1
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
2
|
Mai-Linde Y, Linker T. Simple Synthesis of 1,2-Dideoxy-2-Vinyl Carbohydrates by Tin-Free Radical Reactions of Xanthates. Chemistry 2024; 30:e202302118. [PMID: 37779098 DOI: 10.1002/chem.202302118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Vinyl-substituted carbohydrates have been synthesized from glycals derived from hexoses and pentoses. Key step is the radical reaction of xanthates in the presence of triethylborane, a non-toxic reagent. The mechanism has been investigated by isolation of various side products, which speak for a reversibility of the cyclopropylmethyl radical ring-opening. Compared to reactions with tributyltin hydride, higher regioselectivities in favor of the 2-vinyl-substituted sugars have been obtained. Yields are slightly lower with triethylborane, but all products have been isolated in analytically pure form. The new reaction is applicable to benzyl- and silyl-protected carbohydrates, which makes free sugars accessible as well. Overall, more than 15 1,2-dideoxy-2-vinyl carbohydrates have been synthesized from simple precursors in only few steps.
Collapse
Affiliation(s)
- Yasemin Mai-Linde
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam/Golm, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam/Golm, Germany
| |
Collapse
|
3
|
Qin C, Li L, Tian G, Ding M, Zhu S, Song W, Hu J, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of Shigella dysenteriae Serotype 10 O-Antigen Tetrasaccharide Containing a ( S)-4,6- O-Pyruvyl Ketal. J Am Chem Soc 2022; 144:21068-21079. [DOI: 10.1021/jacs.2c05953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Wuqiong Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Wang P, Wang J, Yin W, Wang X, Song N, Ren S, Li M. Direct β-Mannosylation of Primary Alcohol Acceptors: Trisaccharide Iteration Assembly of β-1,6-Oligomannosides Corresponding to Kakelokelose. Org Lett 2022; 24:971-976. [PMID: 35045255 DOI: 10.1021/acs.orglett.1c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold(I)-catalyzed stereoselective β-glycosylation of primary alcohols is achieved using the orthogonally protected mannosyl α-ortho-hexynylbenzoate (OABz) donors devoid of 4,6-O-tethering groups used in conventionally constructing β-mannosidic bonds. The potential of this methodology is showcased by the first assembly of β-1,6-tri/hexa-/nonamannosides and related sulfated congeners through a convergent strategy. The synthesis features the stereocontrolled β-glycosylation of α-trimannosyl OABz donors and the late-stage sulfonation. This work is expected to expedite the preparation of β-1,6-mannans and functionalized derivatives.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junlin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Yin
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sumei Ren
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Zhang L, Yu H, Bai Y, Mishra B, Yang X, Wang J, Yu EB, Li R, Chen X. A Neoglycoprotein-Immobilized Fluorescent Magnetic Bead Suspension Multiplex Array for Galectin-Binding Studies. Molecules 2021; 26:6194. [PMID: 34684775 PMCID: PMC8541226 DOI: 10.3390/molecules26206194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xiaoxiao Yang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Jing Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Evan B. Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Riyao Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| |
Collapse
|
6
|
Morelli L, Lay L, Santana-Mederos D, Valdes-Balbin Y, Verez Bencomo V, van Diepen A, Hokke CH, Chiodo F, Compostella F. Glycan Array Evaluation of Synthetic Epitopes between the Capsular Polysaccharides from Streptococcus pneumoniae 19F and 19A. ACS Chem Biol 2021; 16:1671-1679. [PMID: 34469105 PMCID: PMC8453487 DOI: 10.1021/acschembio.1c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vaccination represents
the most effective way to prevent invasive
pneumococcal diseases. The glycoconjugate vaccines licensed so far
are obtained from capsular polysaccharides (CPSs) of the most virulent
serotypes. Protection is largely limited to the specific vaccine serotypes,
and the continuous need for broader coverage to control the outbreak
of emerging serotypes is pushing the development of new vaccine candidates.
Indeed, the development of efficacious vaccine formulation is complicated
by the high number of bacterial serotypes with different CPSs. In
this context, to simplify vaccine composition, we propose the design
of new saccharide fragments containing chemical structures shared
by different serotypes as cross-reactive and potentially cross-protective
common antigens. In particular, we focused on Streptococcus
pneumoniae (Sp) 19A and 19F. The CPS repeating units of Sp
19F and 19A are very similar and share a common structure, the disaccharide
ManNAc-β-(1→4)-Glc (A-B). Herein, we describe the synthesis
of a small library of compounds containing different combinations
of the common 19F/19A disaccharide. The six new compounds were tested
with a glycan array to evaluate their recognition by antibodies in
reference group 19 antisera and factor reference antisera (reacting
against 19F or 19A). The disaccharide A-B, phosphorylated at the upstream
end, emerged as a hit from the glycan array screening because it is
strongly recognized by the group 19 antisera and by the 19F and 19A
factor antisera, with similar intensity compared with the CPSs used
as controls. Our data give a strong indication that the phosphorylated
disaccharide A-B can be considered a common epitope among different
Sp 19 serotypes.
Collapse
Affiliation(s)
- Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | | | | | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Italian National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
7
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Gannedi V, Ali A, Singh PP, Vishwakarma RA. Total Synthesis of Phospholipomannan of Candida albicans. J Org Chem 2020; 85:7757-7771. [PMID: 32425042 DOI: 10.1021/acs.joc.0c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
First, total synthesis of the cell surface phospholipomannan anchor [β-Manp-(1 → 2)-β-Manp]n-(1 → 2)-β-Manp-(1 → 2)-α-Manp-1 → P-(O → 6)-α-Manp-(1 → 2)-Inositol-1-P-(O → 1)-phytoceramide of Candida albicans is reported. The target phospholipomannan (PLM) anchor poses synthetic challenges such as the unusual kinetically controlled (1 → 2)-β-oligomannan domain, anomeric phosphodiester, and unique phytoceramide lipid tail linked to the glycan through a phosphate group. The synthesis of PLM anchor was accomplished using a convergent block synthetic approach using three main appropriately protected building blocks: (1 → 2)-β-tetramannan repeats, pseudodisaccharide, and phytoceramide-1-H-phosphonate. The most challenging (1 → 2)-β-tetramannan domain was synthesized in one pot using the preactivation method. The phytoceramide-1-H-phosphonate was synthesized through an enantioselective A3 three-component coupling reaction. Finally, the phytoceramide-1-H-phosphonate moiety was coupled with pseudodisaccharide followed by deacetylation to produce the acceptor, which on subsequent coupling with tetramannosyl-H-phosphonate provided the fully protected PLM anchor. Final deprotection was successfully achieved by Pearlman's hydrogenation.
Collapse
Affiliation(s)
- Veeranjaneyulu Gannedi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Asif Ali
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| |
Collapse
|
9
|
Liao J, Pan B, Liao G, Zhao Q, Gao Y, Chai X, Zhuo X, Wu Q, Jiao B, Pan W, Guo Z. Synthesis and immunological studies of β-1,2-mannan-peptide conjugates as antifungal vaccines. Eur J Med Chem 2019; 173:250-260. [DOI: 10.1016/j.ejmech.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023]
|
10
|
Pfister HB, Kelly M, Qadri F, Ryan ET, Kováč P. Synthesis of glycocluster-containing conjugates for a vaccine against cholera. Org Biomol Chem 2019; 17:4049-4060. [DOI: 10.1039/c9ob00368a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycocluster-containing conjugates for a vaccine against cholera showed immunoreactivity comparable to conventional conjugates.
Collapse
Affiliation(s)
| | - Meagan Kelly
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
| | - Firdausi Qadri
- International Center for Diarrhoeal Disease Research (icddr
- b)
- Dhaka
- Bangladesh
| | - Edward T. Ryan
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
- Department of Medicine
| | - Pavol Kováč
- NIDDK
- LBC
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
11
|
Morelli L, Fallarini S, Lombardi G, Colombo C, Lay L, Compostella F. Synthesis and biological evaluation of a trisaccharide repeating unit derivative of Streptococcus pneumoniae 19A capsular polysaccharide. Bioorg Med Chem 2018; 26:5682-5690. [PMID: 30449426 DOI: 10.1016/j.bmc.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 02/05/2023]
Abstract
Streptococcus pneumoniae (SP) is a common human pathogen associated with a broad spectrum of diseases and it is still a leading cause of mortality and morbidity worldwide, especially in children. Moreover, SP is increasingly associated with drug resistance. Vaccination against the pathogen may thus represent an important strategy to overcome its threats to human health. In this context, revealing the molecular determinants of SP immunoreactivity may be relevant for the development of novel molecules with therapeutic perspectives as vaccine components. Serogroup 19 comprises the immune-cross reactive types 19F, 19A, 19B and 19C and it accounts for a high percentage of invasive pneumococcal diseases, mainly caused by serotypes 19F and 19A. Herein, we report the synthesis and biological evaluation of an aminopropyl derivative of the trisaccharide repeating unit of SP 19A. We compare two different synthetic strategies, based on different disconnections between the three monosaccharides which make up the final trisaccharide, to define the best approach for the preparation of the trisaccharide. Synthetic accessibility to the trisaccharide repeating unit lays the basis for the development of more complex biopolymer as well as saccharide conjugates. We also evaluate the binding affinity of the trisaccharide for anti-19A and anti-19F sera and discuss the relationship between the chemical properties of the trisaccharide unit and biological activity.
Collapse
Affiliation(s)
- Laura Morelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Grazia Lombardi
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Cinzia Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| |
Collapse
|
12
|
Ding F, Ishiwata A, Ito Y. Stereodivergent Mannosylation Using 2- O-( ortho-Tosylamido)benzyl Group. Org Lett 2018; 20:4833-4837. [PMID: 30052458 DOI: 10.1021/acs.orglett.8b01979] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a novel strategy for obtaining both anomers from a single mannosyl donor equipped with a C2- o-TsNHbenzyl ether (2- O-TAB) by switching reaction conditions. In particular, the formation of various β-mannosides was achieved with high selectivity by using a mannosyl phosphite in the presence of ZnI2.
Collapse
Affiliation(s)
- Feiqing Ding
- Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Akihiro Ishiwata
- Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
13
|
Lu X, Pfister HB, Soliman SE, Kováč P. O-Specific Polysaccharide of Vibrio cholerae
O139: Improved Synthesis and Conjugation to BSA by Squaric Acid Chemistry. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaowei Lu
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Hélène B. Pfister
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Sameh E. Soliman
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Pavol Kováč
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| |
Collapse
|
14
|
Xu P, Trinh MN, Kováč P. Conjugation of carbohydrates to proteins using di(triethylene glycol monomethyl ether) squaric acid ester revisited. Carbohydr Res 2018; 456:24-29. [PMID: 29247910 DOI: 10.1016/j.carres.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/21/2023]
Abstract
Properties of di(triethylene glycol monomethyl ether) squarate relevant to conjugation of carbohydrates to proteins have been reinvestigated and compared with those of dimethyl squarate. It is concluded that the commercially available, crystalline dimethyl squarate remains the most convenient and efficient reagent for conjugation of amine-containing carbohydrates to proteins by a two-step or one-pot conjugation protocol.
Collapse
Affiliation(s)
- Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Michael N Trinh
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA.
| |
Collapse
|
15
|
Adero PO, Jarois DR, Crich D. Hydrogenolytic cleavage of naphthylmethyl ethers in the presence of sulfides. Carbohydr Res 2017; 449:11-16. [PMID: 28672165 PMCID: PMC5572532 DOI: 10.1016/j.carres.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
With the aid of a series of model thioether or thioglycoside containing polyols protected with combinations of benzyl ethers and 2-naphthylmethyl ethers it is demonstrated that the latter are readily cleaved selectively under hydrogenolytic conditions in the presence of the frequently catalyst-poisoning sulfides. These results suggest the possibility of employing 2-naphthylmethyl ethers in place of benzyl ethers in synthetic schemes when hydrogenolytic deprotection is anticipated in the presence of thioether type functionality.
Collapse
Affiliation(s)
- Philip O Adero
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
16
|
Yoneda Y, Hettegger H, Rosenau T, Kawada T. Additive Tendency of Substituent Effects onto Rate Constant of Acidic Hydrolysis of Methyl 4-O-Methyl-β-d-Glucopyranoside. ChemistrySelect 2016. [DOI: 10.1002/slct.201601125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuko Yoneda
- College of Agriculture; Academic Institute; Shizuoka University, Ohya 836, Suruga-ku; Shizuoka 422-8529 Japan
| | - Hubert Hettegger
- Division of Chemistry of Renewable Resources; Department of Chemistry; University of Natural Resources and Life Sciences, Vienna (BOKU); Konrad-Lorenz-Strasse 24 A-3430 Tulln Austria
| | - Thomas Rosenau
- Division of Chemistry of Renewable Resources; Department of Chemistry; University of Natural Resources and Life Sciences, Vienna (BOKU); Konrad-Lorenz-Strasse 24 A-3430 Tulln Austria
| | - Toshinari Kawada
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University, Nakaragi-cho 1-5, Shimogamo, Sakyo-ku; Kyoto 606-8522 Japan
| |
Collapse
|
17
|
Scott AE, Christ WJ, George AJ, Stokes MGM, Lohman GJS, Guo Y, Jones M, Titball RW, Atkins TP, Campbell AS, Prior JL. Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate. Bioconjug Chem 2016; 27:1435-46. [PMID: 27124182 PMCID: PMC4911622 DOI: 10.1021/acs.bioconjchem.5b00525] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Melioidosis is an emerging infectious
disease caused by Burkholderia pseudomallei and is associated with
high morbidity and mortality rates in endemic areas. Antibiotic treatment
is protracted and not always successful; even with appropriate therapy,
up to 40% of individuals presenting with melioidosis in Thailand succumb
to infection. In these circumstances, an effective vaccine has the
potential to have a dramatic impact on both the scale and the severity
of disease. Currently, no vaccines are licensed for human use. A leading
vaccine candidate is the capsular polysaccharide consisting of a homopolymer
of unbranched 1→3 linked 2-O-acetyl-6-deoxy-β-d-manno-heptopyranose. Here, we present the
chemical synthesis of this challenging antigen using a novel modular
disaccharide assembly approach. The resulting hexasaccharide was coupled
to the nontoxic Hc domain of tetanus toxin as a carrier
protein to promote recruitment of T-cell help and provide a scaffold
for antigen display. Mice immunized with the glycoconjugate developed
IgM and IgG responses capable of recognizing native capsule, and were
protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first
report of the chemical synthesis of an immunologically relevant and
protective hexasaccharide fragment of the capsular polysaccharide
of B. pseudomallei and serves as the
rational starting point for the development of an effective licensed
vaccine for this emerging infectious disease.
Collapse
Affiliation(s)
- Andrew E Scott
- Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - William J Christ
- Corden Pharma International Inc. (formerly Ancora Pharmaceuticals Inc.) , Woburn, Massachusetts 01801 United States
| | - Alison J George
- Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Margaret G M Stokes
- Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Gregory J S Lohman
- Corden Pharma International Inc. (formerly Ancora Pharmaceuticals Inc.) , Woburn, Massachusetts 01801 United States
| | - Yuhong Guo
- Corden Pharma International Inc. (formerly Ancora Pharmaceuticals Inc.) , Woburn, Massachusetts 01801 United States
| | - Matthew Jones
- Corden Pharma International Inc. (formerly Ancora Pharmaceuticals Inc.) , Woburn, Massachusetts 01801 United States
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter , Exeter, Devon EX4 4QD, United Kingdom
| | - Timothy P Atkins
- Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - A Stewart Campbell
- Corden Pharma International Inc. (formerly Ancora Pharmaceuticals Inc.) , Woburn, Massachusetts 01801 United States
| | - Joann L Prior
- Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| |
Collapse
|
18
|
Hu Y, Tu YH, Liu DY, Liao JX, Sun JS. Synthetic investigation toward apigenin 5-O-glycoside camellianin B as well as the chemical structure revision. Org Biomol Chem 2016; 14:4842-7. [DOI: 10.1039/c6ob00655h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first total synthesis of the proposed and authentic structures of camellianin B were achieved, based on which the chemical structures of camellianins A and B were revised.
Collapse
Affiliation(s)
- Yang Hu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yuan-Hong Tu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - De-Yong Liu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jin-Xi Liao
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jian-Song Sun
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
19
|
Abstract
![]()
The
first automated solution-phase synthesis of β-1,4-mannuronate
and β-1,4-mannan oligomers has been accomplished by using a
β-directing C-5 carboxylate strategy. By utilizing fluorous-tag
assisting purification after repeated reaction cycles, β-1,4-mannuronate
was synthesized up to a hexasaccharide with limited loading of a glycosyl
donor (up to 3.5 equiv) for each glycosylation cycle due to the homogeneous
solution-phase reaction condition. After a global reduction of the
uronates, the β-1,4-mannan hexasaccharide was obtained, thereby
demonstrating a new approach to β-mannan synthesis.
Collapse
Affiliation(s)
- Shu-Lun Tang
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Nicola L B Pohl
- †Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Elsaidi HRH, Paszkiewicz E, Bundle DR. Synthesis of a 1,3 β-glucan hexasaccharide designed to target vaccines to the dendritic cell receptor, Dectin-1. Carbohydr Res 2015; 408:96-106. [PMID: 25868116 DOI: 10.1016/j.carres.2015.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/21/2022]
Abstract
Transformation of 3-O-benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose into 2,4,6-tri-O-benzoyl-3-O-benzyl glucopyranosyl imidate proceeded efficiently via crystalline benzyl and per-benzoylated derivatives. This imidate glycosylated di-O-isopropylidene-α-D-glucofuranose in high yield and glycosylation of the disaccharide after removal of the 3'-O-benzyl ether afforded the β1,3 linked trisaccharide in excellent yield. Di- and trisaccharides imidates were readily prepared from the furanose terminated glycosylation products but both were unreactive in glycosylation reaction with the debenzylated di- and trisaccharide alcohols. The 3'-O-benzyl perbenzoylated disaccharide pyranose derivative could be selectively debenzoylated and converted to the corresponding perbenzoylated 4,6:4',6'-di-O-benzylidene derivative. Lewis acid catalyzed glycosidation gave the selectively protected disaccharide ethylthioglycoside in good overall yield. Glycosidation of this thioglycoside donor with 5-methoxycarbonylpentanol gave the disaccharide tether glycoside and after catalytic removal of benzyl ether the resulting disaccharide alcohol was glycosylated by the thioglycoside in a 2+2 reaction to yield a tetrasaccharide. Repetition of selective deprotection of the terminal 3-O-benzyl ether followed by glycosylation by the disaccharide thioglycoside gave a protected hexasaccharide. Hydrogenolysis of this hexasaccharide followed by transesterification and second hydrogenolysis to remove a residual benzyl group gave the target hexasaccharide glycoside 1 as a Dectin-1 ligand functionalized to permit covalent attachment to glycoconjugate vaccines and thereby facilitate improved antigen processing by dendritic cells.
Collapse
Affiliation(s)
- Hassan R H Elsaidi
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Eugenia Paszkiewicz
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David R Bundle
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
21
|
Huo CX, Zheng XJ, Xiao A, Liu CC, Sun S, Lv Z, Ye XS. Synthetic and immunological studies of N-acyl modified S-linked STn derivatives as anticancer vaccine candidates. Org Biomol Chem 2015; 13:3677-90. [DOI: 10.1039/c4ob02424a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Modified S-linked STn glycoconjugates significantly stimulated the production of IgG antibodies capable of recognizing the naturally occurring STn antigen.
Collapse
Affiliation(s)
- Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - An Xiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Shuang Sun
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Zhuo Lv
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| |
Collapse
|
22
|
The Evolution of a Glycoconjugate Vaccine for Candida albicans. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Lipinski T, Fitieh A, St. Pierre J, Ostergaard HL, Bundle DR, Touret N. Enhanced Immunogenicity of a Tricomponent Mannan Tetanus Toxoid Conjugate Vaccine Targeted to Dendritic Cells via Dectin-1 by Incorporating β-Glucan. THE JOURNAL OF IMMUNOLOGY 2013; 190:4116-28. [DOI: 10.4049/jimmunol.1202937] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Dang AT, Johnson MA, Bundle DR. Synthesis of a Candida albicans tetrasaccharide spanning the β1,2-mannan phosphodiester α-mannan junction. Org Biomol Chem 2013; 10:8348-60. [PMID: 22996034 DOI: 10.1039/c2ob26355f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cell wall phosphomannan of Candida species is a complex N-linked glycoprotein with a glycan chain containing predominantly an α-linked mannose backbone with α-mannose branches. A minor β-mannan component is attached to the branches either via a glycosidic bond (acid stable β-mannan) or a phosphodiester bond (acid-labile β-mannan). The α-mannan residues of the cell wall phosphomannan do not afford protective antibody, while the β-mannan portion is a protective antigen and has become an attractive target as the key epitope of a conjugate vaccine. We report the first synthesis of a tetrasaccharide 1 consisting of a β1,2-mannopyranosyl trisaccharide linked via a phosphodiester to methyl α-mannopyranoside. This encompasses the attachment site of the acid labile β-mannan to the α-mannan component of the cell wall phosphomannan. The trisaccharide was formed by an iterative process to first create a β-glucopyranoside linkage and then epimerize the C-2 center via an oxidation-reduction sequence. The phosphate diester linkage was accessed via an anomeric H-phosphonate. The binding of phosphomannan fragment 1 with the protective antibody C3.1 has been evaluated and compared with a β-mannotrioside in hapten inhibition experiments. The observed activities are rationalized with a model for docked in the binding site of C3.1.
Collapse
Affiliation(s)
- Anh-Thu Dang
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
25
|
Mukherjee C, Ranta K, Savolainen J, Leino R. Synthesis and Immunological Screening of β-Linked Mono- and Divalent Mannosides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Johnson MA, Cartmell J, Weisser NE, Woods RJ, Bundle DR. Molecular recognition of Candida albicans (1->2)-β-mannan oligosaccharides by a protective monoclonal antibody reveals the immunodominance of internal saccharide residues. J Biol Chem 2012; 287:18078-90. [PMID: 22493450 DOI: 10.1074/jbc.m112.355578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A self-consistent model of β-mannan oligosaccharides bound to a monoclonal antibody, C3.1, that protects mice against Candida albicans has been developed through chemical mapping, NMR spectroscopic, and computational studies. This antibody optimally binds di- and trisaccharide epitopes, whereas larger oligomers bind with affinities that markedly decrease with increasing chain length. The (1→2)-β-linked di-, tri-, and tetramannosides bind in helical conformations similar to the solution global minimum. Antibody recognition of the di- and trisaccharide is primarily dependent on the mannose unit at the reducing end, with the hydrophobic face of this sugar being tightly bound. Recognition of a tetrasaccharide involves a frameshift in the ligand interaction, shown by strong binding of the sugar adjacent to the reducing end. We show that frameshifting may also be deliberately induced by chemical modifications. Molecular recognition patterns similar to that of mAb C3.1, determined by saturation transfer difference-NMR, were also observed in polyclonal sera from rabbits immunized with a trisaccharide glycoconjugate. The latter observation points to the importance of internal residues as immunodominant epitopes in (1→2)-β-mannans and to the viability of a glycoconjugate vaccine composed of a minimal length oligosaccharide hapten.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
27
|
Blaukopf M, Müller B, Hofinger A, Kosma P. Synthesis of Neoglycoconjugates Containing 4-Amino-4-deoxy-l-arabinose Epitopes Corresponding to the Inner Core of Burkholderia and Proteus Lipopolysaccharides. European J Org Chem 2011; 2012:119-131. [PMID: 23136534 PMCID: PMC3482937 DOI: 10.1002/ejoc.201101171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 11/08/2022]
Abstract
Disaccharides that contain 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and d-glycero-d-talo-oct-2-ulosonic acid (Ko) substituted at the 8-position by 4-amino-4-deoxy-β-l-arabinopyranosyl (Ara4N) residues have been prepared. Coupling an N-phenyltrifluoroacetimidate-4-azido-4-deoxy-l-arabinosylglycosyl donor to acetyl-protected allyl glycosides of Kdo and Ko afforded anomeric mixtures of disaccharide products in 74 and 90 % yield, respectively, which were separated by chromatography. Further extension of an intermediate Ara4N-(1→8)-Kdo disaccharide acceptor, which capitalized on a regioselective glycosylation with a Kdo bromide donor under Helferich conditions, afforded the branched trisaccharide α-Kdo-(2→4)[β-l-Ara4N-(1→8)]-α-Kdo derivative. Deprotection of the protected di- and trisaccharide allyl glycosides was accomplished by TiCl4-promoted benzyl ether cleavage followed by the removal of ester groups and reduction of the azido group with thiol or Staudinger reagents, respectively. The reaction of the anomeric allyl group with 1,3-propanedithiol under radical conditions afforded the thioether-bridged spacer glycosides, which were efficiently coupled to maleimide-activated bovine serum albumin. The neoglycoconjugates serve as immunoreagents with specificity for inner core epitopes of Burkholderia and Proteus lipopolysaccharides.
Collapse
Affiliation(s)
- Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences Muthgasse 18, 1190 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
29
|
Lichtenthaler FW. 2-Oxoglycosyl ("ulosyl") and 2-oximinoglycosyl bromides: versatile donors for the expedient assembly of oligosaccharides with β-D-mannose, β-L-rhamnose, N-acetyl-β-D-mannosamine, and N-acetyl-β-D-mannosaminuronic acid units. Chem Rev 2011; 111:5569-609. [PMID: 21751781 DOI: 10.1021/cr100444b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frieder W Lichtenthaler
- Clemens-Schöpf-Institut für Organische Chemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany.
| |
Collapse
|
30
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
31
|
Ekholm FS, Sinkkonen J, Leino R. Fully deprotected β-(1→2)-mannotetraose forms a contorted α-helix in solution: convergent synthesis and conformational characterization by NMR and DFT. NEW J CHEM 2010. [DOI: 10.1039/b9nj00702d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Karelin AA, Tsvetkov YE, Paulovicová L, Bystrický S, Paulovicová E, Nifantiev NE. Synthesis of 3,6-branched oligomannoside fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor 4. Carbohydr Res 2009; 345:1283-90. [PMID: 20096401 DOI: 10.1016/j.carres.2009.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/25/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
3-Aminopropyl glycosides of 3,6-branched penta- and hexamannoside fragments of the cell wall mannan from Candida albicans, corresponding to the antigenic factor 4, have been synthesized. Subsequent coupling of both oligosaccharides with BSA using the squarate procedure provided corresponding neoglycoconjugates.
Collapse
Affiliation(s)
- Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Feng Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
34
|
Poláková M, Roslund MU, Ekholm FS, Saloranta T, Leino R. Synthesis of β-(1→2)-Linked Oligomannosides. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Legnani L, Ronchi S, Fallarini S, Lombardi G, Campo F, Panza L, Lay L, Poletti L, Toma L, Ronchetti F, Compostella F. Synthesis, molecular dynamics simulations, and biology of a carba-analogue of the trisaccharide repeating unit of Streptococcus pneumoniae 19F capsular polysaccharide. Org Biomol Chem 2009; 7:4428-36. [DOI: 10.1039/b911323a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Karelin AA, Tsvetkov YE, Paulovicová L, Bystrický S, Paulovicová E, Nifantiev NE. Synthesis of a heptasaccharide fragment of the mannan from Candida guilliermondii cell wall and its conjugate with BSA. Carbohydr Res 2008; 344:29-35. [PMID: 18976984 DOI: 10.1016/j.carres.2008.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
The 3-aminopropyl glycoside of a heptasaccharide fragment of the cell wall mannan from Candida guilliermondii 18, which corresponds to the antigenic Factor 9, has been synthesized by a convergent approach based on glycosylation of a tetrasaccharide acceptor with a trisaccharide donor as the key step to give a protected heptasaccharide 17. Subsequent two-step deprotection of 17 afforded the heptamannoside 18, which was then conjugated with BSA using the squarate procedure.
Collapse
Affiliation(s)
- Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
37
|
Collot M, Sendid B, Fievez A, Savaux C, Standaert-Vitse A, Tabouret M, Drucbert AS, Marie Danzé P, Poulain D, Mallet JM. Biotin Sulfone as a New Tool for Synthetic Oligosaccharide Immobilization: Application to Multiple Analysis Profiling and Surface Plasmonic Analysis of Anti-Candida albicans Antibody Reactivity against α and β (1→2) Oligomannosides. J Med Chem 2008; 51:6201-10. [DOI: 10.1021/jm800099g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mayeul Collot
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Boualem Sendid
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Aurélie Fievez
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Camille Savaux
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Annie Standaert-Vitse
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Marc Tabouret
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Anne Sophie Drucbert
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Pierre Marie Danzé
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Daniel Poulain
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| | - Jean-Maurice Mallet
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8642, 24 rue Lhomond, 75005 Paris, France, Unité Inserm 799, Physiopathologie des Candidoses, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France, Bio-Rad, Route de Cassel, 59114 Steenvoorde, France, Plateforme d’Etude des Interactions Moléculaires, IMPRT, IFR114, Faculté de Médecine, Pôle Recherche, CHRU, Place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
38
|
Dziadek S, Jacques S, Bundle D. A Novel Linker Methodology for the Synthesis of Tailored Conjugate Vaccines Composed of Complex Carbohydrate Antigens and Specific TH‐Cell Peptide Epitopes. Chemistry 2008; 14:5908-17. [DOI: 10.1002/chem.200800065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Wu X, Lipinski T, Paszkiewicz E, Bundle D. Synthesis and Immunochemical characterization ofS-linked Glycoconjugate Vaccines againstCandida albicans. Chemistry 2008; 14:6474-82. [DOI: 10.1002/chem.200800352] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001-2002. MASS SPECTROMETRY REVIEWS 2008; 27:125-201. [PMID: 18247413 DOI: 10.1002/mas.20157] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
41
|
Brehm M, Göckel VH, Jarglis P, Lichtenthaler FW. Expedient conversion of d-glucose into 1,5-anhydro-d-fructose and into single stereogenic-center dihydropyranones, suitable six-carbon scaffolds for concise syntheses of the soft-coral constituents (−)-bissetone and (−)-palythazine. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Lergenmüller M, Lichtenthaler FW. Glucuronic acid-based ulosyl donors for introducing α-d-GlcA and β-d-ManA units. Carbohydr Res 2007; 342:2132-7. [PMID: 17562329 DOI: 10.1016/j.carres.2007.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 11/24/2022]
Abstract
Practical protocols are described for a five-step conversion of D-glucuronolactone into alpha-D-arabino-2-ketoglucuronyl bromides, which due to their alpha-selective or beta-specific glycosidation, and gluco- or manno-specific carbonyl reductions of the glucurono-2-ulosides formed, are expedient indirect donor substrates for the efficient introduction of alpha-D-GlcA or beta-D-ManA residues.
Collapse
Affiliation(s)
- Matthias Lergenmüller
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | | |
Collapse
|
43
|
Abstract
An as yet unknown beta-(1-->3)-mannohexaose has been synthesized by a block route involving the coupling of two trisaccharides. Comparison of three closely related attempted mannohexaose syntheses reinforces the influence of subtle matching and/or mismatching interactions on the outcome of convergent oligosaccharide synthesis.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | | | |
Collapse
|
44
|
On the alkoxybromination of glucal esters: 2-acetamido-α-d-mannosyl bromides from 2-acetamidoglucal. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Wu X, Lipinski T, Carrel FR, Bailey JJ, Bundle DR. Synthesis and immunochemical studies on a Candida albicans cluster glycoconjugate vaccine. Org Biomol Chem 2007; 5:3477-85. [DOI: 10.1039/b709912f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Wu X, Bundle DR. Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J Org Chem 2006; 70:7381-8. [PMID: 16122263 DOI: 10.1021/jo051065t] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The cell wall phosphomannan of Candida species is a complex N-linked glycoprotein with a glycan chain that contains predominantly alpha-linked mannose residues. However, it is the minor beta-mannan component of the phosphomannan of clinically important Candida strains that provides immunological protection in animal models of fungal disease and hence holds promise as a component of conjugate vaccines. This important antigen occurs in different forms linked to the alpha-mannan backbone via a phosphodiester bond (acid-labile beta-mannan) or directly via a glycosidic bond. To reproducibly synthesize and evaluate conjugate vaccines, a robust method for the synthesis of the different oligosaccharide epitopes is required. Here, we report the gram-scale syntheses of both types of epitopes by an approach that utilizes glucosyl trichloroacetimidate donor 2 to first create a beta-glucopyranoside linkage and then epimerizes the C-2 center via an oxidation-reduction sequence that provides an efficient multigram scale route to the beta-mannopyranosides 5, 8, and 15. Reaction of glycosides 16-18 with homobifunctional adipic acid p-nitrophenyl diesters in dry DMF gave the corresponding half esters in good yields, and of sufficient stability to permit chromatographic purification. Subsequent conjugation with BSA and tetanus toxiod (TT) under mild conjugation conditions afforded the corresponding tri- and tetrasaccharide neoglycoproteins with good efficiency. The conjugation method is also applicable to the coupling of small amounts (mg) of larger oligosaccharides with different proteins.
Collapse
Affiliation(s)
- Xiangyang Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
47
|
Zhou Y, Lin F, Chen J, Yu B. Toward synthesis of the regular sequence of heparin: synthesis of two tetrasaccharide precursors. Carbohydr Res 2006; 341:1619-29. [PMID: 16529732 DOI: 10.1016/j.carres.2006.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/15/2006] [Accepted: 02/21/2006] [Indexed: 11/24/2022]
Abstract
Two fully protected tetrasaccharides, which represent precursors for the synthesis of the regular sequence of heparin, were synthesized via coupling of a pair of disaccharide trichloroacetimidates with a thioglycoside and a glucosamine derivative, respectively, in a sequential manner.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
48
|
Wu X, Ling CC, Bundle DR. A new homobifunctional p-nitro phenyl ester coupling reagent for the preparation of neoglycoproteins. Org Lett 2006; 6:4407-10. [PMID: 15548037 DOI: 10.1021/ol048614m] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new linker system has been designed and applied to neoglycoprotein synthesis. Reaction of oligosaccharide omega-aminoalkyl glycosides with homobifunctional adipic acid p-nitrophenyl diesters in dry DMF gave the corresponding amide half ester in good yields and of sufficient stability to permit chromatographic purification. Subsequent conjugation with bovine serum albumin under very mild conditions afforded the corresponding neoglycoproteins with good efficiency. The method is well suited for the coupling of very small amounts (mg) of oligosaccharide and protein. [structure: see text]
Collapse
Affiliation(s)
- Xiangyang Wu
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
49
|
|
50
|
Bundle DR, Rich JR, Jacques S, Yu HN, Nitz M, Ling CC. Thiooligosaccharide Conjugate Vaccines Evoke Antibodies Specific for Native Antigens. Angew Chem Int Ed Engl 2005; 44:7725-9. [PMID: 16276545 DOI: 10.1002/anie.200502179] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David R Bundle
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|