1
|
Mittal RK, Purohit P, Abdellattif MH, Aggarwal M. Microwave and Cs +-assisted chemo selective reaction protocol for synthesizing 2-styryl quinoline biorelevant molecules. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
The reaction protocols and their continuous development to achieve the desired selectivity remain a primary target of organic chemistry, which is addressed here with the specific role of the cesium ion. The pharmacophore “2-styryl quinoline” was taken as a reference here because of the continuation of our work, where it was found fit as fusion inhibitors and anti-viral agents. The present protocol defines its importance for the synthesis of O-alkylated products. However, in most cases, N-alkylation proceeds because of nitrogen atoms’ more nucleophilic nature and electronic density. The cesium effect makes this possible because of the large cationic size and its affection for the oxygen atom. The plausible mechanism and its progression were demonstrated here with the help of density function theory calculation by analyzing the energy of intermediates. The protocol is also found suitable with microwave irradiation. Moreover, it gives the product a better yield in less reaction time. The present reaction protocol and its importance will address some of the crucial issues related to the synthesis of the complex molecule, and the present protocol will open up hope, where the selectivity and product yield would be a concern.
Collapse
|
2
|
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022; 27:molecules27207108. [PMID: 36296703 PMCID: PMC9607578 DOI: 10.3390/molecules27207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seven styrylquinolines were synthesized in this study. Two of these styrylquinolines are new and were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, and normal cells (HaCaT). According to the results, compounds 3a and 3d showed antiproliferative activity in SW480 and SW620 cells, but their effect seemed to be caused by different mechanisms of action. Compound 3a induced apoptosis independent of ROS production, as evidenced by increased levels of caspase 3, and had an immunomodulatory effect, positively regulating the production of different immunological markers in malignant cell lines. In contrast, compound 3d generated a pro-oxidant response and inhibited the growth of cancer cells, probably by another type of cell death other than apoptosis. Molecular docking studies indicated that the most active compound, 3a, could efficiently bind to the proapoptotic human caspases-3 protein, a result that could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. The obtained results suggest that these compounds have chemopreventive potential against CRC, but more studies should be carried out to elucidate the molecular mechanisms of action of each of them in depth.
Collapse
|
3
|
Sehlangia S, Nayak N, Garg N, Pradeep CP. Substituent-Controlled Structural, Supramolecular, and Cytotoxic Properties of a Series of 2-Styryl-8-nitro and 2-Styryl-8-hydroxy Quinolines. ACS OMEGA 2022; 7:24838-24850. [PMID: 35874236 PMCID: PMC9301718 DOI: 10.1021/acsomega.2c03047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Styryl quinolines are biologically active compounds with properties largely depending on the substituents on the styryl and quinoline rings. The supramolecular aspects of this class of compounds are rarely explored. In this study, two new series of styryl quinoline derivatives, bearing -OH and -NO2 groups at the eighthposition of the quinoline ring and -SCH3, -OCH3, and -Br groups on the styryl ring, have been developed, and their structural, supramolecular, and cytotoxic properties have been analyzed. Crystallographic analyses revealed the exciting substituent-dependent structural and supramolecular features of these compounds. In general, the 8 -OH substituted derivatives (SA series) exhibited a non-planar molecular geometry having larger dihedral angles (5.75-59.3°) between the planes of the aromatic rings. At the same time, the 8 -NO2 substituted derivatives (SB series) exhibited a more or less planar molecular geometry, as revealed by the smaller dihedral angles (1.32-3.45°) between the aromatic rings. Multiple O-H···O, C-H···O, O-H···N, and π-π stacking interactions among the molecules lead to fascinating supramolecular architectures such as hydrogen-bonded triple helices, zig-zag 1D chains, π-π stacked infinite chains, and so forth in their crystal lattice. Hirshfeld surface analyses confirmed the existence of strong π-π stacking and other weak bonding interactions in these compounds. The preliminary cytotoxic properties of SA and SB series compounds were evaluated against the human cervical cancer cell lines (HeLa cells), which further highlighted the roles of functional substituents on the aromatic rings. The SA series compounds with the -OH substituent on the quinoline ring exhibited better cytotoxicity than the SB series compounds with a -NO2 substituent. Similarly, the electron-withdrawing group -Br on the styryl ring enhanced the cytotoxicity in both series. The IC50 values were 2.52-4.69 and 2.897-10.37 μM, respectively, for the SA and SB series compounds. Compound S3A having -OH and -Br groups on the quinoline and styryl ring, respectively, exhibited the best IC50 value of 2.52 μM among all the compounds tested. These findings confirm the relevance of the hydroxyl group in the eighth position of quinoline. In short, the present study attempts to provide a systematic analysis of the effects of aromatic ring substituents on the structural, supramolecular, and cytotoxic properties of styryl quinolines for the first time.
Collapse
Affiliation(s)
- Suman Sehlangia
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| | - Namyashree Nayak
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| | - Neha Garg
- Department
of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Chullikkattil P. Pradeep
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
4
|
Saini M, Das R, Mehta DK, Chauhan S. Styrylquinolines Derivatives: SAR study and Synthetic Approaches. Med Chem 2022; 18:859-870. [DOI: 10.2174/1573406418666220214085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
In the present-day scenario, heterocyclic derivatives have revealed the primary function of various medicinal agents precious for humanity. Out of a diverse range of heterocycles, Styrylquinolines scaffolds have been proved to play an essential role in a broad range of biological activities, includinganti-HIV-1, antimicrobial, anti-inflammatory, anti-Alzheimer activity with antiproliferative effects on tumor cell lines.
Due to the immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from Styrylquinolines. Various schemes for synthesizing Styrylquinolines derivatives like one-pot, ultrasound-promoted heterogeneous acid-catalysed, microwave-assisted, solvent-free, and green synthesis were discussed in the present review. Some products of Styrylquinolines are in clinical trials, and patents are also granted for the novel synthesis of Styrylquinolines. According to the structure-activity relationship, replacement at the R-7 and R-8 positions is required for various activities.
In this review, recent synthetic approaches in the medicinal chemistry of Styrylquinolines and potent Styrylquinolines derivatives based on structural activity relationships (SAR) are outlined. Moreover, their primary methods and modifications are also discussed.
Collapse
Affiliation(s)
- Monika Saini
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Rina Das
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Dinesh Kumar Mehta
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| | - Samrat Chauhan
- MM College of Pharmacy, Department of Pharmaceutical Chemistry,
Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Hr, India
| |
Collapse
|
5
|
Gao W, Li Z, Xu Q, Li Y. First synthesis of novel 2,4-bis(( E)-styryl)quinoline-3-carboxylate derivatives and their antitumor activity. RSC Adv 2018; 8:38844-38849. [PMID: 35558278 PMCID: PMC9090603 DOI: 10.1039/c8ra08023b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
A simple and flexible synthesis of a new series of 2,4-bis((E)-styryl)quinoline-3-carboxylates (3a-t) has been achieved for the first time in good yields via successive Arbuzov/Horner-Wadsworth-Emmons (HWE) reaction in one-pot using the newly-synthesized ethyl 4-(bromomethyl)-2-(chloromethyl)quinoline-3-carboxylate as the substrate. Our synthetic protocol is as attractive and powerful as it is simple, tolerates a wide range of substituents, and does not involve the use of expensive reagents or catalysts. These title compounds belong to a new class of quinoline derivatives and their antitumor activity was assessed on human cancer cell lines (A549, HT29 and T24). The MTT assay showed compounds 3h, 3k and 3t had significant inhibitory activity with IC50 values of 1.53, 1.38 and 2.36 μM against A549 and 1.50, 0.77 and 0.97 μM against HT29, respectively, much better than the reference cisplatin.
Collapse
Affiliation(s)
- Wentao Gao
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Zhiyuan Li
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Qiqi Xu
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| | - Yang Li
- Institute of Superfine Chemicals, Bohai University Jinzhou 121000 P. R. China
| |
Collapse
|
6
|
Li Y, Wang Y, Zou H. A general three-step one-pot synthesis of novel (E)-6-chloro-2-(aryl/hetarylvinyl)quinoline-3-carboxylic acids. Mol Divers 2017; 21:463-473. [PMID: 28233219 DOI: 10.1007/s11030-017-9730-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
In this work, a facile and general three-step one-pot synthesis of structurally new (E)-6-chloro-2-(aryl/hetarylvinyl)quinoline-3-carboxylic acid derivatives has been achieved from easily available ethyl 6-chloro-2-(chloromethyl) quinoline-3-carboxylate and aromatic or heteroaromatic aldehydes. This strategy features simple one-pot operation, tolerance of a wide range of substituents, and good yields. Moreover, these newly synthesized compounds belong to a new class of quinoline derivatives and could be good candidates for the development of more complex quinoline compounds for use in medicinal chemistry.
Collapse
Affiliation(s)
- Yang Li
- College of Land and Environmental Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China.
| | - Yang Wang
- Institute of Superfine Chemicals, Bohai University, Keji Street, Jinzhou, 121000, People's Republic of China
| | - Hongtao Zou
- College of Land and Environmental Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
7
|
Patel KD, Patel HS. Synthesis, spectroscopic characterization and thermal studies of some divalent transition metal complexes of 8-hydroxyquinoline. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Sarma P, Saikia S, Borah R. Studies on –SO3H functionalized Brønsted acidic imidazolium ionic liquids (ILs) for one-pot, two-step synthesis of 2-styrylquinolines. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1193754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Parishmita Sarma
- Department of Chemical Sciences, Tezpur University, Assam, India
| | - Susmita Saikia
- Department of Chemical Sciences, Tezpur University, Assam, India
| | - Ruli Borah
- Department of Chemical Sciences, Tezpur University, Assam, India
| |
Collapse
|
9
|
Ren T, Wang J, Li G, Cheng H, Li Y. Synthesis of quinoline derivatives containing pyrazole group and investigation of their crystal structure and spectroscopic properties in relation to acidity and alkalinity of mediums. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:7-13. [PMID: 24709388 DOI: 10.1016/j.saa.2014.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Two series of quinoline derivatives containing pyrazole group were synthesized and characterized by means of (1)H NMR, FT-IR, MS, elemental analysis and X-ray single crystal diffraction, and their UV-vis absorption behavior and fluorescence properties were also measured. Moreover, the effects of acetic acid and triethylamine on the spectroscopic properties of synthesized products were examined with compounds 3a and 5a as examples. It has been found that all synthesized quinoline derivatives show maximum absorption peak at 303 nm and emission peaks around 445 nm. Besides, both acetic acid and triethylamine can change the acidity of the medium, thereby influencing the UV-vis absorption spectra and fluorescence spectra of synthesized products. Moreover, theoretical investigations indicate that the integration of H(+) and N atom of quinoline ring favors the formation of a new product in the presence of acetic acid, and the product obtained in this case shows a new UV-vis absorption peak at 400 nm.
Collapse
Affiliation(s)
- Tiegang Ren
- Fine Chemistry and Engineering Research Institute, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jie Wang
- Fine Chemistry and Engineering Research Institute, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Guihui Li
- Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, People's Republic of China.
| | - Hongbin Cheng
- Fine Chemistry and Engineering Research Institute, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yongzhe Li
- Fine Chemistry and Engineering Research Institute, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
10
|
Esposito F, Tramontano E. Past and future. Current drugs targeting HIV-1 integrase and reverse transcriptase-associated ribonuclease H activity: single and dual active site inhibitors. Antivir Chem Chemother 2014; 23:129-44. [PMID: 24150519 DOI: 10.3851/imp2690] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Catalytic HIV type-1 (HIV-1) integrase (IN) and ribonuclease H (RNase H) domains belong to the polynucleotidyl transferase superfamily and are characterized by highly conserved motifs that coordinate two divalent Mg(2+) cations and are attractive targets for new antiviral agents. Several structural features of both domains are now available. Drugs targeting the HIV-1 IN are currently approved for anti-HIV therapy, while no drug targeting the HIV-1 RNase H function is yet available. This review describes HIV-1 IN and the RNase H function and structures, compounds targeting their active sites and dual inhibition as a new approach for drug development.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | | |
Collapse
|
11
|
Ning P, Ren T, Zhang Y, Zhang J. Theoretical investigations of the structures and electronic spectra of 8-hydroxylquinoline derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:464-468. [PMID: 23871972 DOI: 10.1016/j.saa.2013.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/07/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
The spectroscopic properties of 8-hydroxyquinoline derivatives are theoretically investigated by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The target molecules are divided into two groups: group (I): (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (A), together with corresponding potential reaction products of A with acetic acid, i.e., (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (AR1), and (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (AR2); group (II): (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (B), as well as potential reaction products of B with acetic acid, i.e., (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (BR1), and (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (BR2). The geometries are optimized by B3LYP and M06 methods. The results indicate that product molecules tend to be effectively planar compared with reactants. Subsequently, UV absorption spectra are simulated through TD-DFT method with PCM model to further confirm the reasonable products of two reactions. AR2 and BR2 are identified as the target molecules through the experimental spectra for the real products. It is worth noting that the maximum absorption wavelengths of compounds AR2 and BR2 present prominent red shift compared the initial reactants A and B, respectively, which should be ascribed to the enhancive planarity of products that mentioned above and the decreased HOMO-LUMO energy gap. Geometric structures and optical properties for corresponding compounds are discussed in detail.
Collapse
Affiliation(s)
- Pan Ning
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | | | | | | |
Collapse
|
12
|
Eweas AF, Allam G, Abuelsaad AS, ALGhamdi AH, Maghrabi IA. Design, synthesis, anti-schistosomal activity and molecular docking of novel 8-hydroxyquinoline-5-sufonyl 1,4-diazepine derivatives. Bioorg Chem 2013; 46:17-25. [DOI: 10.1016/j.bioorg.2012.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
13
|
Sun XH, Guan JQ, Tan JJ, Liu C, Wang CX. 3D-QSAR studies of quinoline ring derivatives as HIV-1 integrase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:683-703. [PMID: 22991976 DOI: 10.1080/1062936x.2012.717541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the process of HIV-1 virus replication, integrase plays a quite important role. Integrase inhibitors of quinoline ring derivatives were analysed by the Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Induces Analysis (CoMSIA) and Topomer CoMFA methods. Firstly, 77 compounds were selected to form the training and test sets. Secondly, predictive models were constructed with the CoMFA, CoMSIA and Topomer CoMFA methods. The CoMFA model yielded the best model with q (2) of 0.76 and [Formula: see text] of 0.99, the CoMSIA model has q (2 )= 0.70 and [Formula: see text] of 0.99, while the Topomer CoMFA model has q (2) of 0.66 and [Formula: see text] of 0.97. These results provide a helpful contribution to the design of novel highly active HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- X H Sun
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Elroby SA, El-Shishtawy RM, Makki MS. Influence of the protonation, deprotonation and transition metal ions on the fluorescence of 8-hydroxyquinoline: a computational study. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.578137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Dixit RB, Patel TS, Vanparia SF, Kunjadiya AP, Keharia HR, Dixit BC. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives. Sci Pharm 2011; 79:293-308. [PMID: 21773067 PMCID: PMC3134860 DOI: 10.3797/scipharm.1102-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/01/2011] [Indexed: 11/30/2022] Open
Abstract
Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.
Collapse
Affiliation(s)
- Ritu B Dixit
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar-388 121, Gujarat, India
| | | | | | | | | | | |
Collapse
|
16
|
Goudarzi N, Goodarzi M, Chen T. QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. Med Chem Res 2011. [DOI: 10.1007/s00044-010-9542-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Mouscadet JF, Desmaële D. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Molecules 2010; 15:3048-78. [PMID: 20657464 PMCID: PMC6263292 DOI: 10.3390/molecules15053048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/25/2022] Open
Abstract
In spite of significant progress in anti-HIV-1 therapy, current antiviral chemo-therapy still suffers from deleterious side effects and emerging drug resistance. Therefore, the development of novel antiviral drugs remains a crucial issue for the fight against AIDS. HIV-1 integrase is a key enzyme in the replication cycle of the retrovirus since it catalyzes the integration of the reverse transcribed viral DNA into the chromosomal DNA. Efforts to develop anti-integrase drugs started during the early nineties, culminating with the recent approval of Raltegravir. The discovery and the development of the styrylquinoline inhibitor class was an important step in the overall process. In this review we have described the key synthetic issues and the structure-activity relationship of this family of integrase inhibitors. Crystallographic and docking studies that shed light on their mechanism of action are also examined.
Collapse
Affiliation(s)
| | - Didier Desmaële
- Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Châtenay-Malabry, France
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
18
|
Wang TT, Zeng GC, Li XC, Zeng HP. In VitroStudies on the Antioxidant and Protective Effect of 2-Substituted -8-Hydroxyquinoline Derivatives Against H2O2-Induced Oxidative Stress in BMSCs. Chem Biol Drug Des 2010; 75:214-22. [DOI: 10.1111/j.1747-0285.2009.00925.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Omar WA, Hormi OE. Synthesis of 4-(2-arylvinyl)-8-hydroxyquinolines via anhydrous Heck coupling reaction and the PL properties of their Al complexes. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Dabiri M, Salehi P, Baghbanzadeh M, Nikcheh MS. A new and efficient one-pot procedure for the synthesis of 2-styrylquinolines. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
WEI JP, ZENG HP, XU DF, LIU J. Synthesis, Fluorescence Properties and Biological Activity of 8-Hydroxyquinoline Conjugate Bonded Aromatic Heterocyclic Derivatives. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Inhibitors of strand transfer that prevent integration and inhibit human T-cell leukemia virus type 1 early replication. Antimicrob Agents Chemother 2008; 52:3532-41. [PMID: 18316517 DOI: 10.1128/aac.01361-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of the retrovirus human T-cell leukemia virus type 1 (HTLV-1) is linked to the development of lymphoid malignancies and inflammatory diseases. Data from in vitro, ex vivo, and in vivo studies have revealed that no specific treatment can prevent or block HTLV-1 replication and therefore that there is no therapy for the prevention and/or treatment of HTLV-1-associated diseases in infected individuals. HTLV-1 and human immunodeficiency virus type 1 (HIV-1) integrases, the enzymes that specifically catalyze the integration of these retroviruses in host cell DNA, share important structural properties, suggesting that compounds that inhibit HIV-1 integration could also inhibit HTLV-1 integration. We developed quantitative assays to test, in vitro and ex vivo, the efficiencies of styrylquinolines and diketo acids, the two main classes of HIV-1 integrase inhibitors. The compounds were tested in vitro in an HTLV-1 strand-transfer reaction and ex vivo by infection of fresh peripheral blood lymphocytes with lethally irradiated HTLV-1-positive cells. In vitro, four styrylquinoline compounds and two diketo acid compounds significantly inhibited HTLV-1 integration in a dose-dependent manner. All compounds active in vitro decreased cell proliferation ex vivo, although at low concentrations; they also dramatically decreased both normalized proviral loads and the number of integration events during experimental ex vivo primary infection. Accordingly, diketo acids and styrylquinolines are the first drugs that produce a specific negative effect on HTLV-1 replication in vitro and ex vivo, suggesting their potential efficiency for the prevention and treatment of HTLV-1-associated diseases.
Collapse
|
23
|
Dayam R, Gundla R, Al-Mawsawi LQ, Neamati N. HIV-1 integrase inhibitors: 2005-2006 update. Med Res Rev 2008; 28:118-54. [PMID: 17979144 DOI: 10.1002/med.20116] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
24
|
Dubey S, Satyanarayana YD, Lavania H. Development of integrase inhibitors for treatment of AIDS: An overview. Eur J Med Chem 2007; 42:1159-68. [PMID: 17367896 DOI: 10.1016/j.ejmech.2007.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/22/2022]
Abstract
HIV-1 integrase (IN) is an essential enzyme for retroviral replication. It is involved in the integration of HIV DNA into host chromosomal DNA. The unique properties of IN makes it an ideal target for drug design. First, there appears to have no functional equivalent in human cells and the reactions catalyzed by IN are unique. Second, IN is absolutely required for viral replication and mutations in a number of key residues block the viral replication. Third, IN has been validated as a legitimate target and the results from the molecules like S-1,360, JKT-303 which are under phase II/III clinical trials suggest synergistic effect with reverse transcriptase (RT) and protease (PR) inhibitors. During the past 10 years a plethora of inhibitors have been identified and some were shown to be selective against IN and block viral replication. The classes under which inhibitors of integrase can be classified are catechol-containing hydroxylated aromatics, diketoacid-containing aromatics, quninolines and others (non-catechol containing). In the present article we review all the recent small molecules reported to inhibit recombinant HIV-1 IN under these heads. It seems likely that the efficient use of HIV IN as target for rational design can give potent anti-HIV agents, which can be used alone or in combination regimens with other classes of anti-HIV drugs.
Collapse
Affiliation(s)
- Sonal Dubey
- K.L.E.S. College of Pharmacy, Rajajinagar II Block, Bangalore 560010, Karnataka, India.
| | | | | |
Collapse
|
25
|
Courcot B, Firley D, Fraisse B, Becker P, Gillet JM, Pattison P, Chernyshov D, Sghaier M, Zouhiri F, Desmaële D, d'Angelo J, Bonhomme F, Geiger S, Ghermani NE. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors. J Phys Chem B 2007; 111:6042-50. [PMID: 17488111 DOI: 10.1021/jp0687551] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.
Collapse
Affiliation(s)
- B Courcot
- Ecole Centrale Paris, Laboratoire SPMS, UMR CNRS 8580 1, Grande Voie des Vignes, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tchertanov L, Mouscadet JF. Target recognition by catechols and beta-ketoenols: potential contribution of hydrogen bonding and Mn/Mg chelation to HIV-1 integrase inhibition. J Med Chem 2007; 50:1133-45. [PMID: 17302399 DOI: 10.1021/jm061375j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catechol and beta-ketoenol are important pharmacophores of HIV-1 integrase (IN) inhibitors. We investigated their recognition of the divalent metals, Mg and Mn, and of hydrogen bond donors (HBD) and acceptors (HBA). We used data retrieved from the Cambridge Structural Database (CSD), applying a 3-D structure-based, in silico-driven approach. We found that both biophores were stabilized by intramolecular H-bonding (IHB), which was weak in catechols and very strong in beta-ketoenols. Catechols tended to recognize environmental HBD and HBA, demonstrating their ability to make use of both hydroxyl groups to form multiple, strong intermolecular H-bonds. In contrast, beta-ketoenols stabilized by strong IHB inefficiently formed intermolecular H-bonds. beta-Ketoenolate chelated both Mg and Mn ions much more efficiently than dioxolene, which was highly selective for Mn cations. The significant differences in the ability of these two pharmacophores to bind HBD and HBA and in their ability to chelate Mg and Mn have important consequences for competitive inhibitor binding and selectivity for metals and integrase DNA-binding sites.
Collapse
Affiliation(s)
- Luba Tchertanov
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, CNRS UMR 8113, Ecole Normale Supérieure de Cachan, 61 av. Président Wilson, 94235 Cachan, France.
| | | |
Collapse
|
27
|
Sridharan V, Avendaño C, Menéndez JC. CAN-catalyzed three-component reaction between anilines and alkyl vinyl ethers: stereoselective synthesis of 2-methyl-1,2,3,4-tetrahydroquinolines and studies on their aromatization. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Polanski J. Drug design using comparative molecular surface analysis. Expert Opin Drug Discov 2006; 1:693-707. [DOI: 10.1517/17460441.1.7.693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
An Efficient Microwave-Assisted Synthesis of Structurally Diverse Styrylquinolines. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0513-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Zeng HP, Wang TT, Ouyang XH, Zhou YD, Jing HL, Yuan GZ, Chen DF, Du SH, Li H, Zhou JH. 8-Hydroxyquinoline derivatives induce the proliferation of rat mesenchymal stem cells (rMSCs). Bioorg Med Chem 2006; 14:5446-50. [PMID: 16730996 DOI: 10.1016/j.bmc.2006.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/29/2006] [Accepted: 05/02/2006] [Indexed: 11/17/2022]
Abstract
A series of 8-hydroxyquinoline derivatives with different substituted groups at 2- or 5-position have been synthesized and characterized. Their effects on the proliferation of the rat marrow-derived mesenchymal stem cells (rMSCs) have been evaluated by MTT assay and flow cytometry. We also analyzed the ability of these compounds to regulate the proliferation of rMSCs and the relationship with the structures of 8-hydroxyquinoline. Compounds 8-11, in which, the vinyl-substituents are on the 2-position of 8-hydroxyquinoline, appear to be able to induce the proliferation of rMSCs. These results show that compounds 8-11 provide a kind of new substances for regulating the proliferation of rMSCs.
Collapse
Affiliation(s)
- He-Ping Zeng
- Institute of Functional Molecule, School of Chemistry, South China University of Technology, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The integration of viral cDNA into the host genome is an essential step in the HIV-1-life cycle and is mediated by the virally encoded enzyme, integrase (IN). Inhibition of this process provides an attractive strategy for antiviral drug design. The discovery of beta-diketo acid inhibitors played a major role in validating IN as a legitimate antiretroviral drug target. Over a decade of research, a plethora of IN inhibitors have been discovered and some showed antiviral activity consistent with their effect on IN. To date, at least two compounds have been tested in human but none are close to the FDA approval. In this review, we provide a comprehensive report of all small-molecule IN inhibitors discovered during the years 2003 and 2004. Compilation of such data will prove beneficial in developing QSAR, virtual screening, pharmacophore hypothesis generation, and validation.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, USA
| | | | | |
Collapse
|
32
|
Firley D, Courcot B, Gillet JM, Fraisse B, Zouhiri F, Desmaële D, d'Angelo J, Ghermani NE. Experimental/Theoretical Electrostatic Properties of a Styrylquinoline-Type HIV-1 Integrase Inhibitor and Its Progenitors. J Phys Chem B 2005; 110:537-47. [PMID: 16471566 DOI: 10.1021/jp0582179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have established that polyhydroxylated styrylquinolines are potent inhibitors of HIV-1 integrase (IN). Among them, we have identified (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinolinecarboxylic acid (1) as a promising lead. Previous molecular dynamics simulations and docking procedures have shown that the inhibitory activity involves one or two metal cations (Mg2+), which are present in the vicinity of the active center of the enzyme. However, such methods are generally based on a force-field approach and still remain not as reliable as ab initio calculations with extended basis sets on the whole system. To go further in this area, the aim of the present study was to evaluate the predictive ability of the electron density and electrostatic properties in the structure-activity relationships of this class of HIV-1 antiviral drugs. The electron properties of the two chemical progenitors of 1 were derived from both high-resolution X-ray diffraction experiments and ab initio calculations. The twinning phenomenon and solvent disorder were observed during the crystal structure determination of 1. Molecule 1 exhibits a planar s-trans conformation, and a zwitterionic form in the crystalline state is obtained. This geometry was used for ab initio calculations, which were performed to characterize the electronic properties of 1. The electron densities, electrostatic potentials, and atomic charges of 1 and its progenitors are here compared and analyzed. The experimental and theoretical deformation density bond peaks are very comparable for the two progenitors. However, the experimental electrostatic potential is strongly affected by the crystal field and cannot straightforwardly be used as a predictive index. The weak difference in the theoretical electron densities between 1 and its progenitors reveals that each component of 1 conserves its intrinsic properties, an assumption reinforced by a 13C NMR study. This is also shown through an excellent correlation of the atomic charges for the common fragments. The electrostatic potential minima in zwitterionic and nonzwitterionic forms of 1 are discussed in relation with the localization of possible metal chelation sites.
Collapse
Affiliation(s)
- Delphine Firley
- Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Normand-Bayle M, Bénard C, Zouhiri F, Mouscadet JF, Leh H, Thomas CM, Mbemba G, Desmaële D, d'Angelo J. New HIV-1 replication inhibitors of the styryquinoline class bearing aroyl/acyl groups at the C-7 position: Synthesis and biological activity. Bioorg Med Chem Lett 2005; 15:4019-22. [PMID: 16002283 DOI: 10.1016/j.bmcl.2005.06.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/06/2005] [Accepted: 06/07/2005] [Indexed: 11/29/2022]
Abstract
Novel variants of HIV-1 replication inhibitors of the styrylquinoline class harboring aroyl/acyl group at the C-7 position have been synthesized. In sharp contrast with styrylquinolines bearing a carboxylic acid group at C-7, these compounds proved to be inactive toward HIV-1 integrase in in vitro assays.
Collapse
Affiliation(s)
- Marie Normand-Bayle
- Unité Associée au CNRS, UMR 8076, Faculté de Pharmacie, 5, rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zouhiri F, Danet M, Bénard C, Normand-Bayle M, Mouscadet JF, Leh H, Marie Thomas C, Mbemba G, d’Angelo J, Desmaële D. HIV-1 replication inhibitors of the styrylquinoline class: introduction of an additional carboxyl group at the C-5 position of the quinoline. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, Desmaële D, D'Angelo J, Mouscadet JF, Leh H. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J Virol 2004; 78:5728-36. [PMID: 15140970 PMCID: PMC415813 DOI: 10.1128/jvi.78.11.5728-5736.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that styrylquinolines (SQLs) are integrase inhibitors in vitro. They compete with the long terminal repeat substrate for integrase. Here, we describe the cellular mode of action of these molecules. We show that SQLs do not interfere with virus entry. In fact, concentrations of up to 20 times the 50% inhibitory concentration did not inhibit cell-to-cell fusion or affect the interaction between GP120 and CD4 in vitro. Moreover, the pseudotype of the retrovirus envelope did not affect drug activity. Quantitative reverse transcription PCR experiments showed that SQLs do not inhibit the entry of the genomic RNA. In contrast, the treatment of human immunodeficiency virus type 1-infected cells with SQLs reduced the amount of the late cDNA, suggesting for the first time that integrase targeting molecules may affect the accumulation of DNA during reverse transcription. The cellular target of SQLs was confirmed by the appearance of mutations in the integrase gene when viruses were grown in the presence of increasing concentrations of SQLs. Finally, these mutations led to SQL-resistant viruses when introduced into the wild-type sequence. In contrast, SQLs were fully active against reverse transcriptase inhibitor- and diketo acid-resistant viruses, positioning SQLs as a second group of anti-integrase compounds.
Collapse
|
36
|
Bénard C, Zouhiri F, Normand-Bayle M, Danet M, Desmaële D, Leh H, Mouscadet JF, Mbemba G, Thomas CM, Bonnenfant S, Le Bret M, d'Angelo J. Linker-modified quinoline derivatives targeting HIV-1 integrase: synthesis and biological activity. Bioorg Med Chem Lett 2004; 14:2473-6. [PMID: 15109635 DOI: 10.1016/j.bmcl.2004.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/04/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
A novel series of HIV-1 integrase inhibitors was synthesized and tested in both in vitro and ex vivo assays. These inhibitors are featured by the presence of a quinoline subunit and an ancillary aromatic ring linked by functionalized spacers such as amide, hydrazide, urea and 1-hydroxyprop-1-en-3-one moiety. Amide derivatives are the most promising ones and could serve as leads for further developments.
Collapse
Affiliation(s)
- Christophe Bénard
- CNRS UMR 8076, Centre d'Etudes Pharmaceutiques, Chimie Organique, 5 rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF. Mechanism of HIV-1 Integrase Inhibition by Styrylquinoline Derivatives in Vitro. Mol Pharmacol 2004; 65:85-98. [PMID: 14722240 DOI: 10.1124/mol.65.1.85] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Styrylquinoline derivatives (SQ) efficiently inhibit the 3'-processing activity of integrase (IN) with IC50 values of between 0.5 and 5 microM. We studied the mechanism of action of these compounds in vitro. First, we used steady-state fluorescence anisotropy to assay the effects of the SQ derivatives on the formation of IN-viral DNA complexes independently of the catalytic process. The IC50 values obtained in activity and DNA-binding tests were similar, suggesting that the inhibition of 3'-processing can be fully explained by the prevention of IN-DNA recognition. SQ compounds act in a competitive manner, with Ki values of between 400 and 900 nM. In contrast, SQs did not inhibit 3'-processing when IN-DNA complexes were preassembled. Computational docking followed or not by molecular dynamics using the catalytic core of HIV-1 IN suggested a competitive inhibition mechanism, which is consistent with our previous data obtained with the corresponding Rous sarcoma virus domain. Second, we used preassembled IN-preprocessed DNA complexes to assay the potency of SQs against the strand transfer reaction, independently of 3'-processing. Inhibition occurred even if the efficiency was decreased by about 5- to 10-fold. Our results suggest that two inhibitor-binding modes exist: the first one prevents the binding of the viral DNA and then the two subsequent reactions (i.e., 3'-processing and strand transfer), whereas the second one prevents the binding of target DNA, thus inhibiting strand transfer. SQ derivatives have a higher affinity for the first site, in contrast to that observed for the diketo acids, which preferentially bind to the second one.
Collapse
Affiliation(s)
- Eric Deprez
- Centre National de la Recherche Scientifique Unité Mixte Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, Ecole Normale Supérieure de Cachan, Cachan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
We have shown that the SOM network can be a useful tool in pharmacophore mapping strategy. A possibility for the generation of fuzzy molecular representations together with its ability for discovering such aspects of molecular similarity that can be easily overlooked by a human chemist is an important advantage. The reduction in complexity resulting from the data compression is another one. The main disadvantage of SOM usage is the need for the application of special software packages not usually organized in user friendly toolboxes that can be applied easily. Instead, it needs some experience and time to optimize the parameters controlling the performance of the network.
Collapse
Affiliation(s)
- Jaroslaw Polanski
- Department of Organic Chemistry, Institute of Chemistry, University of Silesia, PL-40-006 Katowice, Poland.
| |
Collapse
|
39
|
Markovits J, Wang Z, Carr BI, Sun TP, Mintz P, Le Bret M, Wu CW, Wu FYH. Differential effects of two growth inhibitory K vitamin analogs on cell cycle regulating proteins in human hepatoma cells. Life Sci 2003; 72:2769-84. [PMID: 12679193 DOI: 10.1016/s0024-3205(03)00188-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparison was made between two K vitamin analogs. Growth in vitro of Hep G2 hepatoma cells was inhibited both by Compound 5 (Cpd 5), a recently synthesized thioalkyl analog of vitamin K or 2-(2-mercaptoethanol)-3-methyl-1, 4-naphthoquinone, as well as by synthetic vitamin K3 (menadione). Using synchronized Hep G2 hepatoma cells, the actions of both Cpd 5 and vitamin K3 on cell cycle regulating proteins were examined. Cpd 5 decreased the levels of cyclin D1, Cdk4, p16, p21 and cyclin B1. By contrast, VK3 only decreased the level of cyclin D1, but had no effect on the levels of Cdk4, p16 or p21. Interestingly, both VK3 and VK2 increased the levels of p21. The naturally occurring K vitamins had little effect on cell growth and none on the cyclins or Cdks. Amounts and activity of the G1/S phase controlling Cdc25A were measured. We found that Cpd 5 directly inhibited both Cdc25A activity and its protein expression, whereas VK3 did not. Thus, the main effects of Cpd 5 were on G1 and S phase proteins, especially Cdk4 and Cdc25A amounts in contrast to VK3. Computer docking studies of Cpd 5 and VK3 to Cdc25A phosphatase showed three binding sites. In the best conformation, Cpd 5 was found to be closer to the enzyme active site than VK3. These findings show that Cpd 5 represents a new class of anticancer agent, being a protein tyrosine phosphatase (PTP) antagonist, that binds to Cdc25A with suppression of its activity. Tumors expressing high levels of oncogenic Cdc25A phosphatase may thus be susceptible to the growth inhibitory activities of this class of compound.
Collapse
Affiliation(s)
- Judith Markovits
- Division of Cancer Research, Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Compounds from a wide variety of structural classes inhibit HIV-1 integrase. However, a single unified understanding of the relationship between the structures and activities of these compounds still eludes researchers. We report herein the development of QSAR models for integrase inhibition. The genetic function approximation (GFA) was utilized to select descriptors for the development of the QSAR models. The best QSAR model derived for the complete set of 11 structural classes had a correlation coefficient (r(2)) of only 0.54 and a cross-validated correlation coefficient (q(2)) of only 0.42. This indicated that the compounds studied may differ in the exact relationship between structure and inhibition, perhaps through interactions with different subsets of amino acids in the binding pocket, or through the presence of non-overlapping binding pockets. Descriptor-based cluster analysis indicated that the 11 structural classes of integrase inhibitors studied belonged to two clusters, one consisting of five structural classes, and the other six. QSAR models for these two clusters had r(2) values of 0.79 and 0.82 and q(2) values of 0.71 and 0.74, a significant improvement over models obtained for the complete set of compounds. The two models were applied to predict the activities of compounds from the same structural classes as those used to build the models, giving r(2) values of 0.65 and 0.78. The models were also used to predict the activities of compounds shown in crystallographic or docking studies to interact near the active site metal ion. The model describing the larger cluster of structural classes was better able to reproduce the biological activities of these five structures with an average percent residual error of 7.9 compared with the 19.3% residual error for predictions from the other model. This indicated that the six structural classes comprising the larger cluster may bind near the metal ion in a fashion similar to that observed in one publicly available co-crystal structure of an inhibitor bound to HIV-1 integrase. Flexible alignment of inhibitors in the two clusters found different pharmacophores that are consistent with previously published pharmacophores developed on the basis of individual structural classes that have produced novel inhibitory compounds. Thus we expect that these two QSAR models can be used in the search for novel HIV-1 integrase inhibitors as well as to provide insight into the binding modes of such diverse chemical compounds.
Collapse
Affiliation(s)
- Hongbin Yuan
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
41
|
Polanski J, Zouhiri F, Jeanson L, Desmaële D, d'Angelo J, Mouscadet JF, Gieleciak R, Gasteiger J, Le Bret M. Use of the Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J Med Chem 2002; 45:4647-54. [PMID: 12361391 DOI: 10.1021/jm020845g] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the Kohonen neural network, the electrostatic potentials on the molecular surfaces of 14 styrylquinoline derivatives were drawn as comparative two-dimensional maps and compared with their known human immunodeficiency virus (HIV)-1 replication blocking potency in cells. A feature of the potential map was discovered to be related with the HIV-1 blocking activity and was used to unmask the activity of further five analogues, previously described but whose cytotoxicity precluded an estimation of their activity, and to predict the activity of 10 new compounds while the experimental data were unknown. The measurements performed later turned out to agree with the predictions.
Collapse
Affiliation(s)
- Jaroslaw Polanski
- CNRS UMR 8532, LBPA, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Makhija MT, Kulkarni VM. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors. J Comput Aided Mol Des 2002; 16:181-200. [PMID: 12363217 DOI: 10.1023/a:1020137802155] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3'-processing and 3'-end joining steps in vitro. The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.
Collapse
|
43
|
Dupont R, Jeanson L, Mouscadet JF, Cotelle P. Synthesis and HIV-1 integrase inhibitory activities of catechol and bis-catechol derivatives. Bioorg Med Chem Lett 2001; 11:3175-8. [PMID: 11720868 DOI: 10.1016/s0960-894x(01)00658-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fourteen catechol and bis-catechol derivatives have been synthesised and tested for their HIV-1 inhibitory activities. The six more active molecules have been tested for their antiviral activity and cytotoxicity. We have found that bis-catechols 1 and 2 are the most active HIV-1 integrase inhibitor whereas the best antiviral compound is 4.
Collapse
Affiliation(s)
- R Dupont
- Laboratoire de Chimie Organique Physique, UPRESA CNRS 8009, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
44
|
HIV-1 replication inhibitors of the styrylquinoline class: incorporation of a masked diketo acid pharmacophore. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)01767-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Laboulais C, Deprez E, Leh H, Mouscadet JF, Brochon JC, Le Bret M. HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays. Biophys J 2001; 81:473-89. [PMID: 11423430 PMCID: PMC1301527 DOI: 10.1016/s0006-3495(01)75715-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two molecular dynamics simulations have been carried out on the HIV-1 integrase catalytic core starting from fully determined crystal structures. During the first one, performed in the absence of divalent cation (6-ns long), the catalytic core took on two main conformations. The conformational transition occurs at approximately 3.4 ns. In contrast, during the second one, in the presence of Mg(2+) (4-ns long), there were no such changes. The molecular dynamics simulations were used to compute the fluorescence intensity decays emitted by the four tryptophan residues considered as the only chromophores. The decay was computed by following, frame by frame, the amount of chromophores that remained excited at a certain time after light absorption. The simulation took into account the quenching through electron transfer to the peptide bond and the fluorescence resonance energy transfer between the chromophores. The fit to the experimental intensity decays obtained at 5 degrees C and at 30 degrees C is very good. The fluorescence anisotropy decays were also simulated. Interestingly, the fit to the experimental anisotropy decay was excellent at 5 degrees C and rather poor at 30 degrees C. Various hypotheses such as dimerization and abnormal increase of uncorrelated internal motions are discussed.
Collapse
Affiliation(s)
- C Laboulais
- Laboratoire de Biotechnologies et de Pharmacologie Génétique Appliquée (UMR8532 Centre National de la Recherche Scientifique), Ecole Normale Supérieure de Cachan, 94235 Cachan, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
46
|
Snásel J, Rejman D, Liboska R, Tocík Z, Ruml T, Rosenberg I, Pichová I. Inhibition of HIV-1 integrase by modified oligonucleotides derived from U5' LTR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:980-6. [PMID: 11179964 DOI: 10.1046/j.1432-1327.2001.01956.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.
Collapse
Affiliation(s)
- J Snásel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
47
|
d'Angelo J, Mouscadet JF, Desmaële D, Zouhiri F, Leh H. HIV-1 integrase: the next target for AIDS therapy? ACTA ACUST UNITED AC 2001; 49:237-46. [PMID: 11367559 DOI: 10.1016/s0369-8114(01)00135-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV-1 is the aetiological agent of AIDS. Present treatment of AIDS uses a combination therapy with reverse transcriptase and protease inhibitors. Recently, the integrase (IN), the third enzyme of HIV-1 which is necessary for the integration process of proviral DNA into the host genome, has reached as a legitimate new drug target. Several families of inhibitors of the catalytic core domain of HIV-1 IN exhibiting submicromolar activities have now been identified. Our contribution in this field was related to the development of new polyhydroxylated styrylquinolines. The latter compounds have proved to be potent HIV-1 IN inhibitors, that block the replication of HIV-1 in cell culture, and are devoid of cytotoxicity. The crystal structure of the catalytically active core domain of a HIV-1 IN mutant has been determined. The active site region is identified by the position of two of the conserved carboxylate residues essential for catalysis, Asp64 and Asp116, which coordinate a Mg2+ ion, whereas the third catalytic residue, Glu152 does not participate in metal binding. However, a recent molecular dynamics simulation of the HIV-1 IN catalytic domain provides support to the hypothesis that a second metal ion is likely to be carried into the HIV-1 IN active site by the DNA substrate. The structure of a complex of the HIV-1 IN core domain with the inhibitor 5-CITEP has been recently reported. The inhibitor binds centrally in the active site of the IN and makes a number of close contacts with the protein, particularly with Lys156, Lys159 and Gln148, amino acids which were identified to be near the active site of the enzyme, through site-directed mutagenis and photo-crosslinking experiments. The exact mechanism by which HIV-1 IN inhibitors block the catalytic activity of the protein remains unknown. However, several putative pharmacophore components have been characterized. All these groups lie in a possible coordination to a divalent ion, supporting thus the hypothesis that the interaction causing the inhibition is mediated by one or two cations. Finally, among the HIV-1 IN inhibitors, three classes have proved to exhibit significant antiviral activities. Thus, it seems likely that the efficient use of HIV-1 IN as a target for rational design will become possible in the next future, possibly through the use of combination regimens including IN inhibitors.
Collapse
Affiliation(s)
- J d'Angelo
- Unité associée au CNRS, faculté de pharmacie, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
48
|
Zouhiri F, Mouscadet JF, Mekouar K, Desmaële D, Savouré D, Leh H, Subra F, Le Bret M, Auclair C, d'Angelo J. Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J Med Chem 2000; 43:1533-40. [PMID: 10780910 DOI: 10.1021/jm990467o] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our prior studies showed that polyhydroxylated styrylquinolines are potent HIV-1 integrase (IN) inhibitors that block the replication of HIV-1 in cell culture at nontoxic concentrations. To explore the mechanism of action of these inhibitors, various novel styrylquinoline derivatives were synthesized and tested against HIV-1 IN and in cell-based assays. Regarding the in vitro experiments, the structural requirements for biological activity are a carboxyl group at C-7, a hydroxyl group at C-8 in the quinoline subunit, and an ancillary phenyl ring. However the in vitro inhibitory profile tolerates deep alterations of this ring, e.g. by the introduction of various substituents or its replacement by heteroatomic nuclei. Regarding the ex vivo assays, the structural requirements for activity are more stringent than for in vitro inhibition. Thus, in addition to an o-hydroxy acid group in the quinoline, the presence of one ortho pair of substituents at C-3' and C-4', particularly two hydroxyl groups, in the ancillary phenyl ring is imperatively required for inhibitory potency. Starting from literature data and the SARs developed in this work, a putative binding mode of styrylquinoline inhibitors to HIV-1 IN was derived.
Collapse
Affiliation(s)
- F Zouhiri
- Unité de Chimie Organique, UPRES-A du CNRS 8076, Centre d'Etudes Pharmaceutiques, Université Paris-Sud, 5 rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|