1
|
Casali E, Othman ST, Dezaye AA, Chiodi D, Porta A, Zanoni G. Highly Stereoselective Glycosylation Reactions of Furanoside Derivatives via Rhenium (V) Catalysis. J Org Chem 2021; 86:7672-7686. [PMID: 34033490 PMCID: PMC8279489 DOI: 10.1021/acs.joc.1c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach for the formation of anomeric carbon-functionalized furanoside systems was accomplished through the employment of an oxo-rhenium catalyst. The transformation boasts a broad range of nucleophiles including allylsilanes, enol ethers, and aromatics in addition to sulfur, nitrogen, and hydride donors, able to react with an oxocarbenium ion intermediate derived from furanosidic structures. The excellent stereoselectivities observed followed the Woerpel model, ultimately providing 1,3-cis-1,4-trans systems. In the case of electron-rich aromatic nucleophiles, an equilibration occurs at the anomeric center with the selective formation of 1,3-trans-1,4-cis systems. This anomalous result was rationalized through density functional theory calculations. Different oxocarbenium ions such as those derived from dihydroisobenzofuran, pyrrolidine, and oxazolidine heterocycles can also be used as a substrate for the oxo-Re-mediated allylation reaction.
Collapse
Affiliation(s)
- Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Sirwan T Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44002, Iraq
| | - Ahmed A Dezaye
- International University of Erbil, Newroz Street, Erbil-Kurdistan 44001, Iraq
| | - Debora Chiodi
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Alessio Porta
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, Pavia 27100, Italy
| |
Collapse
|
2
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
3
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Parameswarappa SG, Pereira CL, Seeberger PH. Synthesis of Streptococcus pneumoniae serotype 9V oligosaccharide antigens. Beilstein J Org Chem 2020; 16:1693-1699. [PMID: 32733612 PMCID: PMC7372248 DOI: 10.3762/bjoc.16.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Streptococcus pneumoniae (SP) bacteria cause serious invasive diseases. SP bacteria are covered by a capsular polysaccharide (CPS) that is a virulence factor and the basis for SP polysaccharide and glycoconjugate vaccines. The serotype 9V is part of the currently marketed conjugate vaccine and contains an acetate modification. To better understand the importance of glycan modifications in general and acetylation in particular, defined oligosaccharide antigens are needed for serological and immunological studies. Here, we demonstrate a convergent [2 + 3] synthetic strategy to prepare the pentasaccharide repeating unit of 9V with and without an acetate group at the C-6 position of mannosamine.
Collapse
Affiliation(s)
- Sharavathi G Parameswarappa
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany.,Vaxxilon Deutschland GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Claney L Pereira
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany.,Vaxxilon Deutschland GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Biomolecular Systems Department, Am Mühlenberg 1, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute for Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
5
|
Laverde D, Romero-Saavedra F, Argunov DA, Enotarpi J, Krylov VB, Kalfopoulou E, Martini C, Torelli R, van der Marel GA, Sanguinetti M, Codée JDC, Nifantiev NE, Huebner J. Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated Enterococcal Infections. ACS Infect Dis 2020; 6:1816-1826. [PMID: 32364376 DOI: 10.1021/acsinfecdis.0c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by Enterococcus spp. are a major concern in the clinical setting. In Enterococcus faecalis, the capsular polysaccharide diheteroglycan (DHG), composed of ß-d-galactofuranose-(1 → 3)-ß-d-glucopyranose repeats, has been described as an important virulence factor and as a potential vaccine candidate against encapsulated strains. Synthetic structures emulating immunogenic polysaccharides present many advantages over native polysaccharides for vaccine development. In this work, we described the synthesis of a library of DHG oligomers, differing in length and order of the monosaccharide constituents. Using suitably protected thioglycoside building blocks, oligosaccharides up to 8-mer in length built up from either Galf-Glcp or Glcp-Galf dimers were generated, and we evaluated their immunoreactivity with antibodies raised against DHG. After the screening, we selected two octasaccharides, having either a galactofuranose or glucopyranose terminus, which were conjugated to a carrier protein for the production of polyclonal antibodies. The resulting antibodies were specific toward the synthetic structures and mediated in vitro opsonophagocytic killing of different encapsulated E. feacalis strains. The evaluated oligosaccharides are the first synthetic structures described to elicit antibodies that target encapsulated E. faecalis strains and are, therefore, promising candidates for the development of a well-defined enterococcal glycoconjugate vaccine.
Collapse
Affiliation(s)
- D. Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - F. Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - D. A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Enotarpi
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - V. B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - E. Kalfopoulou
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - C. Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - G. A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - M. Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - J. D. C. Codée
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - N. E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| |
Collapse
|
6
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
7
|
Boutet J, Blasco P, Guerreiro C, Thouron F, Dartevelle S, Nato F, Cañada FJ, Ardá A, Phalipon A, Jiménez-Barbero J, Mulard LA. Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a. Chemistry 2016; 22:10892-911. [PMID: 27376496 DOI: 10.1002/chem.201600567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 02/02/2023]
Abstract
Shigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[α-d-Glcp-(1→3)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-[Ac→2]-α-l-Rhap-(1→3)-[Ac→6]≈40 % -β-d-GlcpNAc-(1→} ([(E)ABAc CAc D]) repeating unit, and the non-O-acetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E')A'BAc CD(E)A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAc CD(E)A allyl glycoside. The stepwise introduction of orthogonally protected mono- and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di- to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2C -acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAc CD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding.
Collapse
Affiliation(s)
- Julien Boutet
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France.,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France.,Université Paris Descartes, Institut Pasteur, 75015, Paris, France.,Present address for J.B.: Adisseo (France), Present address for P.B., Dept. of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Pilar Blasco
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Present address for J.B.: Adisseo (France), Present address for P.B., Dept. of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Catherine Guerreiro
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France.,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France
| | - Françoise Thouron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr. Roux, 75015, Paris, France.,INSERM U1202, Institut Pasteur, 75015, Paris, France
| | - Sylvie Dartevelle
- Institut Pasteur, PF5, 28 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3528, Institut Pasteur, 75015, Paris, France
| | - Farida Nato
- Institut Pasteur, PF5, 28 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3528, Institut Pasteur, 75015, Paris, France
| | - F Javier Cañada
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Ardá
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Molecular Recognition & Host-Pathogen Interactions Program, CIC bioGUNE, Bizkaia Technological Park, Building 801A, 48160, Derio, Spain
| | - Armelle Phalipon
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr. Roux, 75015, Paris, France.,INSERM U1202, Institut Pasteur, 75015, Paris, France
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Molecular Recognition & Host-Pathogen Interactions Program, CIC bioGUNE, Bizkaia Technological Park, Building 801A, 48160, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013, Bilbao, Spain.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France. .,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
8
|
Gauthier C, Chassagne P, Theillet FX, Guerreiro C, Thouron F, Nato F, Delepierre M, Sansonetti PJ, Phalipon A, Mulard LA. Non-stoichiometric O-acetylation of Shigella flexneri 2a O-specific polysaccharide: synthesis and antigenicity. Org Biomol Chem 2016; 12:4218-32. [PMID: 24836582 DOI: 10.1039/c3ob42586j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic functional mimics of the O-antigen from Shigella flexneri 2a are seen as promising vaccine components against endemic shigellosis. Herein, the influence of the polysaccharide non-stoichiometric di-O-acetylation on antigenicity is addressed for the first time. Three decasaccharides, representing relevant internal mono- and di-O-acetylation profiles of the O-antigen, were synthesized from a pivotal protected decasaccharide designed to tailor late stage site-selective O-acetylation. The latter was obtained via a convergent route involving the imidate glycosylation chemistry. Binding studies to five protective mIgGs showed that none of the acetates adds significantly to broad antibody recognition. Yet, one of the five antibodies had a unique pattern of binding. With IC50 in the micromolar to submicromolar range mIgG F22-4 exemplifies a remarkable tight binding antibody against diversely O-acetylated and non-O-acetylated fragments of a neutral polysaccharide of medical importance.
Collapse
Affiliation(s)
- Charles Gauthier
- Institut Pasteur, Chimie des Biomolécules, Dépt de Biologie Structurale et Chimie, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van der Put RMF, Kim TH, Guerreiro C, Thouron F, Hoogerhout P, Sansonetti PJ, Westdijk J, Stork M, Phalipon A, Mulard LA. A Synthetic Carbohydrate Conjugate Vaccine Candidate against Shigellosis: Improved Bioconjugation and Impact of Alum on Immunogenicity. Bioconjug Chem 2016; 27:883-92. [DOI: 10.1021/acs.bioconjchem.5b00617] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert M. F. van der Put
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Tae Hee Kim
- Unité de Chimie des Biomolécules, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- CNRS UMR 3523, Institut Pasteur, F-75015 Paris, France
| | - Catherine Guerreiro
- Unité de Chimie des Biomolécules, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- CNRS UMR 3523, Institut Pasteur, F-75015 Paris, France
| | - Françoise Thouron
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- INSERM U1202, Institut Pasteur, F75015 Paris, France
| | - Peter Hoogerhout
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- INSERM U1202, Institut Pasteur, F75015 Paris, France
| | - Janny Westdijk
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- INSERM U1202, Institut Pasteur, F75015 Paris, France
| | - Laurence A. Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
- CNRS UMR 3523, Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
10
|
Salamone S, Guerreiro C, Cambon E, Hargreaves JM, Tarrat N, Remaud-Siméon M, André I, Mulard LA. Investigation on the Synthesis of Shigella flexneri Specific Oligosaccharides Using Disaccharides as Potential Transglucosylase Acceptor Substrates. J Org Chem 2015; 80:11237-57. [PMID: 26340432 DOI: 10.1021/acs.joc.5b01407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemo-enzymatic strategies hold great potential for the development of stereo- and regioselective syntheses of structurally defined bioactive oligosaccharides. Herein, we illustrate the potential of the appropriate combination of a planned chemo-enzymatic pathway and an engineered biocatalyst for the multistep synthesis of an important decasaccharide for vaccine development. We report the stepwise investigation, which led to an efficient chemical conversion of allyl α-d-glucopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3)-2-deoxy-2-trichloroacetamido-β-d-glucopyranoside, the product of site-specific enzymatic α-d-glucosylation of a lightly protected non-natural disaccharide acceptor, into a pentasaccharide building block suitable for chain elongation at both ends. Successful differentiation between hydroxyl groups features the selective acylation of primary alcohols and acetalation of a cis-vicinal diol, followed by a controlled per-O-benzylation step. Moreover, we describe the successful use of the pentasaccharide intermediate in the [5 + 5] synthesis of an aminoethyl aglycon-equipped decasaccharide, corresponding to a dimer of the basic repeating unit from the O-specific polysaccharide of Shigella flexneri 2a, a major cause of bacillary dysentery. Four analogues of the disaccharide acceptor were synthesized and evaluated to reach a larger repertoire of O-glucosylation patterns encountered among S. flexneri type-specific polysaccharides. New insights on the potential and limitations of planned chemo-enzymatic pathways in oligosaccharide synthesis are provided.
Collapse
Affiliation(s)
- Stéphane Salamone
- Institut Pasteur , Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724, Paris Cedex 15 France.,CNRS UMR 3523, Institut Pasteur , 75015 Paris, France
| | - Catherine Guerreiro
- Institut Pasteur , Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724, Paris Cedex 15 France.,CNRS UMR 3523, Institut Pasteur , 75015 Paris, France
| | - Emmanuelle Cambon
- Université de Toulouse , INSA,UPS,INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France.,CNRS, UMR5504 , F-31400 Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , F-31400 Toulouse, France
| | - Jason M Hargreaves
- Institut Pasteur , Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724, Paris Cedex 15 France.,CNRS UMR 3523, Institut Pasteur , 75015 Paris, France
| | - Nathalie Tarrat
- Université de Toulouse , INSA,UPS,INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France.,CNRS, UMR5504 , F-31400 Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , F-31400 Toulouse, France
| | - Magali Remaud-Siméon
- Université de Toulouse , INSA,UPS,INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France.,CNRS, UMR5504 , F-31400 Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , F-31400 Toulouse, France
| | - Isabelle André
- Université de Toulouse , INSA,UPS,INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France.,CNRS, UMR5504 , F-31400 Toulouse, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , F-31400 Toulouse, France
| | - Laurence A Mulard
- Institut Pasteur , Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724, Paris Cedex 15 France.,CNRS UMR 3523, Institut Pasteur , 75015 Paris, France
| |
Collapse
|
11
|
Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Antibody recognition of carbohydrate epitopes†. Glycobiology 2015; 25:920-52. [PMID: 26033938 DOI: 10.1093/glycob/cwv037] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| |
Collapse
|
12
|
|
13
|
Urbach C, Halila S, Guerreiro C, Driguez H, Mulard LA, Armand S. CGTase-catalysed cis-glucosylation of L-rhamnosides for the preparation of Shigella flexneri 2a and 3a haptens. Chembiochem 2014; 15:293-300. [PMID: 24376024 DOI: 10.1002/cbic.201300597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 11/07/2022]
Abstract
We report the enzymatic synthesis of α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside and α-D-glucopyranosyl-(1→3)-α-L-rhamnopyranoside by using a wild-type transglucosidase in combination with glucoamylase and glucose oxidase. It was shown that Bacillus circulans 251 cyclodextrin glucanotransferase (CGTase, EC 2.1.4.19) can efficiently couple an α-L-rhamnosyl acceptor to a maltodextrin molecule with an α-(1→4) linkage, albeit in mixture with the α-(1→3) regioisomer, thus giving two glucosylated acceptors in a single reaction. Optimisation of the CGTase coupling reaction with β-cyclodextrin as the donor substrate and methyl or allyl α-L-rhamnopyranoside as acceptors resulted in good conversion yields (42-70%) with adjustable glycosylation regioselectivity. Moreover, the efficient chemical conversion of the products of CGTase-mediated cis-glucosylation into protected building blocks (previously used in the synthesis of O-antigen fragments of several Shigella flexneri serotypes) was substantiated. These novel chemoenzymatic strategies towards useful, convenient intermediates in the synthesis of S. flexneri serotypes 2a and 3a oligosaccharides might find applications in developments towards synthetic carbohydrate-based vaccine candidates against bacillary dysentery.
Collapse
Affiliation(s)
- Carole Urbach
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), Affiliated with Grenoble University and the Institut de Chimie Moléculaire de Grenoble, Domaine Universitaire de Grenoble, 601 rue de la Chimie, B. P. 53, 38041 Grenoble cedex 9 (France)
| | | | | | | | | | | |
Collapse
|
14
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
Hargreaves JM, Le Guen Y, Guerreiro C, Descroix K, Mulard LA. Linear synthesis of the branched pentasaccharide repeats of O-antigens from Shigella flexneri 1a and 1b demonstrating the major steric hindrance associated with type-specific glucosylation. Org Biomol Chem 2014; 12:7728-49. [DOI: 10.1039/c4ob01200c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Shigella flexneri serotypes 1b and 1a are Gram-negative enteroinvasive bacteria causing shigellosis in humans.
Collapse
Affiliation(s)
- Jason M. Hargreaves
- Institut Pasteur
- Unité de Chimie des Biomolécules
- 75724 Paris Cedex 15, France
- CNRS UMR3523
- Institut Pasteur
| | - Yann Le Guen
- Institut Pasteur
- Unité de Chimie des Biomolécules
- 75724 Paris Cedex 15, France
- CNRS UMR3523
- Institut Pasteur
| | - Catherine Guerreiro
- Institut Pasteur
- Unité de Chimie des Biomolécules
- 75724 Paris Cedex 15, France
- CNRS UMR3523
- Institut Pasteur
| | - Karine Descroix
- Institut Pasteur
- Unité de Chimie des Biomolécules
- 75724 Paris Cedex 15, France
- CNRS UMR3523
- Institut Pasteur
| | - Laurence A. Mulard
- Institut Pasteur
- Unité de Chimie des Biomolécules
- 75724 Paris Cedex 15, France
- CNRS UMR3523
- Institut Pasteur
| |
Collapse
|
16
|
Enugala R, Carvalho LCR, Dias Pires MJ, Marques MMB. Stereoselective Glycosylation of Glucosamine: The Role of the
N
‐Protecting Group. Chem Asian J 2012; 7:2482-501. [DOI: 10.1002/asia.201200338] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ramu Enugala
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Luísa C. R. Carvalho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Marina J. Dias Pires
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - M. Manuel B. Marques
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| |
Collapse
|
17
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
18
|
Theillet FX, Frank M, Vulliez-Le Normand B, Simenel C, Hoos S, Chaffotte A, Bélot F, Guerreiro C, Nato F, Phalipon A, Mulard LA, Delepierre M. Dynamic aspects of antibody:oligosaccharide complexes characterized by molecular dynamics simulations and saturation transfer difference nuclear magnetic resonance. Glycobiology 2011; 21:1570-9. [PMID: 21610193 DOI: 10.1093/glycob/cwr059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties.
Collapse
|
19
|
Affiliation(s)
- Feng Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
20
|
Boutet J, Guerreiro C, Mulard LA. Efficient Synthesis of Six Tri- to Hexasaccharide Fragments of Shigella flexneri Serotypes 3a and/or X O-Antigen, Including a Study on Acceptors Containing N-Trichloroacetylglucosamine versus N-Acetylglucosamine. J Org Chem 2009; 74:2651-70. [DOI: 10.1021/jo802127z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Boutet
- Institut Pasteur, Unité de Chimie des Biomolécules (URA CNRS 2128), 28 rue du Dr Roux, F-75015 Paris, France
| | - Catherine Guerreiro
- Institut Pasteur, Unité de Chimie des Biomolécules (URA CNRS 2128), 28 rue du Dr Roux, F-75015 Paris, France
| | - Laurence A. Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules (URA CNRS 2128), 28 rue du Dr Roux, F-75015 Paris, France
| |
Collapse
|
21
|
Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Bélot F, Cohen D, Sansonetti PJ, Mulard LA. A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate againstShigella flexneri2a Infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:2241-7. [DOI: 10.4049/jimmunol.0803141] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Boutet J, Mulard LA. Synthesis of Two Tetra- and Four Pentasaccharide Fragments ofShigella flexneriSerotypes 3a and X O-Antigens from a Common Tetrasaccharide Intermediate. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Boutet J, Guerreiro C, Mulard LA. Synthesis of branched tri- to pentasaccharides representative of fragments of Shigella flexneri serotypes 3a and/or X O-antigens. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.08.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Efficient route to orthogonally protected precursors of 2-acylamino-2-deoxy-3-O-substituted-β-d-glucopyranose derivatives and use thereof. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Phalipon A, Mulard LA, Sansonetti PJ. Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect 2008; 10:1057-62. [PMID: 18672087 DOI: 10.1016/j.micinf.2008.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Following several decades of research, there is not yet a convincing vaccine against shigellosis. It is still difficult, in spite of the breadth of strategies (i.e. live attenuated oral, killed oral, subunit parenteral) to select an optimal option. Two approaches are clearly emerging: (i) live attenuated deletion mutants based on rational selection of genes that are key in the pathogenic process, and (ii) conjugated detoxified polysaccharide parenteral vaccines, or more recently conjugated synthetic carbohydrates. Some of these approaches have already undergone phase I and II clinical trials with promising results, but important issues have also emerged, particularly the discrepancy between colonization and immunogenic potential of live attenuated vaccine candidates depending upon the population concerned (i.e. non endemic vs. endemic areas). Efforts are needed to definitely establish the proof of concept of these approaches, and thus the need for clinical trials which should also soon explore the possibility to associate different serotypes, in response to serotype specific protection against shigellosis. More basic research is also required to improve what we can still consider as first-generation vaccines, and to explore possible new paradigms including the search for cross-protective antigens.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
26
|
Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci U S A 2008; 105:9976-81. [PMID: 18621718 DOI: 10.1073/pnas.0801711105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anti-LPS IgG mAb F22-4, raised against Shigella flexneri serotype 2a bacteria, protects against homologous, but not heterologous, challenge in an experimental animal model. We report the crystal structures of complexes formed between Fab F22-4 and two synthetic oligosaccharides, a decasaccharide and a pentadecasaccharide that were previously shown to be both immunogenic and antigenic mimics of the S. flexneri serotype 2a O-antigen. F22-4 binds to an epitope contained within two consecutive 2a serotype pentasaccharide repeat units (RU). Six sugar residues from a contiguous nine-residue segment make direct contacts with the antibody, including the nonreducing rhamnose and both branching glucosyl residues from the two RUs. The glucosyl residue, whose position of attachment to the tetrasaccharide backbone of the RU defines the serotype 2a O-antigen, is critical for recognition by F22-4. Although the complete decasaccharide is visible in the electron density maps, the last four pentadecasaccharide residues from the reducing end, which do not contact the antibody, could not be traced. Although considerable mobility in the free oligosaccharides can thus be expected, the conformational similarity between the individual RUs, both within and between the two complexes, suggests that short-range transient ordering to a helical conformation might occur in solution. Although the observed epitope includes the terminal nonreducing residue, binding to internal epitopes within the polysaccharide chain is not precluded. Our results have implications for vaccine development because they suggest that a minimum of two RUs of synthetic serotype 2a oligosaccharide is required for optimal mimicry of O-Ag epitopes.
Collapse
|
27
|
Lemanski G, Ziegler T. Synthesis of Pentasaccharide Fragments Related to theO-Specific Polysaccharide ofShigella flexneri Serotype 1a. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Phalipon A, Costachel C, Grandjean C, Thuizat A, Guerreiro C, Tanguy M, Nato F, Vulliez-Le Normand B, Bélot F, Wright K, Marcel-Peyre V, Sansonetti PJ, Mulard LA. Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: implications for the development of a chemically defined glycoconjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2006; 176:1686-94. [PMID: 16424198 DOI: 10.4049/jimmunol.176.3.1686] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protection against reinfection with noncapsulated Gram-negative bacteria, such as Shigella, an enteroinvasive bacterium responsible for bacillary dysentery, is mainly achieved by Abs specific for the O-Ag, the polysaccharide part of the LPS, the major bacterial surface Ag. The use of chemically defined glycoconjugates encompassing oligosaccharides mimicking the protective determinants carried by the O-Ag, thus expected to induce an efficient anti-LPS Ab response, has been considered an alternative to detoxified LPS-protein conjugate vaccines. The aim of this study was to identify such functional oligosaccharide mimics of the S. flexneri serotype 2a O-Ag. Using protective murine mAbs specific for S. flexneri serotype 2a and synthetic oligosaccharides designed to analyze the contribution of each sugar residue of the branched pentasaccharide repeating unit of the O-Ag, we demonstrated that the O-Ag exhibited an immunodominant serotype-specific determinant. We also showed that elongating the oligosaccharide sequence improved Ab recognition. From these antigenicity data, selected synthetic oligosaccharides were assessed for their potential to mimic the O-Ag by analyzing their immunogenicity in mice when coupled to tetanus toxoid via single point attachment. Our results demonstrated that induction of an efficient serotype 2a-specific anti-O-Ag Ab response was dependent on the length of the oligosaccharide sequence. A pentadecasaccharide representing three biological repeating units was identified as a potential candidate for further development of a chemically defined glycoconjugate vaccine against S. flexneri 2a infection.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale Unité 389.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bélot F, Guerreiro C, Baleux F, Mulard LA. Synthesis of Two Linear PADRE Conjugates Bearing a Deca- or Pentadecasaccharide B Epitope as Potential Synthetic Vaccines againstShigella flexneriSerotype 2a Infection. Chemistry 2005; 11:1625-35. [PMID: 15669066 DOI: 10.1002/chem.200400903] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The blockwise synthesis of the 2-aminoethyl glycosides of a deca- and a pentadecasaccharide made of two and three repeating units, respectively, of the Shigella flexneri serotype 2a specific polysaccharide is reported. The strategy relies on trifluoromethanesulfonic acid mediated glycosylation of a pentasaccharide building block acting as a glycosyl donor and a potential glycoside acceptor. Both targets were made available in amounts large enough for their subsequent conversion into glycoconjugates. Indeed, efficient elongation of the spacer through an acetylthioacetyl moiety and subsequent conjugation onto a Pan HLA DR-binding epitope (PADRE) T-cell-universal peptide resulted in two fully synthetic neoglycopeptides, which will be evaluated as potential vaccines against S. flexneri serotype 2a infections.
Collapse
Affiliation(s)
- Frédéric Bélot
- Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
30
|
Wright K, Guerreiro C, Laurent I, Baleux F, Mulard LA. Preparation of synthetic glycoconjugates as potential vaccines against Shigella flexneri serotype 2a disease. Org Biomol Chem 2004; 2:1518-27. [PMID: 15136809 DOI: 10.1039/b400986j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of three neoglycopeptides incorporating carbohydrate haptens, differing in length, covalently linked to a non natural universal T helper peptide is disclosed. They were synthesized according to a blockwise strategy based on the condensation of appropriate di-, tri-, and tetrasaccharide trichloroacetimidate donors onto an azidoethyl 2-acetamido-2-deoxybeta-D-glucopyranoside acceptor. Use of thiol-maleimide coupling chemistry allowed site-selective efficient conjugation.
Collapse
Affiliation(s)
- Karen Wright
- Unité de Chimie Organique, URA CNRS 2128, Institut Pasteur, 28 rue du Dr Roux, 75 724, Paris15, France
| | | | | | | | | |
Collapse
|