acid as a nucleophile under mild conditions. A variety of molecules containing both ester group and aliphatic sulfonyl fluoride moiety exhibit great potential in medicinal chemistry and chemical biology. Furthermore, the modification of the known drugs Ibuprofen and Aspirin was also demonstrated.
Collapse
Affiliation(s)
- Xu Zhang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Mei Huang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhang Baoguo
- Lab
of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
| | - K. P. Rakesh
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
6
|
Krishnan S, Patel PN, Balasubramanian KK, Chadha A. Yeast supported gold nanoparticles: an efficient catalyst for the synthesis of commercially important aryl amines. NEW J CHEM 2021. [DOI: 10.1039/d0nj04542j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High yielding synthesis of industrially important aryl amines from nitroarenes using yeast supported gold nanoparticles as a sustainable catalyst.
Collapse
Affiliation(s)
- Saravanan Krishnan
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Paresh N. Patel
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Kalpattu K. Balasubramanian
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Anju Chadha
- Laboratory of Bio-organic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
7
|
Yuan WC, Zuo J, Yuan SP, Zhao JQ, Wang ZH, You Y. Ring expansion and ring opening of 3-halooxindoles with N-alkoxycarbonyl- O-tosylhydroxylamines for divergent access to 4-aminoquinolin-2-ones and N-Cbz- N’-arylureas. Org Chem Front 2021. [DOI: 10.1039/d0qo01335h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reaction of N-alkoxycarbonyl-O-tosylhydroxylamines with indol-2-ones in situ generated from 3-halooxindoles has been developed for divergently accessing 4-aminoquinolin-2-ones and N-Cbz-N’-arylureas in good to excellent yields.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Jian Zuo
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| |
Collapse
|
8
|
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. The growing applications of SuFEx click chemistry. Chem Soc Rev 2019; 48:4731-4758. [DOI: 10.1039/c8cs00960k] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SuFEx (Sulfur Fluoride Exchange) is a modular, next generation family of click reactions, geared towards the rapid and reliable assembly of functional molecules.
Collapse
Affiliation(s)
- A. S. Barrow
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - C. J. Smedley
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Q. Zheng
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - S. Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - J. Dong
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - J. E. Moses
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
9
|
Theoretical Study and Experimental Analysis on 2-(1-Ethyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-2-oxoacetic Acid (3) Using the DFT Approach. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wang B, Sun S, Yu JT, Jiang Y, Cheng J. Palladium-Catalyzed Multicomponent Reactions of o-Alkynylanilines, Aryl Iodides, and CO2 toward 3,3-Diaryl 2,4-Quinolinediones. Org Lett 2017; 19:4319-4322. [DOI: 10.1021/acs.orglett.7b01989] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bingbing Wang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China
| | - Song Sun
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China
| | - Yan Jiang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
11
|
Hartrampf FW, Barber DM, Gottschling K, Leippe P, Hollmann M, Trauner D. Development of a photoswitchable antagonist of NMDA receptors. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Alachouzos G, Lenselink EB, Mulder-Krieger T, de Vries H, IJzerman AP, Louvel J. Synthesis and evaluation of N-substituted 2-amino-4,5-diarylpyrimidines as selective adenosine A1 receptor antagonists. Eur J Med Chem 2017; 125:586-602. [DOI: 10.1016/j.ejmech.2016.09.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/04/2016] [Accepted: 09/25/2016] [Indexed: 02/01/2023]
|
13
|
Zheng Q, Dong J, Sharpless KB. Ethenesulfonyl Fluoride (ESF): An On-Water Procedure for the Kilogram-Scale Preparation. J Org Chem 2016; 81:11360-11362. [DOI: 10.1021/acs.joc.6b01423] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiajia Dong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Synthesis and biological activities of novel anthranilic diamides analogues containing benzo[b]thiophene. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Dou G, Shi D. Efficient and Convenient Synthesis of Indazol-3(2H)-ones and 2-Aminobenzonitriles. ACTA ACUST UNITED AC 2009; 11:1073-7. [DOI: 10.1021/cc9001058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guolan Dou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Daqing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
16
|
Arshad N, Hashim J, Kappe CO. Synthesis of Bisquinolone-Based Mono- and Diphosphine Ligands of the Aza-BINAP Type. J Org Chem 2008; 73:4755-8. [DOI: 10.1021/jo800665t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nuzhat Arshad
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Jamshed Hashim
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
17
|
Alarcon K, Martz A, Mony L, Neyton J, Paoletti P, Goeldner M, Foucaud B. Reactive derivatives for affinity labeling in the ifenprodil site of NMDA receptors. Bioorg Med Chem Lett 2008; 18:2765-70. [PMID: 18434149 DOI: 10.1016/j.bmcl.2008.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
To prepare thiol-reactive ifenprodil derivatives designed as potential probes for cysteine-substituted NR2B containing NMDA receptors, electrophilic centers were introduced in different areas of the ifenprodil structure. Intermediates and final compounds were evaluated by binding studies and by electrophysiology to determine the structural requirements for their selectivity. The reactive compounds were further tested for their stability and for their reactivity in model reactions; some were found suitable as structural probes to investigate the binding site and the docking mode of ifenprodil in the NR2B subunit.
Collapse
Affiliation(s)
- Karine Alarcon
- Laboratoire de Chimie Bioorganique, CNRS UMR 7175, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 Route du Rhin, F-67401 Illkirch, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kadieva MG, Oganesyan ÉT, Zefirova OH. Antagonists of AMPA/KA and NMDA (glycine site) glutamate receptors. Pharm Chem J 2008. [DOI: 10.1007/s11094-008-0063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Messaoudi S, Audisio D, Brion JD, Alami M. Rapid access to 3-(N-substituted)-aminoquinolin-2(1H)-ones using palladium-catalyzed C–N bond coupling reaction. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.085] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Levitsky K, Boersma MD, Ciolli CJ, Belshaw PJ. Exo-mechanism proximity-accelerated alkylations: investigations of linkers, electrophiles and surface mutations in engineered cyclophilin-cyclosporin systems. Chembiochem 2006; 6:890-9. [PMID: 15832403 DOI: 10.1002/cbic.200400383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Investigations on the scope and utility of exo-mechanism proximity-accelerated reactions in engineered receptor-ligand systems are reported. We synthesized a series of electrophilic cyclosporin (CsA) derivatives by varying electrophiles and linker lengths, prepared a series of nucleophilic cysteine mutations on the surface of cyclophilin A (Cyp), and examined their reactivity and specificity in proximity-accelerated reactions. Acrylamide and epoxide electrophiles afforded useful reactivity and high specificity for alkylation of engineered receptors in Jurkat cell extracts. We found that remote cysteines (>17 A from the ligand) could be alkylated with useful rates under physiological conditions. The results from mutations of the receptor surface suggest that the dominant factors governing the rates of proximity-accelerated reactions are related to the local environment of the reactive group on the protein surface. This study defines several parameters affecting reactivity in exo-mechanism proximity-accelerated reactions and provides guidance for the design of experiments for biological investigations involving proximity-accelerated reactions.
Collapse
Affiliation(s)
- Konstantin Levitsky
- Department of Biochemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
21
|
LHMDS mediated tandem acylation–cyclization of 2-aminobenzenecarbonitriles with 2-benzymidazol-2-yl acetates: a short and efficient route to the synthesis of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Chimichi S, Boccalini M, Hassan MM, Viola G, Dall'Acqua F, Curini M. Synthesis, structural determination and photo-antiproliferative activity of new 3-pyrazolyl or -isoxazolyl substituted 4-hydroxy-2(1H)-quinolinones. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.09.135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Berezhnoy D, Nyfeler Y, Gonthier A, Schwob H, Goeldner M, Sigel E. On the benzodiazepine binding pocket in GABAA receptors. J Biol Chem 2003; 279:3160-8. [PMID: 14612433 DOI: 10.1074/jbc.m311371200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.
Collapse
Affiliation(s)
- Dmytro Berezhnoy
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Foucaud B, Laube B, Schemm R, Kreimeyer A, Goeldner M, Betz H. Structural model of the N-methyl-D-aspartate receptor glycine site probed by site-directed chemical coupling. J Biol Chem 2003; 278:24011-7. [PMID: 12697759 DOI: 10.1074/jbc.m300219200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptor is a ligand-gated ion channel that requires both glutamate and glycine for efficient activation. Here, a strategy combining cysteine scanning mutagenesis and affinity labeling was used to investigate the glycine binding site located on the NR1 subunit. Based on homology modeling to the crystal structure of the glutamate binding site of the 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)-propionic acid receptor GluR2, cysteines were introduced into the NR1 subunit as chemical sensors for three thiol-reactive derivatives of the competitive antagonist L-701324. After coexpressing the mutant NR1 with wild-type NR2B subunits in Xenopus oocytes, agonist-induced currents were recorded to monitor irreversible receptor inactivation by the reactive antagonists. For each derivative, glycine site-specific inactivations were observed with a distinct subset of cysteine-substituted receptors. Together these inactivating substitutions identified seven NR1 residues (Ile-385, Gln-387, Glu-388, Thr-500, Asn-502, Ala-696, and Val-717) that undergo proximity-induced covalent coupling with specific regions of the bound antagonist and disclose its mode of docking in the glycine binding pocket of the NMDA receptor. Our approach may help to unravel the structural basis of distinct NMDA receptor subtype pharmacologies.
Collapse
Affiliation(s)
- Bernard Foucaud
- Laboratoire de Chimie Bioorganique, CNRS UMR 7514, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, F-67401 Illkirch, France.
| | | | | | | | | | | |
Collapse
|
25
|
Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS. CoMFA and homology-based models of the glycine binding site of N-methyl-d-aspartate receptor. J Med Chem 2003; 46:1609-16. [PMID: 12699379 DOI: 10.1021/jm0210156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homology modeling was used to build 3D models of the N-methyl-d-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | |
Collapse
|
26
|
Che C, Petit G, Kotzyba-Hibert F, Bertrand S, Bertrand D, Grutter T, Goeldner M. Syntheses and biological properties of cysteine-reactive epibatidine derivatives. Bioorg Med Chem Lett 2003; 13:1001-4. [PMID: 12643898 DOI: 10.1016/s0960-894x(03)00092-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synthesis of epibatidine derivatives modified at the 2-position of the pyridine or pyrimidine rings by reactive functions are described for potential irreversible site-directed coupling reactions on cysteine mutants of neuronal nicotinic acetylcholine receptors. An improved synthesis of the 7-azabicyclo[2,2,1]hepta-2,5-diene key intermediate has been developed to allow reproducible syntheses of the epibatidine derivatives. Binding tests and electrophysiological experiments allowed to select the 2-substituted alpha-chloroacetamido 13 and the chloropyrimidine derivative 11 as potential site-directed probes for the epibatidine binding site.
Collapse
Affiliation(s)
- Christian Che
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS, Faculté de Pharmacie, Université Louis Pasteur Strasbourg BP 24, 67401 Illkirch, cedex France
| | | | | | | | | | | | | |
Collapse
|
27
|
Perret P, Laube B, Schemm R, Betz H, Goeldner M, Foucaud B. Affinity labeling of cysteine-mutants evidences contact residues in modeled receptor binding sites. J Recept Signal Transduct Res 2002; 22:345-56. [PMID: 12503626 DOI: 10.1081/rrs-120014606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To investigate the topology of binding sites in two ionotropic receptors, we have initiated a strategy combining affinity labeling with cysteine-scanning mutagenesis. For the GABAA receptor we have used reactive derivatives of non-competitive blockers (NCBs) to explore interacting positions in its channel. The polypeptide positions of the M2 segment of the alpha1 subunit which we mutated into cysteine were selected for their established accessibility, as determined by the substituted-cysteine accessibility method (SCAM). Using the Xenopus oocyte expression system, we show that receptors containing mutations V257C and S272C are inactivated by several reactive NCBs. These position-selective inactivations lead to an analysis of NCB binding in the channel. For the NMDA receptor glycine-binding site, the prototype antagonist L-701,324 was derivatized at different positions with different reactive groups. The receptor positions to mutate into cysteine were selected after a 3-D homology model. The observed receptor inactivations are mutant- and probe-selective, leading to an unambiguous chemical docking of the antagonist pharmacophore and supporting the model. The site-specificity of the inactivating reactions is assessed by protection experiments and by mutant to wild-type (WT) comparisons. The scope and limitations of the method are briefly discussed.
Collapse
Affiliation(s)
- P Perret
- Texas A&M University, Department of Biology, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
28
|
Foucaud B, Perret P, Grutter T, Goeldner M. Cysteine mutants as chemical sensors for ligand-receptor interactions. Trends Pharmacol Sci 2001; 22:170-3. [PMID: 11282416 DOI: 10.1016/s0165-6147(00)01674-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The incorporation of cysteine residues into membrane receptors by mutagenesis has enabled the development of engineered proteins. Chemical modification of the mutant receptor using a wide range of biochemical and biophysical probes has facilitated functional studies of ligand-receptor interactions. In particular, the substituted-cysteine accessibility method (SCAM) represents a successful example of how to probe transmembrane receptor domains after chemical modification of the mutants with sulfydryl-reacting molecules. We propose an extension of this methodology using site-specific affinity probes that react with cysteine mutants to gain reliable structural information on the binding of a ligand in its receptor site.
Collapse
Affiliation(s)
- B Foucaud
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS, Faculté de Pharmacie, Université Louis Pasteur Strasbourg, BP 24, 67401 ILLKIRCH, Cedex, France
| | | | | | | |
Collapse
|