1
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Insight on Mercapto-Coumarins: Synthesis and Reactivity. Molecules 2022; 27:2150. [PMID: 35408548 PMCID: PMC9000435 DOI: 10.3390/molecules27072150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Mercapto (or sulfanyl)-coumarins are heterocycles of great interest in the development of valuable active structures in material and biological domains. They represent a highly exploitable class of compounds that open many possibilities for further chemical transformations. The present review aims to draw focus toward the synthetic applicability of various forms of mercapto-coumarins and their representations in pharmaceuticals and industries. This work covers the literature issued from 1970 to 2021.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moleculaire (L.2.C.M.), Universite de Lorraine, 57050 Metz, France
| |
Collapse
|
2
|
Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol 2018; 76:346-353. [PMID: 30166160 PMCID: PMC7126691 DOI: 10.1016/j.fm.2018.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022]
Abstract
Plant polyphenols have shown antiviral activity against several human pathogens, but their physicochemical interactions are not well-understood. The objectives of this study were to compare the antiviral activity between monomeric catechin and dimeric procyanidin B2 (PB2) using cultivable human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) and to understand their potential antiviral mechanism using virus-like particles (VLPs) and the P domain of human norovirus GII (HNoV GII.4). Surrogate viruses at 5 log PFU/mL were treated with 0.5–5 mg/mL monomeric catechin monohydrate, PB2 or phosphate buffered saline (PBS, pH 7.2; control) at 37 °C over 24 h. Infectivity was determined using plaque assays and data from triplicate experiments were statistically analyzed. PB2 at 0.5 mg/mL and 1 mg/mL reduced FCV-F9 to undetectable levels after 3 h and MNV-1 by 0.21 and 1.23 log PFU after 24 h, respectively. Monomeric catechins at 1 mg/mL reduced FCV-F9 to undetectable levels after 6 h and MNV-1 titers to undetectable levels after 24 h. In addition, PB2 was shown to directly bind the P domain, the main capsid structure of HNoVs in the ratio of 1:1 through spontaneous interactions. Electrostatic interactions played a dominant role between PB2 and the P domain. PB2 significantly altered tertiary but not secondary structures of VLPs. Transmission electron microscopy demonstrated that PB2 aggregated VLPs, further indicating interactions between them. These findings indicate that PB2 causes structural changes of the P domain of VLPs, mainly through direct interaction leading to HNoV inactivation. Polymeric procyanidins cause higher reduction of human norovirus surrogate titers than monomers. Binding of procyanidin to human norovirus-like particles alters capsid structure. Procyanidin binding to viral capsid results in decreased infectivity.
Collapse
|
3
|
Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends Biotechnol 2018; 36:523-536. [PMID: 29478675 DOI: 10.1016/j.tibtech.2018.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
Better understanding how multidrug-resistant (MDR) bacteria can evade current and novel antibiotics requires a better understanding of the chemical biology of antibiotic action. This necessitates using new tools and techniques to advance our knowledge of bacterial responses to antibiotics, ideally in live cells in real time, to selectively investigate bacterial growth, division, metabolism, and resistance in response to antibiotic challenge. In this review, we discuss the preparation and biological evaluation of fluorescent antibiotics, focussing on how these reporters and assay methods can help elucidate resistance mechanisms. We also examine the potential utility of such probes for real-time in vivo diagnosis of infections.
Collapse
|
4
|
A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2018; 57:719-723. [DOI: 10.1002/anie.201710529] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 11/07/2022]
|
5
|
Meng S, Han W, Zhao J, Jian X, Pan H, Tang G. A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Han
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Juan Zhao
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Hong Jian
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
6
|
Guo JR, Huang HY, Yan YL, Liang CF. Selective S-Deacetylation of Functionalized Thioacetates Catalyzed by Dy(OTf)3. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiun-Rung Guo
- Department of Chemistry; National Chung Hsing University; 145 Xingda Road South District Taichung City 402 Taiwan
| | - Hsin-Yi Huang
- Department of Chemistry; National Chung Hsing University; 145 Xingda Road South District Taichung City 402 Taiwan
| | - Yi-Ling Yan
- Department of Chemistry; National Chung Hsing University; 145 Xingda Road South District Taichung City 402 Taiwan
| | - Chien-Fu Liang
- Department of Chemistry; National Chung Hsing University; 145 Xingda Road South District Taichung City 402 Taiwan
| |
Collapse
|
7
|
Activity-based targeting of secretory phospholipase A 2 enzymes: A fatty-acid-binding-protein assisted approach. Chem Phys Lipids 2016; 202:38-48. [PMID: 27894770 DOI: 10.1016/j.chemphyslip.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Syntheses and enzymological characterization of fluorogenic substrate probes targeting secretory phospholipase A2 (sPLA2) for detection and quantitative assays are presented. Three fluorogenic phosphatidylcholine analogs PC-1, PC-2, and PC-3 each containing the duo of 7-mercapto-4-methyl-coumarin fluorophore and 2,4-dinitroanaline quencher on either tail were synthesized from (R)-3-amino-1,2-propanediol and R-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol. These small reporter groups are advantageous in preserving natural membrane integrity. Phosphocholine was incorporated into the sn-3 position of the glycerol backbone. Acyl amino group at the sn-1 position in PC-1 and PC-2 is meant to block sPLA1. The sn-1 and sn-2 positions of the glycerol backbone in PC-1 have a quencher terminated 12-carbon chain and fluorophore terminated 11-carbon chain respectively. PC-2 has a quencher terminated 3-carbon chain at the sn-2 and chain terminating fluorescent reporter at the sn-1 positions. PC-3 resembles PC-1 except for an ester instead of amide at the sn-1 position, because of which it is more similar to natural phospholipids than PC-1. It was designed to elucidate the effect of replacing the ester group with amide by comparing its hydrolysis rate with that of PC-1. Design principles apply to synthesis of other labeled phospholipids. Enzymological characterization using bee-venom sPLA2 was performed by a fatty-acid-binding-protein fluorescence assay and by pH-Stat method in which the amount of fatty acid released by hydrolysis is given by the amount of base required to maintain a constant pH of 8.0. Hydrolytic activity toward PC-1 and PC-3 were each about 238±25μmol/mg/min and 537μmol/mg/min on unmodified phospholipid. Ester to amide change did not affect hydrolysis rates. Activity toward PC-2 was about 45-μmol/mg/min. PC-1 and PC-3 show potential for targeted real-time spectrophotometric assay of sPLA2.
Collapse
|
8
|
Bae J, Choi J, Park TJ, Chang SK. Reaction-based colorimetric and fluorogenic signaling of hydrogen sulfide using a 7-nitro-2,1,3-benzoxadiazole–coumarin conjugate. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Synthesis of mixed-chain phosphatidylcholines including coumarin fluorophores for FRET-based kinetic studies of phospholipase A(2) enzymes. Chem Phys Lipids 2013; 172-173:78-85. [PMID: 23727005 DOI: 10.1016/j.chemphyslip.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022]
Abstract
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 ester linkage of glycerophospholipids to produce fatty acids and lysophospholipids. A significant number of mammalian phospholipases comprise a family of secreted PLA2 enzymes, found in specific tissues and cellular locations, exhibiting unique enzymatic properties and distinct biological functions. Development of new real-time spectrofluorimetric PLA2 assays should facilitate the kinetic characterization and mechanistic elucidation of the isozymes in vitro, with the potential applicability to detect and measure catalytic PLA2 activity in tissues and cellular locations. Here we report a new synthesis of double-labeled phosphatidylcholine analogs with chain-terminal reporter groups including coumarin fluorophores for fluorescence resonance energy transfer (FRET)-based kinetic studies of PLA2 enzymes. The use of coumarin derivatives as fluorescent labels provides reporter groups with substantially decreased size compared to the first generation of donor-acceptor pairs of fluorescent phospholipids. The key advantage of the design is to interfere less with the physicochemical properties of the acyl chains, thereby improving the substrate quality of the synthetic probes. In order to assess the impact of the fluorophore substituents on the catalytic hydrolysis and on the phospholipid packing in the lipid-water interface of the assay, we used the experimentally determined specific activity of bee-venom phospholipase A2 as a model for the secretory PLA2 enzymes. Specifically, the rate of PLA2 hydrolysis of the coumarin labeled phosphatidylcholine analogs was less than three times slower than the natural substrate dipalmitoyl phosphatidylcholine (DPPC) under the same experimental conditions. Furthermore, variation of the mole fraction of the synthetic phosphatidylcholine vs. that of the natural DPPC substrate showed nearly ideal mixing behavior in the phospholipid-surfactant aggregates of the assay. The synthesis provides a rapid and efficient method for preparation of new synthetic phosphatidylcholines with the desired target structures for enzymatic and physicochemical studies.
Collapse
|
10
|
Inoue K, Yamada E, Hino T, Oka H. Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Bicozamycin in Milk. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070903091613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Koichi Inoue
- a Department of Physical and Analytical Chemistry , School of Pharmacy, Kinjo Gakuin University , Nagoya, Japan
| | - Erina Yamada
- a Department of Physical and Analytical Chemistry , School of Pharmacy, Kinjo Gakuin University , Nagoya, Japan
| | - Tomoaki Hino
- a Department of Physical and Analytical Chemistry , School of Pharmacy, Kinjo Gakuin University , Nagoya, Japan
| | - Hisao Oka
- a Department of Physical and Analytical Chemistry , School of Pharmacy, Kinjo Gakuin University , Nagoya, Japan
- b Graduate School of Human Ecology, Human Ecology Major, Kinjo Gakuin University , Nagoya, Japan
| |
Collapse
|
11
|
Photoinduced energy transfer in bichromophoric co-assemblies based on amphiphilic poly(amidoamine) dendrons. J Colloid Interface Sci 2008; 324:225-9. [DOI: 10.1016/j.jcis.2008.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 11/19/2022]
|
12
|
Zhang X, Li ZC, Li KB, Lin S, Du FS, Li FM. Donor/acceptor vinyl monomers and their polymers: Synthesis, photochemical and photophysical behavior. Prog Polym Sci 2006. [DOI: 10.1016/j.progpolymsci.2006.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Park BS, Widger W, Kohn H. Fluorine-substituted dihydrobicyclomycins: Synthesis and biochemical and biological properties. Bioorg Med Chem 2006; 14:41-61. [PMID: 16185879 DOI: 10.1016/j.bmc.2005.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 11/19/2022]
Abstract
Many studies show that selective introduction of fluorine within pharmacological agents leads to improved activities. In this study, we determine the effects of aryl fluorine substitution in 5a-(benzylsulfanyl)-dihydrobicyclomycin (3) on the in vitro inhibition of Escherichia coli rho-dependent ATPase activity. Compound 3 is an analog of bicyclomycin (1), which is the only known selective inhibitor of rho, and 1 and 3 have comparable in vitro inhibitory activities. We demonstrate that aryl fluorine substitution of 3 leads to increase in inhibitory activity but that the beneficial effects due to fluorine were dependent upon the site and number of fluorine substituents. The bioactivities are rationalized in terms of the bond moment created by the aryl fluoride bond within the 5a-aryl dihydrobicyclomycin-rho-binding pocket. Use of this hypothesis led to the design of dihydrobicyclomycin derivatives with superior in vitro rho inhibitory activities.
Collapse
Affiliation(s)
- Boon-Saeng Park
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
14
|
Skordalakes E, Brogan AP, Park BS, Kohn H, Berger JM. Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin. Structure 2005; 13:99-109. [PMID: 15642265 DOI: 10.1016/j.str.2004.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/20/2004] [Accepted: 10/20/2004] [Indexed: 11/21/2022]
Abstract
Rho is a hexameric RNA/DNA helicase/translocase that terminates transcription of select genes in bacteria. The naturally occurring antibiotic, bicyclomycin (BCM), acts as a noncompetitive inhibitor of ATP turnover to disrupt this process. We have determined three independent X-ray crystal structures of Rho complexed with BCM and two semisynthetic derivatives, 5a-(3-formylphenylsulfanyl)-dihydrobicyclomycin (FPDB) and 5a-formylbicyclomycin (FB) to 3.15, 3.05, and 3.15 A resolution, respectively. The structures show that BCM and its derivatives are nonnucleotide inhibitors that interact with Rho at a pocket adjacent to the ATP and RNA binding sites in the C-terminal half of the protein. BCM association prevents ATP turnover by an unexpected mechanism, occluding the binding of the nucleophilic water molecule required for ATP hydrolysis. Our data explain why only certain elements of BCM have been amenable to modification and serve as a template for the design of new inhibitors.
Collapse
Affiliation(s)
- Emmanuel Skordalakes
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
15
|
Brogan AP, Widger WR, Bensadek D, Riba-Garcia I, Gaskell SJ, Kohn H. Development of a technique to determine bicyclomycin-rho binding and stoichiometry by isothermal titration calorimetry and mass spectrometry. J Am Chem Soc 2005; 127:2741-51. [PMID: 15725032 DOI: 10.1021/ja046441q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclomycin (1) is the only natural product inhibitor of the transcription termination factor rho. Rho is a hexameric helicase that terminates nascent RNA transcripts utilizing ATP hydrolysis and is an essential protein for many bacteria. The paucity of information concerning the 1-rho interaction stems from the weak binding affinity of 1. We report a novel technique using imine formation with rho to enhance the affinity of a bicyclomycin analogue and determine the binding stoichiometry by isothermal titration calorimetry (ITC) and mass spectrometry (MS). Our designed bicyclomycin ligand, 5a-(3-formyl-phenylsulfanyl)-dihydrobicyclomycin (2) (apparent I(50) = 4 muM), inhibits rho an order of magnitude more efficiently than 1 (I(50) = 60 muM). MS shows that 2 selectively forms an imine with K181 in rho. We found that despite the heterogeneity of ATP binding (three tight and three weak) imposed on the rho hexamer, the nearby bicyclomycin binding pocket is not affected, and both 1 and 2 bind with equal affinity to all six subunits.
Collapse
Affiliation(s)
- Andrew P Brogan
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7360, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wang BB, Zhang X, Jia XR, Li ZC, Ji Y, Yang L, Wei Y. Fluorescence and Aggregation Behavior of Poly(amidoamine) Dendrimers Peripherally Modified with Aromatic Chromophores: the Effect of Dendritic Architectures. J Am Chem Soc 2004; 126:15180-94. [PMID: 15548015 DOI: 10.1021/ja048219r] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PAMAM dendrimers of the zeroth to fifth generation (G0-5) have been peripherally modified with phenyl, naphthyl, pyrenyl, and dansyl chromophores. Their fluorescence behaviors are strongly affected by the dendritic architectures at different generations. These dendrimers modified with hydrophobic chromphores can self-organize into vesicular aggregates at the low generations G0-3 in water. The size and aggregation number of these vesicles decrease with increasing generation from G0 to G3. Critical aggregation concentration determined by fluorescence spectroscopy reveals that these aggregates can be favorably formed in the order of G3 > G2 > G1. In contrast to the vesicles made from traditional amphiphilic compounds, these dendrimer-based vesicles are very adhesive due to the H-bonding interaction and entanglement of dendritic branches located in the outer layer. A large number of multivesicle assemblies, i.e., "twins" and "quins" consisting of two and five vesicles, were clearly identifiable with transmission electron (TEM) and atomic force microscopy. For the dendrimers with peripheral pyrenyl chromophores, triangle-like vesicles were observed in water. The hydrophobic interphase thickness of the vesicular bilayer is ca. 2.0-3.2 nm determined by fluorescence resonance energy transfer methods, which agrees well with the thickness directly observed with TEM.
Collapse
Affiliation(s)
- Bing-Bing Wang
- Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|