1
|
Sharma H, Paul S, Ganguly S, Shankar Auddy S, Kumar Goswami R. Stereoselective synthesis of the northern hemisphere of the proposed structure of neaumycin B. Org Biomol Chem 2024; 22:7203-7217. [PMID: 39162091 DOI: 10.1039/d4ob01265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The stereoselective synthesis of the northern hemisphere (C20-C41) of the purported structure of the extremely potent anticancer natural product neaumycin B has been accomplished. Twelve out of nineteen asymmetry centers have been installed chemically. The key highlights of this synthesis include the Krische iridium catalyzed anti-diastereoselective carbonyl crotylation, the Crimmins aldol reaction, HWE olefination, CBS reduction, vanadium promoted stereoselective epoxidation, Evans methylation and spiroketalization.
Collapse
Affiliation(s)
- Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Sujan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Swapnamoy Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Sourya Shankar Auddy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
2
|
Isak D, Schwartz LA, Schulthoff S, Pérez-Moreno G, Bosch-Navarrete C, González-Pacanowska D, Fürstner A. Collective and Diverted Total Synthesis of the Strasseriolides: A Family of Macrolides Endowed with Potent Antiplasmodial and Antitrypanosomal Activity. Angew Chem Int Ed Engl 2024; 63:e202408725. [PMID: 38864359 DOI: 10.1002/anie.202408725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
The strasseriolide macrolides show promising in vitro and in vivo activities against P. falciparum and T. cruzi, the parasites causing malaria and Chagas disease, respectively. However, the as yet poor understanding of structure/activity relationships and the fact that one family member proved systemically toxic for unknown reasons render a more detailed assessment of these potential lead compounds difficult. To help overcome these issues, a collective total synthesis was devised. The key steps consisted of a ring closing alkyne metathesis (RCAM) reaction to forge a common macrocyclic intermediate followed by a hydroxy-directed ruthenium catalyzed trans-hydrostannation of the propargyl alcohol site thus formed. The resulting alkenyltin derivative served as the central node of the synthesis blueprint, which could be elaborated into the natural products themselves as well as into a set of non-natural analogues according to the concept of diverted total synthesis. The recorded biological data confirmed the potency of the compounds and showed the lack of any noticeable cytotoxicity. The "northern" allylic alcohol subunit was recognized as an integral part of the pharmacophore, yet it provides opportunities for chemical modification.
Collapse
Affiliation(s)
- Daniel Isak
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Leyah A Schwartz
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Saskia Schulthoff
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Guiomar Pérez-Moreno
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
3
|
Auddy S, Gupta S, Mandi S, Sharma H, Sinha S, Goswami RK. Total Synthesis of Lipopeptide Bacilotetrin C: Discovery of Potent Anticancer Congeners Promoting Autophagy. ACS Med Chem Lett 2024; 15:1340-1350. [PMID: 39140062 PMCID: PMC11318098 DOI: 10.1021/acsmedchemlett.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
A convergent strategy for the first total synthesis of the lipopeptide bacilotetrin C has been developed. The key features of this synthesis include Crimmins acetate aldol, Steglich esterification, and macrolactamization. Twenty-nine variants of the natural product were prepared following a systematic structure-activity relationship study, where some of the designed analogues showed promising cytotoxic effects against multiple human carcinoma cell lines. The most potent analogue exhibited a ∼37-fold enhancement in cytotoxicity compared to bacilotetrin C in a triple-negative breast cancer (MDA-MB-231) cell line at submicromolar doses. The study further revealed that some of the analogues induced autophagy in cancer cells to the point of their demise at doses much lower than those of known autophagy-inducing peptides. The results demonstrated that the chemical synthesis of bacilotetrin C with suitable improvisation plays an important role in the development of novel anticancer chemotherapeutics, which would allow future rational design of novel autophagy inducers on this template.
Collapse
Affiliation(s)
- Sourya
Shankar Auddy
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shalini Gupta
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Subrata Mandi
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Himangshu Sharma
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Surajit Sinha
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
4
|
Witte J, Ayim E, Sams CJ, Service JB, Kant CC, Bambalas L, Wright D, Carter A, Moran K, Rohrig IG, Ferrence GM, Hitchcock SR. Diastereoselective Synthesis of the HIV Protease Inhibitor Darunavir and Related Derivatives via a Titanium Tetrachloride-Mediated Asymmetric Glycolate Aldol Addition Reaction. J Org Chem 2024; 89:9569-9585. [PMID: 38916048 PMCID: PMC11232028 DOI: 10.1021/acs.joc.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Darunavir is a potent HIV protease inhibitor that has been established as an effective tool in the fight against the progression of HIV/AIDS in the global community. The successful application of this drug has spurred the development of derivatives wherein strategic regions (e.g., P1, P1', P2, and P2') of the darunavir framework have been structurally modified. An alternate route for the synthesis of darunavir and three related P1 and P1' derivatives has been developed. This synthetic pathway involves the use of a Crimmins titanium tetrachloride-mediated oxazolidine-2-thione-guided asymmetric glycolate aldol addition reaction. The resultant aldol adduct introduces the P1 fragment of darunavir via an aldehyde. Transamidation with a selected amine (isobutylamine or 2-ethyl-1-butylamine) to cleave the auxiliary yields an amide wherein the P1' component is introduced. From this stage, the amide is reduced to the corresponding β-amino alcohol and the substrate is then bis-nosylated to introduce the requisite p-nitrobenzenesulfonamide component and activate the secondary alcohol for nucleophilic substitution. Treatment with sodium azide yielded the desired azides, and the deprotection of the p-methoxyphenoxy group is achieved with the use of ceric ammonium nitrate. Finally, hydrogenation to reduce both the aniline and azide functionalities with concurrent acylation yields darunavir and its derivatives.
Collapse
Affiliation(s)
| | | | - Christopher J. Sams
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Jasmine B. Service
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Caitlyn C. Kant
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Lillian Bambalas
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Daniel Wright
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Austin Carter
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Kelly Moran
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Isabella G. Rohrig
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M. Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Shawn R. Hitchcock
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
5
|
Jo WS, Curtis BJ, Rehan M, Adrover-Castellano ML, Sherman DH, Healy AR. N-to- S Acyl Transfer as an Enabling Strategy in Asymmetric and Chemoenzymatic Synthesis. JACS AU 2024; 4:2058-2066. [PMID: 38818054 PMCID: PMC11134368 DOI: 10.1021/jacsau.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
The observation of thioester-mediated acyl transfer processes in nature has inspired the development of novel protein synthesis and functionalization methodologies. The chemoselective transfer of an acyl group from S-to-N is the basis of several powerful ligation strategies. In this work, we sought to apply the reverse process, the transfer of an acyl group from N-to-S, as a method to convert stable chiral amides into more reactive thioesters. To this end, we developed a novel cysteine-derived oxazolidinone that serves as both a chiral imide auxiliary and an acyl transfer agent. This auxiliary combines the desirable features of rigid chiral imides as templates for asymmetric transformations with the synthetic applicability of thioesters. We demonstrate that the auxiliary can be applied in a range of highly selective asymmetric transformations. Subsequent intramolecular N-to-S acyl transfer of the chiral product and in situ trapping of the resulting thioester provides access to diverse carboxylic acid derivatives under mild conditions. The oxazolidinone thioester products can also be isolated and used in Pd-mediated transformations to furnish highly valuable chiral scaffolds, such as noncanonical amino acids, cyclic ketones, tetrahydropyrones, and dihydroquinolinones. Finally, we demonstrate that the oxazolidinone thioesters can also serve as a surrogate for SNAC-thioesters, enabling their seamless use as non-native substrates in biocatalytic transformations.
Collapse
Affiliation(s)
- Woonkee S Jo
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| | - Brian J Curtis
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Mohammad Rehan
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| | | | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109USA
| | - Alan R Healy
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi 129188, United Arab Emirates (UAE)
| |
Collapse
|
6
|
Choi H, Han J, Choi J, Lee K. Divergent Syntheses of (-)-Chicanine, (+)-Fragransin A 2, (+)-Galbelgin, (+)-Talaumidin, and (+)-Galbacin via One-Pot Homologative γ-Butyrolactonization. Molecules 2024; 29:701. [PMID: 38338445 PMCID: PMC10856021 DOI: 10.3390/molecules29030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the divergent syntheses of (-)-chicanine, (+)-fragransin A2, (+)-galbelgin, (+)-talaumidin, and (+)-galbacin are detailed. In this approach, an early-stage modified Kowalski one-carbon homologation reaction is utilized to construct the central γ-butyrolactone framework with the two necessary β,γ-vicinal stereogenic centers. The two common chiral γ-butyrolactone intermediates were designed to be capable for assembling five different optically active tetrahydrofuran lignans from commercially available materials in a concise and effective divergent manner in five to eight steps. These five syntheses are among the shortest and highest-yielding syntheses reported to date.
Collapse
Affiliation(s)
| | | | | | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (H.C.); (J.H.); (J.C.)
| |
Collapse
|
7
|
Sahana MH, Paul D, Sharma H, Goswami RK. Total Synthesis of Antibacterial Macrolide Sorangiolide A. Org Lett 2023; 25:7827-7831. [PMID: 37856450 DOI: 10.1021/acs.orglett.3c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A convergent route for the asymmetric total synthesis of antibacterial macrolide sorangiolide A has been developed for the first time. The key feature of this synthesis includes Krische iridium-catalyzed anti-diastereoselective carbonyl crotylation, Crimmins acetate aldol, Yamaguchi esterification, Julia-Kocienski olefination, Horner-Wadsworth-Emmons olefination, and ring-closing metathesis. The origin of the low intensity of the 13C{1H} NMR signals of the C1 and C2 centers of the natural product has been investigated, disclosing possible forms of existence for the natural product in the solution phase.
Collapse
Affiliation(s)
- Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
8
|
Mellado-Hidalgo M, Romero-Cavagnaro EA, Nageswaran S, Puddu S, Kennington SCD, Costa AM, Romea P, Urpí F, Aullón G, Font-Bardia M. Protected syn-Aldol Compounds from Direct, Catalytic, and Enantioselective Reactions of N-Acyl-1,3-oxazinane-2-thiones with Aromatic Acetals. Org Lett 2023; 25:659-664. [PMID: 36700336 PMCID: PMC9903318 DOI: 10.1021/acs.orglett.2c04254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A direct and asymmetric syn-aldol reaction of N-acyl-1,3-oxazinane-2-thiones with dialkyl acetals from aromatic acetals in the presence of 2-5 mol % [DTBM-SEGPHOS]NiCl2, TMSOTf, and lutidine has been developed. It has been established that the oxazinanethione heterocycle, used for the first time as a scaffold in asymmetric carbon-carbon bond-forming reactions, can be smoothly removed to give access to a variety of enantiomerically pure compounds with high synthetic value.
Collapse
Affiliation(s)
- Miguel Mellado-Hidalgo
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Elias A. Romero-Cavagnaro
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Sajanthanaa Nageswaran
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Sabrina Puddu
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Stuart C. D. Kennington
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Anna M. Costa
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain,
| | - Pedro Romea
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain,
| | - Fèlix Urpí
- †Department
of Inorganic and Organic Chemistry, Section of Organic
Chemistry and ‡Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain,
| | - Gabriel Aullón
- Department
of Inorganic and Organic Chemistry, Section of Inorganic Chemistry
and Institut de Química Teòrica i Computacional de la
Universitat de Barcelona, Universitat de
Barcelona, Carrer Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- X-Ray
Diffraction Unity, CCiTUB, Universitat de
Barcelona, Carrer Solé i Sabarís 1-3, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Choi H, Choi J, Lee K. Nickel Carbene-Mediated One-Carbon Homologative γ-Butyrolactonization. Org Lett 2022; 24:9238-9242. [PMID: 36480446 DOI: 10.1021/acs.orglett.2c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this report, we present a highly efficient approach for the synthesis of β,γ-disubstituted γ-butyrolactone motifs. This newly developed strategy is based on the combination of a diastereoselective aldol and a nickel carbene-mediated γ-butyrolactonization and uses an effective intramolecular ring closure to rapidly access a range of functionalized chiral γ-butyrolactones. This single-step approach was applied to produce straightforward asymmetric syntheses of (-)-talaumidin methyl ether, (+)-veraguensin, and (+)-dubiusamine A and a formal synthesis of (+)-phaseolinic acid as one of the shortest syntheses disclosed to date.
Collapse
Affiliation(s)
- Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
10
|
Sharma H, Mondal J, Ghosh AK, Pal RR, Goswami RK. Total synthesis of the antibacterial polyketide natural product thailandamide lactone. Chem Sci 2022; 13:13403-13408. [PMID: 36507156 PMCID: PMC9682914 DOI: 10.1039/d2sc04727f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Stereoselective total synthesis of the structurally intriguing polyketide natural product thailandamide lactone was accomplished, and done so using a convergent approach for the first time to the best of our knowledge. The key features of this synthesis included use of a Crimmins acetate aldol reaction, Evans methylation, Urpi acetal aldol reaction, Sharpless asymmetric epoxidation and subsequent γ-lactonization for the installation of six asymmetric centers and the use of the Negishi reaction, Julia-Kocienski olefination, cross metathesis, HWE olefination and intermolecular Heck coupling for construction of a variety of unsaturated linkages. Pd(i)-based Heck coupling was introduced, for the first time to the best of our knowledge, quite efficiently to couple the major eastern and sensitive western segments of the molecule. The antibacterial activity of thailandamide lactone was also evaluated.
Collapse
Affiliation(s)
- Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Joyanta Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Ananyo K Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Ritesh Ranjan Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
11
|
Jastrzębski MK, Kaczor AA, Wróbel TM. Methods of Lysergic Acid Synthesis-The Key Ergot Alkaloid. Molecules 2022; 27:7322. [PMID: 36364148 PMCID: PMC9654825 DOI: 10.3390/molecules27217322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ergot is the spore form of the fungus Claviceps purpurea. Ergot alkaloids are indole compounds that are biosynthetically derived from L-tryptophan and represent the largest group of fungal nitrogen metabolites found in nature. The common part of ergot alkaloids is lysergic acid. This review shows the importance of lysergic acid as a representative of ergot alkaloids. The subject of ergot and its alkaloids is presented, with a particular focus on lysergic acid. All methods of total lysergic acid synthesis-through Woodward, Hendrickson, and Szantay intermediates and Heck coupling methods-are presented. The topic of biosynthesis is also discussed.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Saha S, Auddy SS, Chatterjee A, Sen P, Goswami RK. Late-Stage Functionalization: Total Synthesis of Beauveamide A and Its Congeners and Their Anticancer Activities. Org Lett 2022; 24:7113-7117. [PMID: 36148993 DOI: 10.1021/acs.orglett.2c02699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric total synthesis of cyclotetradepsipeptide beauveamide A has been achieved for the first time. A macrolactamization strategy involving two possible sites has been explored to find the most effective route for cyclization. A late-stage functionalization approach has been adopted for easy access of non-natural analogues of beauveamide A for further biological evaluation. Interestingly, the anticancer activity of one of the synthesized analogues was better than that of the parent natural product.
Collapse
|
13
|
Kederienė V, Rousseau J, Schuler M, Šačkus A, Tatibouët A. Copper-catalyzed S-arylation of Furanose-Fused Oxazolidine-2-thiones. Molecules 2022; 27:molecules27175597. [PMID: 36080364 PMCID: PMC9457760 DOI: 10.3390/molecules27175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 1,3-oxazolidine-2-thiones (OZTs) are important chiral molecules, especially in asymmetric synthesis. These compounds serve as important active units in biologically active compounds. Herein, carbohydrate anchored OZTs were explored to develop a copper-catalyzed C-S bond formation with aryl iodides. Chemoselective S-arylation was observed, with copper iodide and dimethylethylenediamine (DMEDA) as the best ligand in dioxane at 60–90 °C. The corresponding chiral oxazolines were obtained in reasonable to good yields under relatively mild reaction conditions. This approach is cheap, as using one of the cheapest transition metals, a simple protocol and various functional group tolerance make it a valuable strategy for getting S-substituted furanose-fused OZT. The structures of the novel carbohydrates were confirmed by NMR spectroscopy and an HRMS analysis.
Collapse
Affiliation(s)
- Vilija Kederienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: (V.K.); (A.T.)
| | - Jolanta Rousseau
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, Faculty of Science Jean Perrin, Rue Jean Souvraz SP 18, F-62300 Lens, France
| | - Marie Schuler
- Institute de Chimie Organique et Analitique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, F-45067 Orléans, France
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Arnaud Tatibouët
- Institute de Chimie Organique et Analitique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, F-45067 Orléans, France
- Correspondence: (V.K.); (A.T.)
| |
Collapse
|
14
|
Sahana MH, Saha D, Goswami RK. Total Synthesis of Strasseriolide A. J Org Chem 2022; 87:11805-11815. [PMID: 35960823 DOI: 10.1021/acs.joc.2c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereoselective total synthesis of structurally intriguing antimalarial macrolide strasseriolide A has been accomplished by adopting a convergent approach. The salient features of this synthesis include Co(BH4)2-mediated selective reduction of conjugated olefin, Crimmins propionate aldol, Evans alkylation, intermolecular Horner-Wadsworth-Emmons olefination, Yamaguchi macrolactonization, and selective saponification of ester moiety in the presence of a lactone functionality. The 13C{1H} NMR data of strasseriolide A were found to be very sensitive to its solution concentration.
Collapse
Affiliation(s)
- Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Witte JM, Service J, Addo MA, Semakieh B, Collins E, Sams C, Dorsey TR, Garrelts E, Blumenshine CA, Cooper T, Martinez M, Hamaker CG, Ferrence GM, Hitchcock SR. Diastereoselective and Enantioselective Synthesis of α- p-Methoxyphenoxy-β-Lactones: Dependence on the Stereoelectronic Properties of the β-Hydroxy-α- p-Methoxyphenoxycarboxylic Acid Precursors. J Org Chem 2022; 87:9619-9634. [PMID: 35862509 DOI: 10.1021/acs.joc.2c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of β-hydroxy-α-p-methoxyphenoxy carboxylic acids derived from the asymmetric glycolate aldol addition reaction with p-nitrobenzenesulfonyl chloride yielded divergent results depending on the nature of the β-substituent of the carboxylic acid. Substrates bearing either alkyl substituents (R = -n-butyl, -n-octyl, -benzyl, isopropyl, -tert-butyl) or aryl systems bearing electron-withdrawing substituents (R = -p-C6H4Cl, -p-C6H4Br, -p-C6H4NO2) yielded β-lactones. In contrast, α-p-methoxyphenoxy-β-hydroxycarboxylic acids bearing electron-donating aryl groups or the sterically demanding 2-naphthyl group formed (Z)-alkenes.
Collapse
Affiliation(s)
- Jordan M Witte
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Jasmine Service
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Marian Aba Addo
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Bader Semakieh
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Erin Collins
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Christopher Sams
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy R Dorsey
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Elizabeth Garrelts
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Cassidy A Blumenshine
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Trace Cooper
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Moses Martinez
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Christopher G Hamaker
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Shawn R Hitchcock
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
16
|
Teloxa SF, Mellado‐Hidalgo M, Kennington SCD, Romea P, Urpí F, Aullón G, Font‐Bardia M. Direct and Asymmetric Aldol Reactions of
N
‐Azidoacetyl‐1,3‐thiazolidine‐2‐thione Catalyzed by Chiral Nickel(II) Complexes. A New Approach to the Synthesis of β‐Hydroxy‐α‐Amino Acids. Chemistry 2022; 28:e202200671. [PMID: 35504848 PMCID: PMC9401014 DOI: 10.1002/chem.202200671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/02/2022]
Abstract
A direct and asymmetric triisopropylsilyltrifluoromethanesulfonate (TIPSOTf) mediated aldol reaction of N‐azidoacetyl‐1,3‐thiazolidine‐2‐thione with aromatic aldehydes catalyzed by a chiral nickel(II)‐Tol‐BINAP complex has been developed (BINAP=2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl). The catalytic protocol gives the corresponding anti α‐azido‐β‐silyloxy adducts with outstanding stereocontrol and in high yields. Theoretical calculations account for the stereochemical outcome of the reaction and lay the foundations for a mechanistic model. In turn, the easy removal of the thiazolidinethione yields a wide array of enantiomerically pure derivatives in a straightforward and efficient manner. Such a noteworthy character of the heterocyclic scaffold together with the appropriate manipulation of the azido group open a new route to the synthesis of di‐ and tripeptide blocks containing a β‐aryl‐β‐hydroxy‐α‐amino acid.
Collapse
Affiliation(s)
- Saul F. Teloxa
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Miguel Mellado‐Hidalgo
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Stuart C. D. Kennington
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Pedro Romea
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Fèlix Urpí
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Gabriel Aullón
- Department of Inorganic and Organic Chemistry Section of Inorganic Chemistry and Institut de Química Teòrica i Computacional de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Mercè Font‐Bardia
- X-Ray Diffraction Unit. CCiTUB Universitat de Barcelona Carrer Solé i Sabarís 1–3 08028 Barcelona (Catalonia Spain
| |
Collapse
|
17
|
Wang MX, Qin HW, Liu C, Lv SM, Chen JS, Wang CG, Chen YY, Wang JW, Sun JY, Liao ZX. Synthesis and biological evaluation of thiazolidine-2-thione derivatives as novel xanthine oxidase inhibitors. PLoS One 2022; 17:e0268531. [PMID: 35584139 PMCID: PMC9116648 DOI: 10.1371/journal.pone.0268531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Xanthine oxidase (XO) is a key enzyme in the generation and development of hyperuricemia. Thiazolidine-2-thione, a typical heterocyclic compound, have been widely used in the field of drug synthesis. In this study, a series of novel thiazolidine-2-thione derivatives were synthesized as XO inhibitors, and the XO inhibitory potencies of obtained compounds were evaluated by in vitro enzyme catalysis. The result shown that compound 6k behaved the strongest XO inhibitory activity with an IC50 value of 3.56 μmol/L, which was approximately 2.5-fold more potent than allopurinol. The structure-activity relationship revealed that the phenyl-sulfonamide group was indispensable for thiazolidine-2-thione derivatives to produce XO inhibitory activity. The enzyme inhibition kinetics analyses confirmed that compound 6k exerted a mixed-type XO inhibition. Additionally, the molecular docking results suggested that the 4-fluorophenyl-sulfonyl moiety could interact with Gly260 and Ile264 in the innermost part of the active pocket through 2 hydrogen bonds, while the thiazolidinethione moiety could form two hydrogen bonds with Glu263 and Ser347 in hydrophobic pockets. In summary, the results described above suggested that compound 6k could be a valuable lead compound for the treatment of hyperuricemia as a novel XO inhibitor.
Collapse
Affiliation(s)
- Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Hong-Wei Qin
- School of Life Sciences and Bioengineering, Jining University, Qufu, Shandong, P.R. China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
- * E-mail: (ZXL); (CL); (JYS)
| | - Shen-Ming Lv
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Jia-Wei Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
- * E-mail: (ZXL); (CL); (JYS)
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu, P.R. China
- * E-mail: (ZXL); (CL); (JYS)
| |
Collapse
|
18
|
Auddy SS, Saha S, Goswami RK. Total synthesis and stereochemical assignment of bipolamide A acetate. Org Biomol Chem 2022; 20:3348-3358. [PMID: 35352738 DOI: 10.1039/d2ob00230b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric total synthesis of an acetate analogue of the endophytic unstable secondary metabolite bipolamide A has been achieved for the first time adopting a convergent approach. The key feature of this synthesis includes Evans's asymmetric ethylation, Wittig olefination, Takai olefination, stereoselective Grignard addition and intermolecular Heck coupling. This eventually developed a synthetic route of the rarely found branched amine bearing an acyloin moiety. Our synthesis finally established unambiguously the stereochemistry of the unassigned C-8 center of the naturally occurring unstable bipolamide A.
Collapse
Affiliation(s)
- Sourya Shankar Auddy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
19
|
Han J, Choi H, Choi J, Lee K. Total Synthesis of Gymnothelignan K via a One-Pot Homologative γ-Butyrolactonization. Org Lett 2022; 24:2926-2930. [PMID: 35412318 DOI: 10.1021/acs.orglett.2c00939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first total synthesis of tetrahydrofuran dilignan gymnothelignan K is disclosed. The approach is based on implementing an early stage one-carbon homologative lactonization, which we recently disclosed, for constructing the γ-butyrolactone scaffold with the requisite β,γ-trans-vicinal stereocenters. Other salient features of the synthesis include the acid-promoted dimerization and the Suzuki-Miyaura cross-coupling reaction to install the challenging diaryl skeleton that permits the effective assembly of the optically active gymnothelignan K in 8 steps from commercially available materials.
Collapse
Affiliation(s)
- Jongyeol Han
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
20
|
Gjessing G, Johnsen LIG, Antonsen SG, Nolsøe JMJ, Stenstrøm Y, Hansen TV. The Synthesis of 3-(R)- and 3-(S)-Hydroxyeicosapentaenoic Acid. Molecules 2022; 27:molecules27072295. [PMID: 35408694 PMCID: PMC9000449 DOI: 10.3390/molecules27072295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Monohydroxylated polyunsaturated fatty acids belonging to the oxylipin class of natural products are present in marine and terrestrial sources as well as in the human body. Due to their biological activities and role in diverse biosynthetic pathways, oxylipins biosynthesized from eicosapentaenoic acid and arachidonic acid have attracted great interest from the scientific community. One example is 3-hydroxyeicosapentaenoic acid where the absolute configuration at C-3 has only been tentatively assigned. In this paper, studies on acetate type aldol reactions that enabled the preparation of 3-(R)-hydroxyeicosapentaenoic acid (3R-HETE, 2) and its enantiomer are presented.
Collapse
Affiliation(s)
- Gard Gjessing
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
| | - Lars-Inge Gammelsæter Johnsen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway;
| | - Simen Gjelseth Antonsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway
| | - Jens M. J. Nolsøe
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
| | - Yngve Stenstrøm
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Correspondence: (Y.S.); (T.V.H.)
| | - Trond Vidar Hansen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway;
- Correspondence: (Y.S.); (T.V.H.)
| |
Collapse
|
21
|
Dethe DH, Kumar V, Beeralingappa NC, Mishra KB, Nirpal AK. Synthesis of Polyene Bioactive Natural Products: FR252921 and Vitamin A. Org Lett 2022; 24:2203-2207. [PMID: 35274951 DOI: 10.1021/acs.orglett.2c00546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formal synthesis of FR252921, a potent macrocyclic immunosuppressive agent, and a six-step synthesis of vitamin A have been demonstrated. The application of a ruthenium-catalyzed step-economic and environmentally benign strategy for the highly stereo- and chemoselective construction of valuable polyene motifs of FR252921 and vitamin A highlights the syntheses. The key features for the synthesis FR252921 include preparation of the triene moiety followed by two consecutive peptide couplings of the three fragments.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Kunj B Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
22
|
Liu H, Yang W, Zheng S, He Y, Wang G, Qin H, Zhu F, Jiang X, Shen J, Gong X. Stereoselective Synthesis of 2-Deoxy-2-disubstituted ribonolactones Through a TiCl4-Mediated Evans-Aldol Reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Choi H, Choi J, Han J, Lee K. Divergent Total Syntheses of Gymnothelignan N, Beilschmin A, and Eupomatilones 1, 3, 4, and 7. J Org Chem 2022; 87:4316-4322. [DOI: 10.1021/acs.joc.1c03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Jongyeol Han
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
24
|
Ren L, Luo J, Tan L, Tang Q. Titanium-Mediated Domino Cross-Coupling/Cyclodehydration and Aldol-Addition/Cyclocondensation: Concise and Regioselective Synthesis of Polysubstituted and Fused Furans. J Org Chem 2022; 87:3167-3176. [PMID: 35133828 DOI: 10.1021/acs.joc.1c02894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium enolates, in situ-generated from readily available ketones and titanium tetraisopropoxide, undergo domino cross-coupling/cyclodehydration or domino Aldol-addition/cyclocondensation with α-chloroketones to provide synthetically valuable furan derivatives. The domino process tolerates a variety of cyclic and acyclic ketones and chloroketones, producing polysubstituted furans and bi-, tri-, and tetracyclic fused furans.
Collapse
Affiliation(s)
- Lu Ren
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Juan Luo
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Linbo Tan
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Qiang Tang
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| |
Collapse
|
25
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Bhamboo P, Bera S, Mondal D. TiCl
4
‐Promoted Asymmetric Aldol Reaction of Oxazolidinones and its Sulphur‐Congeners for Natural Product Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prateek Bhamboo
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
27
|
Amatov T, Tsuji N, Maji R, Schreyer L, Zhou H, Leutzsch M, List B. Confinement-Controlled, Either syn- or anti-Selective Catalytic Asymmetric Mukaiyama Aldolizations of Propionaldehyde Enolsilanes. J Am Chem Soc 2021; 143:14475-14481. [PMID: 34436899 PMCID: PMC8447262 DOI: 10.1021/jacs.1c07447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Protected aldols
(i.e., true aldols derived from aldehydes) with
either syn- or anti- stereochemistry
are versatile intermediates in many oligopropionate syntheses. Traditional
stereoselective approaches to such aldols typically require several
nonstrategic operations. Here we report two highly enantioselective
and diastereoselective catalytic Mukaiyama aldol reactions of the
TBS- or TES- enolsilanes of propionaldehyde with aromatic aldehydes.
Our reactions directly deliver valuable silyl protected propionaldehyde
aldols in a catalyst controlled manner, either as syn- or anti- isomer. We have identified a privileged
IDPi catalyst motif that is tailored for controlling these aldolizations
with exceptional selectivities. We demonstrate how a single atom modification
in the inner core of the IDPi catalyst, replacing a CF3-group with a CF2H-group, leads to a dramatic switch in
enantiofacial differentiation of the aldehyde. The origin of this
remarkable effect was attributed to tightening of the catalytic cavity
via unconventional C–H hydrogen bonding of the CF2H group.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Lucas Schreyer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
28
|
Shrestha UK, Golliher AE, Newar TD, Holguin FO, Maio WA. Asymmetric Total Synthesis and Revision of Absolute Stereochemistry for (+)-Taumycin A: An Approach that Exploits Orthogonally Protected Quasienantiomers. J Org Chem 2021; 86:11086-11099. [PMID: 33444024 DOI: 10.1021/acs.joc.0c02820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric total synthesis of C(9)-S-(+)-taumycin A is now reported using an approach that targeted both C(9) diastereomers concurrently. To facilitate this work, we called upon the symmetrical nature of a C(5)-C(13) side-chain intermediate and exploited orthogonal protecting groups as a tactic to access both stereoisomers from a single chiral, nonracemic intermediate. In addition to our successful approach, several minor detours that helped refine our strategy and a detailed analysis of 1H NMR data will be discussed. Select compounds included in this work were screened against the NCI60 cell line panel and displayed modest growth inhibition activity.
Collapse
Affiliation(s)
| | | | | | | | - William A Maio
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
29
|
Abstract
A convergent route for the asymmetric total synthesis of potent anticancer polyketide natural product amphirionin-2 has been developed. Our initial synthetic trials revealed that the proposed structures of amphirionin-2 need to be revised consistent with a recent report of Fuwa et al., where the actual structure of amphirionin-2 was established. The key features of our synthesis comprised Sharpless asymmetric dihydroxylation, followed by cycloetherification, Wittig olefination, Julia-Kocienski olefination, and Crimmins propionate aldol reaction.
Collapse
Affiliation(s)
- Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gour Hari Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
30
|
Choi H, Jang H, Choi J, Lee K. Stereoselective Synthesis of Oxazolidin-2-Ones via an Asymmetric Aldol/Curtius Reaction: Concise Total Synthesis of (-)-Cytoxazone. Molecules 2021; 26:molecules26030597. [PMID: 33498713 PMCID: PMC7865922 DOI: 10.3390/molecules26030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, we are reporting an efficient approach toward the synthesis of 4,5-disubstituted oxazolidin-2-one scaffolds. The developed approach is based on a combination of an asymmetric aldol and a modified Curtius protocol, which uses an effective intramolecular ring closure to rapidly access a range of oxazolidin-2-one building blocks. This strategy also permits a straightforward and concise asymmetric total synthesis of (−)-cytoxazone. Consisting of three steps, this is one of the shortest syntheses reported to date. Ultimately, this convenient platform would provide a promising method for the early phases of drug discovery.
Collapse
Affiliation(s)
| | | | | | - Kiyoun Lee
- Correspondence: ; Tel.: +82-2-2164-5528; Fax: +82-2-2164-4764
| |
Collapse
|
31
|
Airan Y, Prasad KR. Synthesis of the tetrahydropyran fragment of (+)-Ratjadone A. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Paul D, Sahana MH, Mandal P, Chakrabarti P, Goswami RK. Biselyngbyolides A & C: their total synthesis and anticancer activities. Org Biomol Chem 2020; 18:7151-7164. [PMID: 32966514 DOI: 10.1039/d0ob00576b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Convergent strategies for the first total synthesis of biselyngbyolide C and an alternative route for the total synthesis of biselyngbyolide A have been developed. The key strategic feature in this study is Heck macrocyclization. The use of intramolecular Heck coupling for biselyngbyolide B was demonstrated by us earlier; however such a strategy has not been explored further for the other members of this family of natural products, in particular, where sensitive skipped olefins are involved. The other highlights of this synthetic study include iterative Crimmins acetate aldol and Wittig olefination processes, followed by the less explored cobalt-hydride-based reduction of an activated olefin and Shiina esterification. Our synthetic study enabled us to amend the reported NMR data of biselyngbyolides A and C. An evaluation of the anticancer activities of both biselyngbyolides A and C revealed that the apoptosis generated in cancer cells followed an intrinsic pathway.
Collapse
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Pratiti Mandal
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Partha Chakrabarti
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
33
|
Saha S, Paul D, Goswami RK. Cyclodepsipeptide alveolaride C: total synthesis and structural assignment. Chem Sci 2020; 11:11259-11265. [PMID: 34094366 PMCID: PMC8162944 DOI: 10.1039/d0sc04478d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
First stereoselective total synthesis of naturally occurring bioactive cyclodepsipeptide alveolaride C has been achieved using a convergent approach. This synthetic study enabled us to establish unambiguously the stereochemistry of three unassigned chiral centres embedded in the nonpeptidic segment as well as revised the stereochemistry of the proposed β-phenylalanine counterpart of the molecule. The key strategic features of this synthesis include Sharpless asymmetric dihydroxylation for installing the vicinal diol moiety, Julia–Kocienski olefination for constructing the aliphatic side chain, the Shiina protocol for intermolecular esterification, amide coupling and macrolactamization for the ring formation. First total synthesis of natural cyclodepsipeptide alveolaride C has been accomplished with an unambiguous solution to its structural riddle.![]()
Collapse
Affiliation(s)
- Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
34
|
Mondal J, Sarkar R, Sen P, Goswami RK. Total Synthesis and Stereochemical Assignment of Sunshinamide and Its Anticancer Activity. Org Lett 2020; 22:1188-1192. [DOI: 10.1021/acs.orglett.0c00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Saha D, Guchhait S, Goswami RK. Total Synthesis and Stereochemical Assignment of Penicitide A. Org Lett 2020; 22:745-749. [DOI: 10.1021/acs.orglett.9b04585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sandip Guchhait
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
36
|
Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, Acosta-Guzmán P. Recent Progress in the Synthesis of Naturally Occurring Siderophores. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis; Bio and Organocatalysis; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Yovanny Quevedo-Acosta
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
- Institute of Chemistry; Bio and Organocatalysis Chemistry Department; State University of Campinas; Rua Monteiro Lobato 270 13083-862 Campinas Brazil
| | - Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Paola Acosta-Guzmán
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| |
Collapse
|
37
|
Airan Y, Prasad KR. Furan Oxidation Strategy for the Synthesis of the Macrolactone Analogue of Migrastatin. J Org Chem 2019; 84:14974-14979. [PMID: 31615208 DOI: 10.1021/acs.joc.9b02413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of the 14-membered macrolide core of migrastatin is accomplished by the use of furyl carbinol in 13 linear steps from furfural with ∼11% overall yield. Key strategies in the synthesis include the oxidative ring opening of furan and its use as a four-carbon synthon, SN2 displacement of a functionalized allyl bromide, and ring closing metathesis to obtain the macrolactone.
Collapse
Affiliation(s)
- Yougant Airan
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Kavirayani R Prasad
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
38
|
Choi H, Jang H, Kim H, Lee K. Synthesis of γ-Lactones via the Kowalski Homologation Reaction: Protecting-Group-Free Divergent Total Syntheses of Eupomatilones-2,5,6, and 3- epi-Eupomatilone-6. Org Lett 2019; 21:7857-7862. [PMID: 31556618 DOI: 10.1021/acs.orglett.9b02848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient synthesis of functionalized chiral γ-butyrolactone scaffolds has been described. The basis of the approach is the Kowalski ester homologation that is modified for our proposed transformation. The newly developed methodology combines a divergent synthetic strategy to permit a straightforward protecting-group-free asymmetric total syntheses of eupomatilones-2,5,6, and 3-epi-eupomatilone-6 in five or six steps from commercial starting materials, making it one of the shortest syntheses reported to date.
Collapse
Affiliation(s)
- Hosam Choi
- Department of Chemistry , The Catholic University of Korea , Bucheon 14662 , Korea
| | - Hanho Jang
- Department of Chemistry , The Catholic University of Korea , Bucheon 14662 , Korea
| | - Hyoungsu Kim
- College of Pharmacy , Ajou University , Suwon 16499 , Korea
| | - Kiyoun Lee
- Department of Chemistry , The Catholic University of Korea , Bucheon 14662 , Korea
| |
Collapse
|
39
|
Chen Y, Coussanes G, Souris C, Aillard P, Kaldre D, Runggatscher K, Kubicek S, Di Mauro G, Maryasin B, Maulide N. A Domino 10-Step Total Synthesis of FR252921 and Its Analogues, Complex Macrocyclic Immunosuppressants. J Am Chem Soc 2019; 141:13772-13777. [PMID: 31436963 PMCID: PMC6837725 DOI: 10.1021/jacs.9b07185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
FR252921, FR252922,
and FR256523 are a family of potent macrocyclic
polyene immunosuppressive agents with a novel mode of action. However,
the lack of an efficient and flexible synthesis has hindered further
biological studies, mostly due to the fact that the natural products
appear to be kinetic isomers regarding the triene moiety. Herein,
we report the development and application of an unprecedented, unique
domino Suzuki–Miyaura/4π-electrocyclic ring-opening macrocyclization,
resulting in a concise, unified, and stereoselective synthetic route
to these complex targets in only 10 steps. This in turn enables ready
access to a range of unnatural analogues, among which several compounds
showed inhibition of T-lymphocyte proliferation at levels equal or
superior to those of the natural products themselves.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Guilhem Coussanes
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Caroline Souris
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Paul Aillard
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Dainis Kaldre
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Kathrin Runggatscher
- CeMM Research Center for Molecular Medicine , Austrian Academy of Sciences , Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine , Austrian Academy of Sciences , Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| | - Giovanni Di Mauro
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria
| | - Boris Maryasin
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria.,Institute of Theoretical Chemistry , University of Vienna , Währinger Strasse 17 , 1090 Vienna , Austria
| | - Nuno Maulide
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , 1090 Vienna , Austria.,CeMM Research Center for Molecular Medicine , Austrian Academy of Sciences , Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| |
Collapse
|
40
|
Shahrestani N, Khosravi H, Jadidi K, Notash B, Naderi S. Organocatalytic synthesis of enantiopure spiro acenaphthyl-pyrrolizidine/pyrrolidines: justifying the regioselectivity based on a distortion/interaction model. Org Biomol Chem 2019; 17:7013-7024. [PMID: 31305857 DOI: 10.1039/c9ob01197h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient organocatalytic [3 + 2] reaction with Schreiner's thiourea organocatalyst for the synthesis of a small library of novel enantiopure stable spiroacenaphthyl-pyrrolidines/pyrrolizidines with high regio- and diastereoselectivity (up to 99%) is described for the first time. These chiral compounds were synthesized by a three-component 1,3-dipolar cycloaddition of (E)-1-(2-oxoacenaphthylen-1(2H)-ylidene) pyrrolidin-1-ium-2-ide as a dipolar and (S)-cinnamoyl/crotonoyl oxazolidinone as a dipolarophile. The absolute configuration of cycloadducts was confirmed by X-ray diffraction analysis. The origin of catalyst reactivity and regio- and stereoselectivity was investigated through DFT calculations. DFT calculations showed that the regioselectivity was controlled by the distortion (deformation) of reactants and Schreiner's thiourea acts as a LUMO-lowering catalyst.
Collapse
Affiliation(s)
- Naeimeh Shahrestani
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Hormoz Khosravi
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Khosrow Jadidi
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Behrouz Notash
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| | - Soheila Naderi
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, G.C., Tehran 1983963113, Iran.
| |
Collapse
|
41
|
|
42
|
Rahman MA, Reddy NM, Yadav JS. Progress towards the Synthesis of (‐)‐Ushikulide A: Synthesis of C1‐C15 Aliphatic and C17‐C31 Spiroketal Fragments by an Aldol Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201900252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad Ataur Rahman
- Centre for Semiochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad
- Department of Chemistry and Chemical BiologyHarvard University, Cambridge Massachusetts 02138 United States
| | - N. Mallikarjuna Reddy
- Centre for Semiochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad
| | - Jhillu Singh Yadav
- Centre for Semiochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad
| |
Collapse
|
43
|
Muralikrishna K, Satyanarayana V, Kumar GC, Yadav JS. Studies towards the Synthesis of Aldgamycin – M. ChemistrySelect 2019. [DOI: 10.1002/slct.201803591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katta Muralikrishna
- Department: Center for SemiochemicalsInstitution: Indian Institute of Chemical Technology Address 1 CSIR- Indian Institute of Chemical Technology Hyderabad -500007 India
| | - Vavilapalli Satyanarayana
- Department: Center for SemiochemicalsInstitution: Indian Institute of Chemical Technology Address 1 CSIR- Indian Institute of Chemical Technology Hyderabad -500007 India
| | - Gavireddy Chaithanya Kumar
- Department: Center for SemiochemicalsInstitution: Indian Institute of Chemical Technology Address 1 CSIR- Indian Institute of Chemical Technology Hyderabad -500007 India
| | | |
Collapse
|
44
|
Kooti M, Kooshki F, Nasiri E. Preparation and characterization of magnetic graphene nanocomposite containing Cu(proline)2 as catalyst for asymmetric aldol reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Xie Y, Lu C, Zhao B, Wang Q, Yao Y. Cycloaddition of Aziridine with CO2/CS2 Catalyzed by Amidato Divalent Lanthanide Complexes. J Org Chem 2019; 84:1951-1958. [DOI: 10.1021/acs.joc.8b02924] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Muralikrishna K, Chaithanya Kumar G, Satyanarayana V, Sudheer Kumar R, Yadav JS. Formal synthesis of Pellasoren – A. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Highly diastereoselective boron and titanium mediated aldol reactions of a mannitol derived 2,3-butanediacetal ethyl ketone. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Trobe M, Burke MD. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angew Chem Int Ed Engl 2018; 57:4192-4214. [PMID: 29513400 PMCID: PMC5912692 DOI: 10.1002/anie.201710482] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Indexed: 11/10/2022]
Abstract
Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale.
Collapse
Affiliation(s)
- Melanie Trobe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
49
|
Trobe M, Burke MD. Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie Trobe
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| | - Martin D. Burke
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| |
Collapse
|
50
|
Fatino A, Weese C, Valdez S, Jiménez-Somarribas A, Rafferty RJ. Synthetic studies towards lagunamide C: Polyketide assembly investigations. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|