1
|
Liu H, Laporte AG, Gónzalez Pinardo D, Fernández I, Hazelard D, Compain P. An Unexpected Lewis Acid-Catalyzed Cascade during the Synthesis of the DEF-Benzoxocin Ring System of Nogalamycin and Menogaril: Mechanistic Elucidation by Intermediate Trapping Experiments and Density Functional Theory Studies. J Org Chem 2024; 89:5634-5649. [PMID: 38554093 DOI: 10.1021/acs.joc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Daniel Gónzalez Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
2
|
Borbás A, Herczeg M, Demeter F, Bényei A. Synthesis of the Three Most Expensive l-Hexose Thioglycosides from d-Glucose. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe biologically important l-hexoses, which are less widespread than d-hexoses, cannot be obtained from natural sources or can only be extracted very costly. Due to the complexity of their synthesis, their commercially available derivatives (which are sold mostly in free form) are also very expensive, which is further exacerbated by the current rapid rise in prices. In the present work, starting from the cheapest d-hexose, d-glucose, using inexpensive and readily available chemicals, a reaction pathway was developed in which the three most expensive l-hexoses (l-idose, l-altrose, and l-talose) were successfully prepared in orthogonally protected thioglycoside form, ready for glycosylation. The l-ido and l-talo derivatives were synthesized by C-5 epimerization of the corresponding 5,6-unsaturated thioglycosides. From the l-ido derivatives, the orthogonally protected thioglycosides of l-altrose were then prepared by C-4 epimerization. Different approaches to the preparation of the key intermediates, 5,6-unsaturated thioglycoside derivatives, were systematically investigated in the presence of various protecting groups (ether and ester) and using commercially available reagents.
Collapse
Affiliation(s)
- Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Attila Bényei
- Laboratory for X-ray Diffraction, Department of Physical Chemistry, University of Debrecen
| |
Collapse
|
3
|
Demeter F, Bereczki I, Borbás A, Herczeg M. Synthesis of Four Orthogonally Protected Rare l-Hexose Thioglycosides from d-Mannose by C-5 and C-4 Epimerization. Molecules 2022; 27:3422. [PMID: 35684360 PMCID: PMC9182441 DOI: 10.3390/molecules27113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/30/2023] Open
Abstract
l-Hexoses are important components of biologically relevant compounds and precursors of some therapeuticals. However, they typically cannot be obtained from natural sources and due to the complexity of their synthesis, their commercially available derivatives are also very expensive. Starting from one of the cheapest d-hexoses, d-mannose, using inexpensive and readily available chemicals, we developed a reaction pathway to obtain two orthogonally protected l-hexose thioglycoside derivatives, l-gulose and l-galactose, through the corresponding 5,6-unsaturated thioglycosides by C-5 epimerization. From these derivatives, the orthogonally protected thioglycosides of further two l-hexoses (l-allose and l-glucose) were synthesized by C-4 epimerization. The preparation of the key intermediates, the 5,6-unsaturated derivatives, was systematically studied using various protecting groups. By the method developed, we are able to produce highly functionalized l-gulose derivatives in 9 steps (total yields: 21-23%) and l-galactose derivatives in 12 steps (total yields: 6-8%) starting from d-mannose.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Buntasana S, Seankongsuk P, Vilaivan T, Padungros P. Household Ozone Disinfector as An Alternative Ozone Generator for Ozonolysis of Alkenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Pattarakiat Seankongsuk
- Organic Synthesis Research Unit Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR Department of Chemistry Faculty of Science Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
5
|
Ratthachag T, Buntasana S, Vilaivan T, Padungros P. Surfactant-mediated thioglycosylation of 1-hydroxy sugars in water. Org Biomol Chem 2021; 19:822-836. [PMID: 33403378 DOI: 10.1039/d0ob02246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioglycosides are an important class of sugars, since they can be used as non-ionic biosurfactants, biomimetic glycosides, and building blocks for carbohydrate synthesis. Previously, Brønsted- or Lewis-acid-catalyzed dehydrative glycosylations between a 1-hydroxy sugar and a thiol have been reported to yield open-chain dithioacetal sugars as the major products instead of the desired thioglycosides. These dithioacetal sugars are by-products derived from the endocyclic bond cleavage of the thioglycosides. Herein, we report dehydrative glycosylation in water mediated by a Brønsted acid-surfactant combined catalyst (BASC). Glycosylations between 1-hydroxy furanosyl/pyranosyl sugars and primary, secondary, and tertiary aliphatic/aromatic thiols in the presence of dodecyl benzenesulfonic acid (DBSA) provided the thioglycoside products in moderate to good yields. Microwave irradiation led to improvements in the yields and a shortening of the reaction time. Remarkably, open-chain dithioacetal sugars were not detected in the DBSA-mediated glycosylations in water. This method is a simple, convenient, and rapid approach to produce a library of thioglycosides without the requirement of anhydrous conditions. Moreover, this work also provides an excellent example of complementary reactivity profiles of glycosylation in organic solvents and water.
Collapse
Affiliation(s)
- Trichada Ratthachag
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Abstract
D- and most L-enantiomers of carbohydrates and carbohydrate-containing compounds occur naturally in plants and other organisms. These enantiomers play many important roles in plants including building up biomass, defense against pathogens, herbivory, abiotic stress, and plant nutrition. Carbohydrate enantiomers are also precursors of many plant compounds that significantly contribute to plant aroma. Microorganisms, insects, and other animals utilize both types of carbohydrate enantiomers, but their biomass and excrements are dominated by D-enantiomers. The aim of this work was to review the current knowledge about carbohydrate enantiomers in ecosystems with respect to both their metabolism in plants and occurrence in soils, and to identify critical knowledge gaps and directions for future research. Knowledge about the significance of D- versus L-enantiomers of carbohydrates in soils is rare. Determining the mechanism of genetic regulation of D- and L-carbohydrate metabolism in plants with respect to pathogen and pest control and ecosystem interactions represent the knowledge gaps and a direction for future research.
Collapse
|
7
|
Zhou X, Ding H, Chen P, Liu L, Sun Q, Wang X, Wang P, Lv Z, Li M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew Chem Int Ed Engl 2020; 59:4138-4144. [PMID: 31850616 DOI: 10.1002/anie.201914557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/22/2022]
Abstract
A mild and convenient method for the synthesis of reverse glycosyl fluorides (RGFs) has been developed that is based on the silver-promoted radical dehydroxymethylative fluorination of carbohydrates. A salient feature of the reaction is that furanoid and pyranoid carbohydrates furnish structurally diverse RGFs bearing a wide variety of functional groups in good to excellent yields. Intramolecular hydrogen atom transfer experiments revealed that the reaction involves an underexploited radical fluorination that proceeds via β-fragmentation of sugar-derived primary alkoxyl radicals. Structurally divergent RGFs were obtained by catalytic C-F bond activation, and our method thus offers a concise and efficient strategy for the synthesis of reverse glycosides by late-stage diversification of RGFs. The potential of this method is showcased by the preparation and diversification of sotagliflozin, leading to the discovery of a promising SGLT2 inhibitor candidate.
Collapse
Affiliation(s)
- Xin Zhou
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Han Ding
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Pengwei Chen
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Li Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Qikai Sun
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Xianyang Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Peng Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Ming Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
8
|
Zhou X, Ding H, Chen P, Liu L, Sun Q, Wang X, Wang P, Lv Z, Li M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Zhou
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Han Ding
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Pengwei Chen
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences Haikou 571101 P. R. China
| | - Li Liu
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Qikai Sun
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Xianyang Wang
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Peng Wang
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| | - Ming Li
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
9
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
10
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018; 57:12880-12885. [PMID: 30067300 DOI: 10.1002/anie.201807546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
11
|
Kaszás T, Tóth M, Kun S, Somsák L. Coupling of anhydro-aldose tosylhydrazones with hydroxy compounds and carboxylic acids: a new route for the synthesis of C-β-d-glycopyranosylmethyl ethers and esters. RSC Adv 2017. [DOI: 10.1039/c6ra27282g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
12
|
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
13
|
Frihed TG, Pedersen CM, Bols M. Synthesis of All EightL-Glycopyranosyl Donors Using CH Activation. Angew Chem Int Ed Engl 2014; 53:13889-93. [DOI: 10.1002/anie.201408209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/31/2022]
|
14
|
Frihed TG, Pedersen CM, Bols M. Synthesis of All EightL-Glycopyranosyl Donors Using CH Activation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Padungros P, Fan RH, Casselman MD, Cheng G, Khatri HR, Wei A. Synthesis and reactivity of 4'-deoxypentenosyl disaccharides. J Org Chem 2014; 79:4878-91. [PMID: 24797640 PMCID: PMC4059249 DOI: 10.1021/jo500449h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 11/29/2022]
Abstract
4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4'-deoxypentenosyl (4'-DP) disaccharides, and we investigate their post-glycosylational C5' additions using the DMDO oxidation/ring-opening sequence. The α-linked 4'-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf2O activation, whereas β-linked 4'-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4'-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4'-DP unit is established at a post-glycosylative stage.
Collapse
Affiliation(s)
| | | | - Matthew D. Casselman
- Department of Chemistry, Purdue
University, 560 Oval
Drive, West Lafayette, Indiana 47907-2084, United States
| | - Gang Cheng
- Department of Chemistry, Purdue
University, 560 Oval
Drive, West Lafayette, Indiana 47907-2084, United States
| | - Hari R. Khatri
- Department of Chemistry, Purdue
University, 560 Oval
Drive, West Lafayette, Indiana 47907-2084, United States
| | - Alexander Wei
- Department of Chemistry, Purdue
University, 560 Oval
Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
16
|
Herczeg M, Mező E, Lázár L, Fekete A, Kövér KE, Antus S, Borbás A. Novel syntheses of Idraparinux, the anticoagulant pentasaccharide with indirect selective factor Xa inhibitory activity. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.02.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zulueta MML, Zhong YQ, Hung SC. Synthesis of l-hexoses and their related biomolecules. Chem Commun (Camb) 2013; 49:3275-87. [DOI: 10.1039/c3cc37733d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
|
19
|
Li Y, Yin Z, Wang B, Meng XB, Li ZJ. Synthesis of orthogonally protected l-glucose, l-mannose, and l-galactose from d-glucose. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Alberch L, Cheng G, Seo SK, Li X, Boulineau FP, Wei A. Stereoelectronic factors in the stereoselective epoxidation of glycals and 4-deoxypentenosides. J Org Chem 2011; 76:2532-47. [PMID: 21417287 PMCID: PMC3074037 DOI: 10.1021/jo102382r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycals and 4-deoxypentenosides (4-DPs), unsaturated pyranosides with similar structures and reactivity profiles, can exhibit a high degree of stereoselectivity upon epoxidation with dimethyldioxirane (DMDO). In most cases, the glycals and their corresponding 4-DP isosteres share the same facioselectivity, implying that the pyran substituents are largely responsible for the stereodirecting effect. Fully substituted dihydropyrans are subject to a "majority rule", in which the epoxidation is directed toward the face opposite to two of the three groups. Removing one of the substituents has a variable effect on the epoxidation outcome, depending on its position and also on the relative stereochemistry of the remaining two groups. Overall, we observe that the greatest loss in facioselectivity for glycals and 4-DPs is caused by removal of the C3 oxygen, followed by the C5/anomeric substituent, and least of all by the C4/C2 oxygen. DFT calculations based on polarized-π frontier molecular orbital (PPFMO) theory support a stereoelectronic role for the oxygen substituents in 4-DP facioselectivity, but less clearly so in the case of glycals. We conclude that the anomeric oxygen in 4-DPs contributes toward a stereoelectronic bias in facioselectivity whereas the C5 alkoxymethyl in glycals imparts a steric bias, which at times can compete with the stereodirecting effects from the other oxygen substituents.
Collapse
Affiliation(s)
- Laura Alberch
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Gang Cheng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Seung-Kee Seo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Xuehua Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Fabien P. Boulineau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| |
Collapse
|
21
|
Xu C, Liu H, Li X. Thioglycosylation of 1,2-cis-glycosyl acetates: a long-standing overlooked issue in preparative carbohydrate chemistry. Carbohydr Res 2011; 346:1149-53. [PMID: 21524413 DOI: 10.1016/j.carres.2011.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/14/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
1,2-cis-Glycosyl acetates with the α-configuration were revealed to be very unreactive towards Lewis acid catalyzed thioglycosylations. Optimal and cost-effective conditions for enabling this direct conversion is absent in the literature. Our studies have shown that elevating the reaction temperature with a catalytic amount of BF(3)·OEt(2) was more effective than changing Lewis acids with higher acidities to accommodate the low reactivity of α-glycosyl acetates. The effect of impurities in stored BF(3)·OEt(2) on the reaction is also discussed.
Collapse
Affiliation(s)
- Ci Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | |
Collapse
|
22
|
Gautier FM, Djedaïni-Pilard F, Grandjean C. The iodosulfonamidation of peracetylated glycals revisited: access to 1,2-di-nitrogenated sugars. Carbohydr Res 2011; 346:577-87. [DOI: 10.1016/j.carres.2011.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 01/21/2023]
|
23
|
Guaragna A, D’Alonzo D, Paolella C, Napolitano C, Palumbo G. Highly Stereoselective de Novo Synthesis of l-Hexoses. J Org Chem 2010; 75:3558-68. [DOI: 10.1021/jo100077k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Annalisa Guaragna
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II-Complesso Universitario Monte Sant'Angelo, via Cinthia, 4 I-80126 Napoli, Italy
| | - Daniele D’Alonzo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II-Complesso Universitario Monte Sant'Angelo, via Cinthia, 4 I-80126 Napoli, Italy
| | - Concetta Paolella
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II-Complesso Universitario Monte Sant'Angelo, via Cinthia, 4 I-80126 Napoli, Italy
| | - Carmela Napolitano
- School of Chemistry, National University of Ireland, University Road, Galway, Ireland
| | - Giovanni Palumbo
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli Federico II-Complesso Universitario Monte Sant'Angelo, via Cinthia, 4 I-80126 Napoli, Italy
| |
Collapse
|
24
|
Weng SS. Diastereoselective thioglycosylation of peracetylated glycosides catalyzed by in situ generated iron(III) iodide from elemental iodine and iron. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.07.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Abstract
L-(-)-sucrose was efficiently synthesized using intramolecular aglycon delivery and used to elucidate osmotic effects on the activity of invertase, which catalyzes the hydrolysis of D-(+)-sucrose. The osmotic effect imposed by L-sucrose was responsible for more than 30% of the activity loss ascribed otherwise to "substrate inhibition."
Collapse
Affiliation(s)
| | - Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, USA, 47907−2084. Fax: +1 765 4940239; Tel: +1 765 4945257; E-mail:
| |
Collapse
|
26
|
Markad SD, Xia S, Snyder NL, Surana B, Morton MD, Hadad CM, Peczuh MW. Stereoselectivity in the Epoxidation of Carbohydrate-Based Oxepines. J Org Chem 2008; 73:6341-54. [DOI: 10.1021/jo800979a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shankar D. Markad
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Shijing Xia
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Nicole L. Snyder
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Bikash Surana
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Martha D. Morton
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Christopher M. Hadad
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Mark W. Peczuh
- Department of Chemistry, The University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
27
|
Cheng G, Fan R, Hernández-Torres JM, Boulineau FP, Wei A. syn additions to 4alpha-epoxypyranosides: synthesis of L-idopyranosides. Org Lett 2007; 9:4849-52. [PMID: 17929936 PMCID: PMC2597405 DOI: 10.1021/ol702185y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syn-selective addition of organozinc compounds to 4alpha-epoxypyranosides (4alpha-EPs), generated from methyl beta-D-glucoside or aminoglucoside, provides an efficient route to pyranosides with alpha-L-ido configurations, including L-iduronic acid, neosamine B, and higher monosaccharide derivatives.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Renhua Fan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | | | - Fabien P. Boulineau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| | - Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084
| |
Collapse
|
28
|
Cheng G, Boulineau FP, Liew ST, Shi Q, Wenthold PG, Wei A. Stereoselective epoxidation of 4-deoxypentenosides: a polarized-pi model. Org Lett 2007; 8:4545-8. [PMID: 16986946 PMCID: PMC2596068 DOI: 10.1021/ol0617401] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high facioselectivity in the epoxidation of 4-deoxypentenosides (4-DPs) by dimethyldioxirane (DMDO) correlates with a stereoelectronic bias in the 4-DPs' ground-state conformations, as elucidated by polarized-pi frontier molecular orbital (PPFMO) analysis.
Collapse
|
29
|
Roberts SW, Rainier JD. Synthesis of an A-E gambieric acid subunit with use of a C-glycoside centered strategy. Org Lett 2007; 9:2227-30. [PMID: 17469838 DOI: 10.1021/ol0707970] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes our synthesis of the A-E subunit of gambieric acid (GA) in addition to the synthesis of the A-ring and the C-E tricycle. The use of an enol ether-olefin RCM strategy to couple the A and C-E subunits and, in the process, generate the B-ring is noteworthy.
Collapse
Affiliation(s)
- Scott W Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
30
|
Seo SK, McClintock ML, Wei A. Cryoprotection with L- and meso-trehalose: stereochemical implications. Chembiochem 2007; 7:1959-64. [PMID: 17068838 PMCID: PMC2599921 DOI: 10.1002/cbic.200600322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two unnatural stereoisomers of alpha,alpha-trehalose (L- and meso-trehalose) were synthesized and evaluated as cryoprotectants in order to determine the functional consequences of relative or absolute stereochemistry on their physicochemical properties. Adherent yeast cell cultures were frozen in 10% solutions of D-, L-, and meso-trehalose for periods of 7-28 days, then evaluated by a MTT viability assay. D- and L-trehalose were equally effective in maintaining high rates of cell survival, thus demonstrating the absence of chiral discrimination at the carbohydrate-lipid interface, whereas meso-trehalose was inferior in cryoprotection efficacy. Differential scanning calorimetry revealed a difference in the glass transition temperatures (Tg) of D- and meso-trehalose of nearly 75 degrees C. This can be attributed to differences in conformational behavior, as portrayed by torsional energy maps for rotation about the glycosidic bonds of D- and meso-trehalose. We conclude that the biostabilizing properties of alpha,alpha-trehalose depend on relative stereochemical factors, but are independent of absolute stereochemical configuration.
Collapse
Affiliation(s)
- Seung-Kee Seo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | | | |
Collapse
|
31
|
Ramana C, Giri AG, Suryawanshi SB, Gonnade RG. Total synthesis of pachastrissamine (jaspine B) enantiomers from d-glucose. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.11.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
|
33
|
Weng SS, Lin YD, Chen CT. Highly Diastereoselective Thioglycosylation of Functionalized Peracetylated Glycosides Catalyzed by MoO2Cl2. Org Lett 2006; 8:5633-6. [PMID: 17107090 DOI: 10.1021/ol062375g] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among 18 oxometallic species, MoO2Cl2 was found to be the most reactive in catalytic thioglycosylation of O-acetylated glycosides with functionalized thiols in CH2Cl2, leading cleanly to 1,2-trans-thioglycosides with exclusive diastereocontrol. The new catalytic protocol is applicable to a monoglycoside building block and beta-(1-->6)-S-linked-thiodisaccharide synthesis. [reaction: see text].
Collapse
Affiliation(s)
- Shiue-Shien Weng
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | | | | |
Collapse
|
34
|
Takahashi H, Shida T, Hitomi Y, Iwai Y, Miyama N, Nishiyama K, Sawada D, Ikegami S. Divergent Synthesis ofL-Sugars andL-Iminosugars fromD-Sugars. Chemistry 2006; 12:5868-77. [PMID: 16718730 DOI: 10.1002/chem.200600268] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An efficient divergent synthesis of L-sugars and L-iminosugars from D-sugars is described. The important intermediate, delta-hydroxyalkoxamate, prepared from D-glucono-/galactono-1,5-lactone, was cyclized under Mitsunobu conditions to give the O-cyclized oxime compound and the N-cyclized lactam compound as mixtures. A more detailed investigation revealed that the appropriate protecting groups and solvents controlled the specificity for the O-/N-cyclization of the delta-hydroxyalkoxamate. Suitable protection at the 6-position of delta-hydroxyalkoxamate, derived from D-glucono-1,5-lactone, afforded the corresponding O-alkylation product alone. Thus we succeeded in applying this to the total synthesis of L-iduronic acid. In contrast, with both TBDMS as the protecting group and RCN as the solvent the efficient conversion of D-glucono/galactono-1,5-lactone into the corresponding L-iminosugars (L-idonolactam and L-altronolactam) was achieved.
Collapse
Affiliation(s)
- Hideyo Takahashi
- School of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa, 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|