1
|
Abstract
Deracemization, which converts a racemate into its single enantiomer without separation of the intermediate, has gained renewed interest in asymmetric synthesis with its inherent atomic economy and high efficiency. However, this ideal process requires selective energy input and delicate reaction design to surmount the thermodynamical and kinetical constraints. With the rapid development of asymmetric catalysis, many catalytic strategies in concert with exogenous energy input have been exploited to facilitate this nonspontaneous enantioenrichment. In this perspective, we will discuss the basic ideas to accomplish catalytic deracemization, categorized by the three major exogenous energy sources including chemical (redox)-, photo- and mechanical energy from attrition. Emphasis will be given to the catalytic features and the underlying deracemization mechanism together with perspectives on future development.
Collapse
Affiliation(s)
- Mouxin Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Medicinal Chemistry, Third Military of Medical University, Chongqing 400038, China
| | - Tianrun Pan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xieyang Jiang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Rodphon W, Linkhum S, Thongsornkleeb C, Tummatorn J, Ruchirawat S. A Mechanistically Deceiving Formation of Aryl(1-indanyl)ketones via Acid-Catalyzed Cyclization of ortho-Alkynylarylmethanols. J Org Chem 2023; 88:4172-4186. [PMID: 36941741 DOI: 10.1021/acs.joc.2c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The generation of reactive carbocation intermediates from ortho-alkynylarylmethanol substrates was utilized as a means for the synthesis of aryl(1-indanyl)ketones . Substrates with a tertiary carbon at the β-position to the arene generated a carbocation intermediate via dehydration/protonation, followed by cyclization and hydration to give indanylketone products. For substrates with a quaternary carbon at that position, a carbocation intermediate was generated by protonation/elimination of water, followed by a 1,2-shift and a subsequent cyclization/hydration to give highly substituted indanylketones.
Collapse
Affiliation(s)
- Warabhorn Rodphon
- Program on Chemical Biology, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Sutida Linkhum
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Nguyen QA, Vu HP, McDonald JA, Nguyen LN, Leusch FDL, Neale PA, Khan SJ, Nghiem LD. Chiral Inversion of 2-Arylpropionic Acid Enantiomers under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8197-8208. [PMID: 35675163 DOI: 10.1021/acs.est.2c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| |
Collapse
|
4
|
Nguyen AQ, Nguyen LN, McDonald JA, Nghiem LD, Leusch FDL, Neale PA, Khan SJ. Chiral inversion of 2-arylpropionoic acid (2-APA) enantiomers during simulated biological wastewater treatment. WATER RESEARCH 2022; 209:117871. [PMID: 34872028 DOI: 10.1016/j.watres.2021.117871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the removal and enantio‑specific fate of a suite of eleven chiral 2-arylpropionic acids (2-APAs) during biological wastewater treatment simulated in a laboratory-scale membrane bioreactor (MBR). Using pure (R)- and (S)- enantiomers in the MBR influent, chiral inversion was determined through the increase in the concentration of the non-dominant enantiomer and changes in the enantiomeric fraction (EF) between the two enantiomers during the treatment process. Effective (>90%) and similar removal rates between (R)- and (S)- enantiomers were confirmed for eight 2-APAs. In this study, 2-APAs exhibited diverse and distinctive chiral inversion behaviours: two 2-APAs showed (R→S) unidirectional inversion, three 2-APAs showed (S→R) unidirectional inversion, and six 2-APAs showed bidirectional inversion. This is the first study to report chiral inversion behaviours of a comprehensive suite of 2-APAs with a variety of functional groups substituted onto the aryl ring. A decrease in effluent EF over time was observed for two 2-APAs. This study shows that chiral inversion of 2-APAs varies significantly from compound to compound, despite the high similarity in their chemical structures.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
5
|
Zhao Z, Wang C, Chen Q, Wang Y, Xiao R, Tan C, Liu G. Phase Separation‐Promoted Redox Deracemization of Secondary Alcohols over a Supported Dual Catalysts System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhitong Zhao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chengyi Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Yu Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Rui Xiao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chunxia Tan
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
6
|
HPLC separation of 2-aryloxycarboxylic acid enantiomers on chiral stationary phases. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Bertin S, Yates K, Petrie B. Enantiospecific behaviour of chiral drugs in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114364. [PMID: 32443211 DOI: 10.1016/j.envpol.2020.114364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The importance of stereochemistry on the behaviour and effects of chiral pharmaceutical and illicit drugs in amended agricultural soils has been over looked to date. Therefore, this study was aimed at investigating the enantiospecific behaviour of a chemically diverse range of chiral drugs including naproxen, ibuprofen, salbutamol, bisoprolol, metoprolol, propranolol, acebutolol, atenolol, chlorpheniramine, amphetamine, fluoxetine and citalopram in soil microcosms. Considerable changes of the enantiomeric composition of ibuprofen, naproxen, atenolol, acebutolol and amphetamine were observed within 56 d. This is significant as enantiomer enrichment can favour the pharmacologically active (e.g., S(-)-atenolol) or less/non-active forms of the drug (e.g., R(-)-amphetamine). Single enantiomer microcosms showed enantiospecific degradation was responsible for enantiomer enrichment of atenolol and amphetamine. However, naproxen and ibuprofen enantiomers were subject to chiral inversion whereby one enantiomer converts to its antipode. Interestingly, chiral inversion was bidirectional and this is the first time it is reported in soil. Therefore, introduction of the less active enantiomer to soil through irrigation with reclaimed wastewater or biosolids as fertiliser can result in the formation of its active enantiomer, or vice versa. This phenomenon needs considered in risk assessment frameworks to avoid underestimating the risk posed by chiral drugs in amended soils.
Collapse
Affiliation(s)
- Sophie Bertin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Bruce Petrie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
8
|
Ferreira IM, Fiamingo A, Campana-Filho SP, Porto ALM. Biotransformation of (E)-2-Methyl-3-Phenylacrylaldehyde Using Mycelia of Penicillium citrinum CBMAI 1186, Both Free and Immobilized on Chitosan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:348-356. [PMID: 32080775 DOI: 10.1007/s10126-020-09954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study applied the use of marine-derived fungus Penicillium citrinum CBMAI 1186 in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde 1. The fungus immobilized on chitosan, obtained by multistep ultrasound-assisted deacetylation process (Ch-USAD), produced the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 49%, 40% ee) isomer and (±)-2-methyl-3-phenylacrilic acid 4 (c = 35%); in contrast, immobilized mycelia on commercial chitosan (Ch-C) yielded the (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 (c = 48%, 10% ee) and (±)-2-methyl-3-phenylpropanal 1a (c = 41%). The reaction using free mycelia gave a 40% yield of (S)-(+)-2-methyl-3-phenylpropan-1-ol 3 with 10% ee. These results showed that the crystallinity form and molecular weight of chitosan (Ch-C or Ch-USAD) used to immobilized mycelia of P. citrinum CBMAI 1186 influenced in the biotransformation of (E)-2-methyl-3-phenylacrylaldehyde 1. Therefore, marine-derived fungus P. citrinum CBMAI 1186 immobilized on chitosan can be a potential alternative in the studies of hydrogenation of the α,β-unsaturated carbon-carbon (α,β-C=C) double bond. Marine-derived fungus Penicillium citrinum CBMAI 1186 immobilized on chitosan in the stereoselective reduction of the C=C double bond of the prochiral (E)-2-methyl-3-phenylacrylaldehyde.
Collapse
Affiliation(s)
- Irlon M Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas, Universidade Federal do Amapá, Rod. JK KM 02, Macapa, Amapá, 68902-280, Brazil.
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil.
| | - Anderson Fiamingo
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - Sergio P Campana-Filho
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400,, Sao Carlos, São Paulo, 13566-590, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina,, Sao Carlos, São Paulo, 13563-120, Brazil.
| |
Collapse
|
9
|
Liu B, Song R, Xu J, Majhi PK, Yang X, Yang S, Jin Z, Chi YR. Access to Optically Enriched α-Aryloxycarboxylic Esters via Carbene-Catalyzed Dynamic Kinetic Resolution and Transesterification. Org Lett 2020; 22:3335-3338. [PMID: 32290663 DOI: 10.1021/acs.orglett.0c00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optically active α-aryloxycarboxylic acids and their derivatives are important functional molecules. Disclosed here is a carbene-catalyzed dynamic kinetic resolution and transesterification reaction for access to this class of molecules with up to 99% yields and 99:1 er values. Addition of a chiral carbene catalyst to the ester substrate leads to two diastereomeric azolium ester intermediates that can quickly epimerize to each other and thus allows for effective dynamic kinetic resolution to be realized. The optically enriched ester products from our reaction can be quickly transformed to chiral herbicides and other bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
10
|
Vakarov SA, Chulakov EN, Sadretdinova LS, Kodess MI, Ezhikova MA, Pervova MG, Ganebnykh IN, Levit GL, Krasnov VP. Kinetic Resolution of Racemic 2‐Aryloxy Propionyl Chlorides Using Enantiopure (
S
)‐3,4‐Dihydro‐3‐methyl‐2
H
‐[1,4]benzoxazines. ChemistrySelect 2020. [DOI: 10.1002/slct.202000629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sergey A. Vakarov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Evgeny N. Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Liliya Sh. Sadretdinova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
- Institute of Chemical EngineeringUral Federal University 19 Mira St. Ekaterinburg 620002 Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Marina G. Pervova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Ilya N. Ganebnykh
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch) 22/20 S. Kovalevskoy/Akademicheskaya St. Ekaterinburg 620108 Russia
- Institute of Chemical EngineeringUral Federal University 19 Mira St. Ekaterinburg 620002 Russia
| |
Collapse
|
11
|
Xu Y, Jing X, Zhai W, Li X. The enantioselective enrichment, metabolism, and toxicity of fenoxaprop‐ethyl and its metabolites in zebrafish. Chirality 2020; 32:990-997. [DOI: 10.1002/chir.23222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yangguang Xu
- Department of Fire Control and CommandChina People's Police University Langfang China
| | - Xu Jing
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| | - Xuefeng Li
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| |
Collapse
|
12
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019; 58:8474-8478. [DOI: 10.1002/anie.201903165] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
13
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
14
|
Anteneh YS, Franco CMM. Whole Cell Actinobacteria as Biocatalysts. Front Microbiol 2019; 10:77. [PMID: 30833932 PMCID: PMC6387938 DOI: 10.3389/fmicb.2019.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable biological processes have received renewed attention due to increasing environmental concerns. Despite having high industrial output, most of the current chemical processes are associated with environmentally undesirable by-products which escalate the cost of downstream processing. Compared to chemical processes, whole cell biocatalysts offer several advantages including high selectivity, catalytic efficiency, milder operational conditions and low impact on the environment, making this approach the current choice for synthesis and manufacturing of different industrial products. In this review, we present the application of whole cell actinobacteria for the synthesis of biologically active compounds, biofuel production and conversion of harmful compounds to less toxic by-products. Actinobacteria alone are responsible for the production of nearly half of the documented biologically active metabolites and many enzymes; with the involvement of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces, Nocardia and Corynebacterium for the production of useful industrial commodities.
Collapse
Affiliation(s)
- Yitayal Shiferaw Anteneh
- College of Medicine and Public Health, Medical Biotechnology, Flinders University, Bedford Park, SA, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
15
|
Nam S, Ware DC, Brothers PJ. Campestarenes: new building blocks with 5-fold symmetry. Org Biomol Chem 2018; 16:6460-6469. [DOI: 10.1039/c8ob00957k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New campestarene derivatives bear functional groups designed to facilitate the formation of supramolecular assemblies of these 5-fold symmetric building blocks.
Collapse
Affiliation(s)
- Seong Nam
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - David C. Ware
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| |
Collapse
|
16
|
Jing X, Yao G, Liu D, Liu C, Wang F, Wang P, Zhou Z. Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. CHEMOSPHERE 2017; 186:832-838. [PMID: 28826131 DOI: 10.1016/j.chemosphere.2017.07.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Pesticides have long been considered to a risk factor of amphibian population declines. The bioaccumulation and elimination of fenoxaprop-ethyl (FE) in frogs and tadpoles were studied and the main metabolites fenoxaprop (FA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. The acute toxicity and genotoxicity of the enantiomers to tadpoles was also studied. After both oral administration and aqueous solution exposure, FE was not found in frogs, while FA was formed and accumulated in liver, kidney, brain, eggs, skin, thigh muscle and blood with preferential accumulation of R-FA. The presence of FA in frog eggs suggested maternal transfer in females and potential impacts to offsprings. The elimination of FA in frog tissues was also enantioselective with a preferential metabolism of R-FA (kidney) or S-FA (liver, eggs, skin, muscle and whole blood). FE and FA were hardly detectable in tadpoles after aqueous solution exposure, while CDHB was accumulated and eliminated as first-order kinetics with half-life of 37.1 h. Mortality of tadpoles and micronucleus rate in peripheral blood erythrocytes of tadpoles were used to evaluate the enantioselective acute toxicity and genotoxicity. Only CDHB induced significant acute toxicity to tadpole with 96-h LC50 value of 30.4 μg/mL, and rac-FA, S-FA and CDHB showed genotoxicity.
Collapse
Affiliation(s)
- Xu Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Guojun Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Fang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms. Sci Rep 2016; 6:26797. [PMID: 27225540 PMCID: PMC4880935 DOI: 10.1038/srep26797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
The environmental fate of the herbicide fenoxaprop-ethyl (FE) in water, sediment and water-sediment microcosm was studied and degradation products fenoxaprop (FA), ethyl-2-(4-hydroxyphenoxy)propanoate (EHPP), 2-(4-hydroxyphenoxy)propanoic acid (HPPA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. FE, FA, EHPP and HPPA were chiral and the environmental behavior was investigated on an enantiomeric level. In water, sediment and water-sediment microcosms, fenoxaprop-ethyl degraded very fast with half-lives less than 1 day and it was found the herbicidally inactive S-enantiomer degraded faster. Fenoxaprop was the main primary degradation product which was quickly formed and the further degradation was relatively slow with half-lives of 6.4–12.4 days, and the S-enantiomer degraded faster too. EHPP, HPPA and CDHB could be found and S-EHPP and S-HPPA were degraded preferentially. The effects of microorganism and water content were investigated and it was found that the enantioselectivity was attributed to microorganisms. In sediment, the main degradation pathway of fenoxaprop-ethyl was hydrolysis and the degradation rate of fenoxaprop-ethyl increased with water content. The degradation products and enantioselectivity should be considered for the impact of fenoxaprop-ethyl on the aquatic system.
Collapse
|
18
|
Cherian J, Nacro K, Poh ZY, Guo S, Jeyaraj DA, Wong YX, Ho M, Yang HY, Joy JK, Kwek ZP, Liu B, Wee JLK, Ong EHQ, Choong ML, Poulsen A, Lee MA, Pendharkar V, Ding LJ, Manoharan V, Chew YS, Sangthongpitag K, Lim S, Ong ST, Hill J, Keller TH. Structure–Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells. J Med Chem 2016; 59:3063-78. [DOI: 10.1021/acs.jmedchem.5b01712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Joseph Cherian
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Kassoum Nacro
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Zhi Ying Poh
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Samantha Guo
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | | | - Yun Xuan Wong
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Melvyn Ho
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Hai Yan Yang
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Joma Kanikadu Joy
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Zekui Perlyn Kwek
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Boping Liu
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | | | - Esther HQ Ong
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Meng Ling Choong
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Anders Poulsen
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - May Ann Lee
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Vishal Pendharkar
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Li Jun Ding
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Vithya Manoharan
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Yun Shan Chew
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | | | - Sharon Lim
- Duke-National University of Singapore (NUS) Graduate Medical School, 8 College Road, Singapore, Singapore 169857
| | - S. Tiong Ong
- Duke-National University of Singapore (NUS) Graduate Medical School, 8 College Road, Singapore, Singapore 169857
| | - Jeffrey Hill
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| | - Thomas H. Keller
- Experimental Therapeutics Centre, 13 Biopolis Way, Nanos, Singapore 138669
| |
Collapse
|
19
|
New mannose derivatives: The tetrazole analogue of mannose-6-phosphate as angiogenesis inhibitor. Bioorg Med Chem Lett 2016; 26:636-639. [DOI: 10.1016/j.bmcl.2015.11.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/21/2022]
|
20
|
Ji Y, Shi L, Chen MW, Feng GS, Zhou YG. Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process. J Am Chem Soc 2015; 137:10496-9. [PMID: 26274896 DOI: 10.1021/jacs.5b06659] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise deracemization of racemic secondary and tertiary amines with a tetrahydroisoquinoline core has been successfully realized by orchestrating a redox process consisted of N-bromosuccinimide oxidation and iridum-catalyzed asymmetric hydrogenation. This compatible redox combination enables one-pot, single-operation deracemization to generate chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines with up to 98% ee in 93% yield, offering a simple and scalable synthetic technique for chiral amines directly from racemic starting materials.
Collapse
Affiliation(s)
- Yue Ji
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Lei Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Guang-Shou Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| |
Collapse
|
21
|
Chen P, Yang W. Kinetic resolution of mandelate esters via stereoselective acylation catalyzed by lipase PS-30. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Khan SJ, Wang L, Hashim NH, Mcdonald JA. Distinct Enantiomeric Signals of Ibuprofen and Naproxen in Treated Wastewater and Sewer Overflow. Chirality 2013; 26:739-46. [DOI: 10.1002/chir.22258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart J. Khan
- UNSW Water Research Centre; School of Civil and Environmental Engineering; University of New South Wales, NSW; Australia
| | - Lili Wang
- UNSW Water Research Centre; School of Civil and Environmental Engineering; University of New South Wales, NSW; Australia
| | - Nor H. Hashim
- UNSW Water Research Centre; School of Civil and Environmental Engineering; University of New South Wales, NSW; Australia
- University of Tun Hussein Onn Malaysia; Johor Malaysia
| | - James A. Mcdonald
- UNSW Water Research Centre; School of Civil and Environmental Engineering; University of New South Wales, NSW; Australia
| |
Collapse
|
23
|
Wyss S, Werner IA, Schweizer WB, Ametamey SM, Milicevic Sephton S. Preparation and structural analysis of (±)-threo-ritalinic acid. Acta Crystallogr C 2013; 69:1225-8. [PMID: 24192163 DOI: 10.1107/s010827011302595x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
Hydrolysis of the methyl ester (±)-threo-methyl phenidate afforded the free acid in 40% yield, viz. (±)-threo-ritalinic acid, C13H17NO2. Hydrolysis and subsequent crystallization were accomplished at pH values between 5 and 7 to yield colourless prisms which were analysed by X-ray crystallography. Crystals of (±)-threo-ritalinic acid belong to the P21/n space group and form intermolecular hydrogen bonds. An antiperiplanar disposition of the H atoms of the (HOOC-)CH-CHpy group (py is pyridine) was found in both the solid (diffraction analysis) and solution state (NMR analysis). It was also determined that (±)-threo-ritalinic acid conforms to the minimization of negative gauche(+)-gauche(-) interactions.
Collapse
Affiliation(s)
- Sara Wyss
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Wolfgang-Pauli Strasse 10, Zurich 8093, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Ahmed M, Kelly T, Ghanem A. Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemisation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Lievano R, Pérez HI, Manjarrez N, Solís A, Solís-Oba M. Hydrolysis of ibuprofen nitrile and ibuprofen amide and deracemisation of ibuprofen using Nocardia corallina B-276. Molecules 2012; 17:3148-54. [PMID: 22410421 PMCID: PMC6268212 DOI: 10.3390/molecules17033148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022] Open
Abstract
A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0). These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R)-ibuprofen was isolated with > 99% ee by a deracemisation process catalysed by N. corallina B-276. This is the first report of this kind of catalysis with this microorganism.
Collapse
Affiliation(s)
- Ricardo Lievano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Col. Villa Quietud, Delegación Coyoacán, C.P. 04960 México, D.F., Mexico
| | - Herminia Inés Pérez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Col. Villa Quietud, Delegación Coyoacán, C.P. 04960 México, D.F., Mexico
| | - Norberto Manjarrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Col. Villa Quietud, Delegación Coyoacán, C.P. 04960 México, D.F., Mexico
| | - Aida Solís
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Col. Villa Quietud, Delegación Coyoacán, C.P. 04960 México, D.F., Mexico
| | - Myrna Solís-Oba
- Centro de Investigación en Biotecnología Ambiental, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km 1.5, C.P. 90700, Tlaxcala, Mexico
| |
Collapse
|
26
|
Shiina I, Tengeiji A, Nakata K, Ono K. A New Method for Production of Chiral 2-Aryloxypropanoic Acids Using Effective Kinetic Resolution of Racemic 2-Aryloxycarboxylic Acids. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Hashim NH, Nghiem LD, Stuetz RM, Khan SJ. Enantiospecific fate of ibuprofen, ketoprofen and naproxen in a laboratory-scale membrane bioreactor. WATER RESEARCH 2011; 45:6249-6258. [PMID: 21974875 DOI: 10.1016/j.watres.2011.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
The enantiospecific fate of three common pharmaceuticals was monitored in a laboratory-scale membrane bioreactor (MBR). The MBR was operated with a hydraulic retention time of 24 h and a mixed liquor suspended solids concentration of 8.6-10 g/L. Standard solutions of ibuprofen, ketoprofen and naproxen were dosed into the synthetic feed of the MBR. Influent and permeate samples were then collected for enantiospecific analysis. The individual (R)- and (S)-enantiomers of the three pharmaceuticals were derivatised using a chiral derivatizing agent to form pairs of diastereomers, which could then be separated and analysed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Accurate quantitation of individual enantiomers was undertaken by an isotope dilution process. By comparing the total concentration (as the sum of the two enantiomers) in the MBR influent and permeate, ibuprofen, ketoprofen and naproxen concentrations were observed to have been reduced as much as 99%, 43% and 68%, respectively. Furthermore, evidence of enantioselective biodegradation was observed for all three pharmaceuticals. (S)-Ibuprofen was shown to be preferentially degraded compared to (R)-ibuprofen with an average decrease in enantiomeric fraction (EF) from 0.52 to 0.39. In contrast, (R)-ketoprofen was preferentially degraded compared to (S)-ketoprofen with a relatively minor increase in EF from 0.52 to 0.63. The use of a relatively pure enantiomeric solution of (S)-naproxen resulted in a significant change in EF from 0.99 to 0.65. However, this experiment consistently revealed significantly increased concentrations of (R)-naproxen during MBR treatment. It is hypothesised that the source of this (R)-naproxen was the enantiomeric inversion of (S)-naproxen. Such enantiomeric inversion of chiral pharmaceuticals during wastewater treatment processes has not previously been reported.
Collapse
Affiliation(s)
- N H Hashim
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia.
| | | | | | | |
Collapse
|
28
|
Joyce LA, Maynor MS, Dragna JM, da Cruz GM, Lynch VM, Canary JW, Anslyn EV. A simple method for the determination of enantiomeric excess and identity of chiral carboxylic acids. J Am Chem Soc 2011; 133:13746-52. [PMID: 21780788 DOI: 10.1021/ja205775g] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The association between an achiral copper(II) host (1) and chiral carboxylate guests was studied using exciton-coupled circular dichroism (ECCD). Enantiomeric complexes were created upon binding of the enantiomers of the carboxylate guests to the host, and the sign of the resultant CD signal allowed for determination of the configuration of the studied guest. The difference in magnitudes and shapes of the CD signals, in conjunction with linear discriminant analysis (LDA), allowed for the identity of the guest to be determined successfully. A model was created for the host-guest complexes which successfully predicts the sign of the observed CD signal. Further, Taft parameters were used in the model, leading to rationalization of the observed magnitudes of the CD signals. Finally, the enantiomeric excess (ee) of unknown samples of three chiral carboxylic acid guests was determined with an average absolute error of ±3.0%.
Collapse
Affiliation(s)
- Leo A Joyce
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Quan ZJ, Ren RG, Da YX, Zhang Z, Wang XC. Alkylation of SH-heterocycles with diethyl phosphite using tetrachloroethylene as an efficient solvent. HETEROATOM CHEMISTRY 2011. [DOI: 10.1002/hc.20729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Yang X, Birman VB. Nonenzymatic Dynamic Kinetic Resolution of α-(Arylthio)- and α-(Alkylthio)alkanoic Acids. Angew Chem Int Ed Engl 2011; 50:5553-5. [DOI: 10.1002/anie.201007860] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/15/2010] [Indexed: 11/09/2022]
|
31
|
Yang X, Birman VB. Nonenzymatic Dynamic Kinetic Resolution of α-(Arylthio)- and α-(Alkylthio)alkanoic Acids. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007860] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Robertson F, Wu J. Convenient Synthesis of Allylic Thioethers from Phosphorothioate Esters and Alcohols. Org Lett 2010; 12:2668-71. [DOI: 10.1021/ol1009202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Forest Robertson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - Jimmy Wu
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
33
|
Hydrolytic resolution of (R,S)-3-hydroxy-3-phenylpropionates by esterase from Klebsiella oxytoca: Effects of leaving alcohol, covalent immobilization and aqueous pH. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Coulbeck E, Dingjan M, Eames J. Parallel kinetic resolution of D-labelled 2-aryl-propionic and butanoic acids using quasi-enantiomeric combinations of oxazolidin-2-ones. Chirality 2009; 22:193-205. [DOI: 10.1002/chir.20727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Camps P, Gómez T, Muñoz-Torrero D, Rull J, Sánchez L, Boschi F, Comes-Franchini M, Ricci A, Calvet T, Font-Bardia M, Clercq ED, Naesens L. Synthesis and Absolute Configuration of Novel N,O-Psiconucleosides Using (R)-N-Phenylpantolactam as a Resolution Agent. J Org Chem 2008; 73:6657-65. [DOI: 10.1021/jo800769m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pelayo Camps
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Tània Gómez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Jordi Rull
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Laura Sánchez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Francesca Boschi
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Mauro Comes-Franchini
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Alfredo Ricci
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Teresa Calvet
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Mercè Font-Bardia
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Erik De Clercq
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| | - Lieve Naesens
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain, Department of Organic Chemistry “A. Mangini”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy, Serveis Científico-Tècnics, Universitat de Barcelona, Av. Martí Franquès s/n, E-08028 Barcelona, Spain, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B
| |
Collapse
|
36
|
|
37
|
Preparation of enantiomerically pure (3E)-alkyl-4-(hetero-2-yl)-2-hydroxybut-3-enoates by Candida parapsilosis ATCC 7330 mediated deracemisation and determination of the absolute configuration of (3E)-ethyl-4-(thiophene-2-yl)-2-hydroxybut-3-enoate. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Conversion of α-methyltropate to optically active α-phenylpropionate by tropate-degrading Rhodococcus sp. KU1314. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2007.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Padhi SK, Titu D, Pandian NG, Chadha A. Deracemisation of β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330: substrate specificity and mechanistic investigation. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.03.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Coumbarides GS, Dingjan M, Eames J, Flinn A, Northen J. An efficient laboratory synthesis of α-deuteriated profens. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Deracemisation of aromatic β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330 and determination of absolute configuration by 1H NMR. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Abstract
Several novel bioprocesses that have little or no counterpart in traditional methodology have recently been reported. The stereoselective and enantioselective hydrolysis of sec-alkyl sulfate esters by alkyl sulfatases proceeds with inversion of configuration and furnishes a homochiral product mixture. Haloalcohol dehalogenases were shown to accept various non-natural nucleophiles, such as azide, cyanide and nitrite for the asymmetric opening of epoxides giving rise to the corresponding azido-, cyano-, and nitro-alcohols as non-natural products. Asymmetric carbon-carbon bond formation via the acyloin- and benzoin-reaction was successfully catalyzed in water by novel lyases, such as benzoylformate decarboxylase and benzaldehyde lyase. New methods for the production of chiral nonracemic alpha-L-amino acids and amines were recently reported. Enantioselective stereoinversion of racemic alpha-aryl- and alpha-aryloxycarboxylic acids via epimerase-catalyzed inversion led to a single stereoisomeric product from the racemate.
Collapse
Affiliation(s)
- Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
| | | |
Collapse
|
43
|
Abstract
New catalysts and reaction conditions have been developed for the dynamic kinetic resolution or deracemisation of racemic mixtures of chiral compounds. Specific functional groups that lend themselves particularly well to this approach include chiral secondary alcohols, alpha-amino acids, amines and carboxylic acids. A general theme of these processes is the combination of an enantioselective enzyme with a chemical reagent, the latter being used either to racemise the unreactive enantiomer or alternatively recycle an intermediate in the deracemisation process. In some examples of dynamic kinetic resolution, a second enzyme (racemase) is used to interconvert the enantiomers of the starting material.
Collapse
|
44
|
Kato DI, Miyamoto K, Ohta H. Microbial deracemization of α-substituted carboxylic acids: control of the reaction path. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Kato DI, Mitsuda S, Ohta H. Microbial Deracemization of α-Substituted Carboxylic Acids: Substrate Specificity and Mechanistic Investigation. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/chin.200407024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|