1
|
Plater MJ, Harrison WTA. Chiral Thianthrenes. Int J Mol Sci 2024; 25:4311. [PMID: 38673898 PMCID: PMC11050469 DOI: 10.3390/ijms25084311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The absolute configuration and stability of two thianthrene chiral sulfoxides has been determined by means of X-ray single-crystal structure determinations. The analyses and configurations allow verification that the diastereomeric sulfoxides are stable in solution and are not interconverting, which has been suggested in some studies of sulfoxides. The two thianthrene sulfoxides have slightly different Rf values, which allowed their separation using flash chromatography on silica. The spots run back-to-back, which posed a challenge for their separation. The pure, separated compounds in solution remain as separate, single spots on a Thin Layer Chromatography (TLC) plate.
Collapse
Affiliation(s)
- M. John Plater
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | | |
Collapse
|
2
|
Das N, Paul R, Tomar S, Biswas C, Chakraborty S, Mondal J. Catching an Oxo Vanadate Porous Acetylacetonate Covalent Adaptive Catalytic Network that Renders Mustard-Gas Simulant Harmless. Inorg Chem 2024; 63:6092-6102. [PMID: 38507817 DOI: 10.1021/acs.inorgchem.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.
Collapse
Affiliation(s)
- Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Tomar
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - Chandan Biswas
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Li H, Shen Q, Zhou X, Duan P, Hollmann F, Huang Y, Zhang W. Peroxygenase-Catalysed Sulfoxidations in Non-Aqueous Media. CHEMSUSCHEM 2024; 17:e202301321. [PMID: 37948039 DOI: 10.1002/cssc.202301321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Chiral sulfoxides are valuable building blocks in asymmetric synthesis. However, the biocatalytic synthesis of chiral sulfoxides is still challenged by low product titres. Herein, we report the use of peroxygenase as a catalyst for asymmetric sulfoxidation under non-aqueous conditions. Upon covalent immobilisation, the peroxygenase showed stability and activity under neat reaction conditions. A large variety of sulfides was converted into chiral sulfoxides in very high product concentration with moderate to satisfactory optical purity (e. g. 626 mM of (R)-methyl phenyl sulfoxide in approx. 89 % ee in 48 h). Further polishing of the ee value via cascading methionine reductase A (MsrA) gave>99 % ee of the sulfoxide. The robustness of the enzymes and high product titer is superior to the state-of-the-art methodologies. Gram-scale synthesis has been demonstrated. Overall, we demonstrated a practical and facile catalytic method to synthesize chiral sulfoxides.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoying Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
4
|
Gahalawat S, Addepalli Y, Fink SP, Kasturi L, Markowitz SD, Ready JM. Enzymatic Resolution and Decarboxylative Functionalization of α-Sulfinyl Esters. Chemistry 2024; 30:e202302996. [PMID: 37721804 PMCID: PMC10872298 DOI: 10.1002/chem.202302996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
α-Sulfinyl esters can be readily prepared through thiol substitution of α-bromo esters followed by oxidation to the sulfoxide. Enzymatic resolution with lipoprotein lipase provides both the unreacted esters and corresponding α-sulfinyl carboxylic acids in high yields and enantiomeric ratios. Subsequent decarboxylative halogenation, dihalogenation, trihalogenation and cross-coupling gives rise to functionalized sulfoxides. The method has been applied to the asymmetric synthesis of a potent inhibitor of 15-prostaglandin dehydrogenase.
Collapse
Affiliation(s)
- Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| | - Stephen P Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, Ohio, USA
| | - Lakshmi Kasturi
- Department of Medicine, Case Western Reserve University, 44106, Cleveland, Ohio, USA
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center and Department of Medicine, Case Western Reserve University, Seidman Cancer Center, University Hospitals of Cleveland, 44106, Cleveland, Ohio, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 75390-9038, Dallas, Texas, USA
| |
Collapse
|
5
|
Kavitha C, Subramaniam P. Role of trichloroacetic acid in the catalytic activity of oxovanadium(IV)-salen in the sulfoxidation of phenylmercaptoacetic acids. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Nickel (II), copper (II), and vanadyl (II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Effect of oxy-vanadium (IV) and oxy-zirconium (IV) ions in O,N-bidentate arylhydrazone complexes on their catalytic and biological potentials that supported via computerized usages. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fallah-Mehrjardi M, Kargar H. Modification of magnetic nanoparticles surface by oxovanadium(V) complex as a highly efficient heterogeneous nanocatalyst for the green sulfoxidation of sulfides. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
|
10
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN. Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium(V) complex with aminobenzohydrazone Schiff base ligand: An experimental and theoretical approach. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Adam MSS, Makhlouf M, Ullah F, El-Hady OM. Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Cao M, Zhu J, Zhi Z, Ye B, Yao S, Zhang X. Thermodynamic Resolution of Pharmaceutical Precursor Modafinil Acid on the Basis of
Chiral‐at‐Metal
Strategy. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Man‐Li Cao
- Department of Chemistry, Guangdong University of Education Guangzhou Guangdong 510303 China
| | - Jun‐Ling Zhu
- Department of Chemistry, Guangdong University of Education Guangzhou Guangdong 510303 China
| | - Zhong‐Lan Zhi
- Department of Chemistry, Guangdong University of Education Guangzhou Guangdong 510303 China
| | - Bao‐Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| | - Su‐Yang Yao
- Department of Chemistry, Guangdong University of Education Guangzhou Guangdong 510303 China
| | - Xiu‐Lian Zhang
- Department of Chemistry, Guangdong University of Education Guangzhou Guangdong 510303 China
| |
Collapse
|
13
|
Han J, Wzorek A, Klika KD, Soloshonok VA. Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092757. [PMID: 34067099 PMCID: PMC8124418 DOI: 10.3390/molecules26092757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight the necessity of conducting tests to gauge the magnitude of the self-disproportionation of enantiomers (SDE) phenomenon to ensure the veracity of reported enantiomeric excess (ee) values for scalemic samples obtained from enantioselective reactions, natural products isolation, etc. The SDE always occurs to some degree whenever any scalemic sample is subjected to physicochemical processes concomitant with the fractionation of the sample, thus leading to erroneous reporting of the true ee of the sample if due care is not taken to either preclude the effects of the SDE by measurement of the ee prior to the application of physicochemical processes, suppressing the SDE, or evaluating all obtained fractions of the sample. Or even avoiding fractionation altogether if possible. There is a clear necessity to conduct tests to assess the magnitude of the SDE for the processes applied to samples and the updated and improved recommendations described herein cover chromatography and processes involving gas-phase transformations such as evaporation or sublimation.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karel D. Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Correspondence: (K.D.K.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
- Correspondence: (K.D.K.); (V.A.S.)
| |
Collapse
|
14
|
Kurbah SD. Dioxido-vanadium(V) complex catalyzed oxidation of alcohols and tandem synthesis of oximes: a simple catalytic protocol for C–N bond formation. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1876230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sunshine Dominic Kurbah
- Department of Chemistry, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Karimganj, Eraligool, Assam, India
| |
Collapse
|
15
|
Li Y, Ma Y, Li P, Zhang X, Ribitsch D, Alcalde M, Hollmann F, Wang Y. Enantioselective Sulfoxidation of Thioanisole by Cascading a Choline Oxidase and a Peroxygenase in the Presence of Natural Deep Eutectic Solvents. Chempluschem 2021; 85:254-257. [PMID: 31951316 DOI: 10.1002/cplu.201900751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Indexed: 01/31/2023]
Abstract
A bienzymatic cascade for selective sulfoxidation is presented. The evolved recombinant peroxygenase from Agrocybe aegeritra catalyses the enantioselective sulfoxidation of thioanisole whereas the choline oxidase from Arthrobacter nicotianae provides the H2 O2 necessary via reductive activation of ambient oxygen. The reactions are performed in choline chloride-based deep eutectic solvents serving as co-solvent and stoichiometric reductant at the same time. Very promising product concentrations (up to 15 mM enantiopure sulfoxide) and catalyst performances (turnover numbers of 150,000 and 2100 for the peroxygenase and oxidase, respectively) have been achieved.
Collapse
Affiliation(s)
- Yongru Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Peilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xizhen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Doris Ribitsch
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430, Tulln, Austria
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049, Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft (The, Netherlands
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
16
|
Patel NR, Huffman MA, Wang X, Ding B, McLaughlin M, Newman JA, Andreani T, Maloney KM, Johnson HC, Whittaker AM. Five-Step Enantioselective Synthesis of Islatravir via Asymmetric Ketone Alkynylation and an Ozonolysis Cascade. Chemistry 2020; 26:14118-14123. [PMID: 32710473 DOI: 10.1002/chem.202003091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Indexed: 11/10/2022]
Abstract
A 5-step enantioselective synthesis of the potent anti-HIV nucleoside islatravir is reported. The highly efficient route was enabled by a novel enantioselective alkynylation of an α,β-unsaturated ketone, a unique ozonolysis-dealkylation cascade in water, and an enzymatic aldol-glycosylation cascade.
Collapse
Affiliation(s)
- Niki R Patel
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Mark A Huffman
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Xiao Wang
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Bangwei Ding
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Mark McLaughlin
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Justin A Newman
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Teresa Andreani
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Kevin M Maloney
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Heather C Johnson
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Aaron M Whittaker
- Department of Process Research and Development, MRL, Merck & Co., Inc., Rahway, NJ, 07065, USA
| |
Collapse
|
17
|
Competitive behavior of nitrogen based axial ligands in the oxovanadium(IV)-salen catalyzed sulfoxidation of phenylmercaptoacetic acid. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Abstract
Sulfoxides are key scaffolds in the synthesis of pharmaceutically active molecules. A large
number of sulfoxides are indispensable ingredients in the structure of most antibiotics, biological and
natural products such as Modafinil, Adrafinil, CRL-40,941 or fladrafinil, Fipronil, Oxydemetonmethyl,
Omeprazole, Pantoprazole, Lansoprazole and Rabeprazole. The oxidation of sulfides is the
most common and efficient strategy for the preparation of sulfoxides. Recently, many protocols
based on using transition metals have been reported for the oxidation of sulfides to the sulfoxides. In
this paper, we summarized a nice category of the reported protocols in the literature for the oxidation
of sulfides to sulfoxides.
Collapse
Affiliation(s)
- Qiang Pu
- School of Information Science and Engineering, Chengdu University, Chengdu 610106, China
| | - Mosstafa Kazemi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| |
Collapse
|
19
|
Salan vs. salen metal complexes in catalysis and medicinal applications: Virtues and pitfalls. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Li X, Du J, Zhang Y, Chang H, Gao W, Wei W. Synthesis and nano-Pd catalyzed chemoselective oxidation of symmetrical and unsymmetrical sulfides. Org Biomol Chem 2019; 17:3048-3055. [PMID: 30834408 DOI: 10.1039/c8ob03209b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly chemoselective, efficient and nano-Pd catalyzed protocol for the rapid construction of sulfoxides and sulfones via the oxidation of symmetrical and unsymmetrical sulfides using H2O2 as an oxidant has been developed, respectively. The ready availability of starting materials, easy recovery and reutilization of the catalyst, wide substrate scope, and high yields make this protocol an attractive alternative. The process also involves the metal-free and microwave-promoted synthesis of symmetrical diarylsulfides, and FeCl3-mediated preparation of symmetrical diaryldisulfides through the reaction of arenediazonium tetrafluoroborates with Na2S·9H2O as a sulfur source. In addition, unsymmetrical sulfides were generated via the K2CO3-mediated reaction of arenediazonium tetrafluoroborates with symmetrical disulfides.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Zid TB, Khedher I, Fraile J. V/MCM-41 as Catalyst for Asymmetric and Non-Asymmetric Oxidation of Methyl Phenyl Sulfide. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751913x13846900634620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- T. Ben Zid
- Laboratoire de Chimie des Matέriaux et Catalyse. Dέpartement de Chimie. Facultέ des Sciences de Tunis, Tunisia
| | - I. Khedher
- Laboratoire de Chimie des Matέriaux et Catalyse. Dέpartement de Chimie. Facultέ des Sciences de Tunis, Tunisia
| | - J.M. Fraile
- Instituto de Síntesis Química y Catálisis Homogέnea. Facultad de Ciencias, C.S.I.C.-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| |
Collapse
|
22
|
Zhang H, Hu M, Cai M. Reductive Coupling of Disulfides and Diselenides with Alkyl Halides Catalysed by a Silica-Supported Phosphine Rhodium Complex using Hydrogen as a Reducing Agent. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751913x13796950361813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hean Zhang
- Department of Chemistry, College of Science, Nanchang University, Nanchang 330031, P.R. China
| | - Mangen Hu
- Department of Chemistry, College of Science, Nanchang University, Nanchang 330031, P.R. China
| | - Mingzhong Cai
- Department of Chemistry, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
23
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1481] [Impact Index Per Article: 211.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
24
|
Rosen T, Goldberg I, Kol M. Aluminum Complexes of Octahydrophenanthroline‐Based Salophan Ligands: Coordination Chemistry and Activity in the Ring‐Opening Polymerization of Lactide. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tomer Rosen
- School of Chemistry Tel Aviv University Ramat Aviv 6997801 Tel Aviv Israel
| | - Israel Goldberg
- School of Chemistry Tel Aviv University Ramat Aviv 6997801 Tel Aviv Israel
| | - Moshe Kol
- School of Chemistry Tel Aviv University Ramat Aviv 6997801 Tel Aviv Israel
| |
Collapse
|
25
|
Batisse C, Panossian A, Hanquet G, Leroux FR. Access towards enantiopure α,α-difluoromethyl alcohols by means of sulfoxides as traceless chiral auxiliaries. Chem Commun (Camb) 2018; 54:10423-10426. [PMID: 30091753 DOI: 10.1039/c8cc05571h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology to access enantiopure α,α-difluoromethyl alcohols is hereby being described. The strategy relies on the use of an enantiopure aryl α,α-difluoromethyl sulfoxide employed as chiral and removable auxiliary for the stereoselective difluoromethylation of carbonyl derivatives. The obtained α,α-difluoro-β-hydroxysulfoxides displayed unprecedented diastereomeric ratios.
Collapse
Affiliation(s)
- Chloé Batisse
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France.
| | | | | | | |
Collapse
|
26
|
Pratihar JL, Mandal P, Brandão P, Mal D, Felix V. Synthesis, characterization, spectral and catalytic activity of tetradentate (NNNO) azo-imine Schiff base copper(II) complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Nosek V, Míšek J. Chemoenzymatic Deracemization of Chiral Sulfoxides. Angew Chem Int Ed Engl 2018; 57:9849-9852. [PMID: 29888843 DOI: 10.1002/anie.201805858] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/09/2022]
Abstract
The highly enantioselective enzyme methionine sulfoxide reductase A was combined with an oxaziridine-type oxidant in a biphasic setup for the deracemization of chiral sulfoxides. Remarkably, high ee values were observed with a wide range of substrates, thus providing a practical route for the synthesis of enantiomerically pure sulfoxides.
Collapse
Affiliation(s)
- Vladimír Nosek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague 2, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague 2, Czech Republic
| |
Collapse
|
28
|
Affiliation(s)
- Vladimír Nosek
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 2030/8 12843 Prague 2 Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 2030/8 12843 Prague 2 Czech Republic
| |
Collapse
|
29
|
Tang J, Huang F, Wei Y, Bian H, Zhang W, Liang H. Bovine serum albumin-cobalt(ii) Schiff base complex hybrid: an efficient artificial metalloenzyme for enantioselective sulfoxidation using hydrogen peroxide. Dalton Trans 2018; 45:8061-72. [PMID: 27075699 DOI: 10.1039/c5dt04507j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An artificial metalloenzyme (BSA-CoL) based on the incorporation of a cobalt(ii) Schiff base complex {CoL, H2L = 2,2'-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol} with bovine serum albumin (BSA) has been synthesized and characterized. Attention is focused on the catalytic activity of this artificial metalloenzyme for enantioselective oxidation of a variety of sulfides with H2O2. The influences of parameters such as pH, temperature, and the concentration of catalyst and oxidant on thioanisole as a model are investigated. Under optimum conditions, BSA-CoL as a hybrid biocatalyst is efficient for the enantioselective oxidation of a series of sulfides, producing the corresponding sulfoxides with excellent conversion (up to 100%), chemoselectivity (up to 100%) and good enantiomeric purity (up to 87% ee) in certain cases.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China. and Guilin Normal College, Guilin 541001, P. R. China
| | - Fuping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China.
| | - Yi Wei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China.
| | - Hedong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China. and School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, 530008, P. R. China.
| | - Wei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Guilin, 541004, P. R. China.
| |
Collapse
|
30
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
31
|
Zhang D, Dutasta JP, Dufaud V, Guy L, Martinez A. Sulfoxidation inside a C3-Vanadium(V) Bowl-Shaped Catalyst. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Zhang
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d’Italie, F-69364 Lyon, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d’Italie, F-69364 Lyon, France
| | - Veronique Dufaud
- Laboratoire de Chimie, Catalyse, Polymères, Procédés
CNRS, UMR 5265, Université Claude Bernard Lyon 1, CPE Lyon, 43 Bd du 11 novembre 1918, 69616 Villeurbanne cedex, France
| | - Laure Guy
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 allée d’Italie, F-69364 Lyon, France
| | | |
Collapse
|
32
|
Ebrahimi T, Aluthge DC, Patrick BO, Hatzikiriakos SG, Mehrkhodavandi P. Air- and Moisture-Stable Indium Salan Catalysts for Living Multiblock PLA Formation in Air. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01939] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tannaz Ebrahimi
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
- Department
of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada, V6T1Z3
| | - Dinesh C. Aluthge
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| | - Savvas G. Hatzikiriakos
- Department
of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada, V6T1Z3
| | - Parisa Mehrkhodavandi
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| |
Collapse
|
33
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew Chem Int Ed Engl 2017; 56:8942-8973. [DOI: 10.1002/anie.201612462] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
34
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselektive Chemo- und Biokatalyse: Partner in der Retrosynthese. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612462] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
35
|
Jalba A, Régnier N, Ollevier T. Enantioselective Aromatic Sulfide Oxidation and Tandem Kinetic Resolution Using Aqueous H2O2and Chiral Iron-Bis(oxazolinyl)bipyridine Catalysts. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Angela Jalba
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Noémie Régnier
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| | - Thierry Ollevier
- Département de chimie; Université Laval; 1045 avenue de la Médecine G1V 0A6 Québec QC Canada
| |
Collapse
|
36
|
Burglova K, Okorochenkov S, Budesinsky M, Hlavac J. Efficient Method for Aromatic-Aldehyde Oxidation by Cleavage of Their Hydrazones Catalysed by Trimethylsilanolate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristyna Burglova
- Institute of Molecular and Translation Medicine; Faculty of Medicine; Palacký University; Hněvotínská 5 77900 Olomouc Czech Republic
| | - Sergei Okorochenkov
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. Listopadu 12 77146 Olomouc Czech Republic
| | - Milos Budesinsky
- Institute of Organic Chemistry and Biochemistry AS CR; Flemingovo nám. 2 16610 Praha 6 Czech Republic
| | - Jan Hlavac
- Institute of Molecular and Translation Medicine; Faculty of Medicine; Palacký University; Hněvotínská 5 77900 Olomouc Czech Republic
| |
Collapse
|
37
|
Importance of ground state stabilization in the oxovanadium(IV)-salophen mediated reactions of phenylsulfinylacetic acids by hydrogen peroxide – Non-linear Hammett correlation. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Chuo TH, Boobalan R, Chen C. Camphor-Based Schiff Base Of 3-Endo
-Aminoborneol (SBAB): Novel Ligand for Vanadium-Catalyzed Asymmetric Sulfoxidation and Subsequent Kinetic Resolution. ChemistrySelect 2016. [DOI: 10.1002/slct.201600379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ting Hung Chuo
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
| | - Ramalingam Boobalan
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
| | - Chinpiao Chen
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
- Department of Nursing; Tzu Chi University of Science and Technology; Hualien 970 Taiwan
| |
Collapse
|
39
|
Jaklińska M, Cordier M, Stankevič M. Stereoselectivity of Michael Addition of P(X)–H-Type Nucleophiles to Cyclohexen-1-ylphosphine Oxide: The Case of Base-Selective Transformation. J Org Chem 2016; 81:1378-90. [DOI: 10.1021/acs.joc.5b02337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena Jaklińska
- Department
of Organic Chemistry, Faculty of Chemistry, Marie Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland
| | - Marie Cordier
- Laboratoire
de Chimie Moléculaire, UMR 9168 - CNRS, École Polytechnique, Route de Saclay, Palaiseau 91128 Cedex, France
| | - Marek Stankevič
- Department
of Organic Chemistry, Faculty of Chemistry, Marie Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|
40
|
Tang J, Yao PF, Xu XL, Li HY, Huang FP, Nie QQ, Luo MY, Yu Q, Bian HD. Asymmetric catalytic sulfoxidation by a novel VIV8 cluster catalyst in the presence of serum albumin: a simple and green oxidation system. RSC Adv 2016. [DOI: 10.1039/c6ra08153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantioselective oxidation of a series of alkyl aryl sulfides catalyzed by a novel VIV8 cluster is tested in an aqueous medium in the presence of serum albumin. The procedure is simple, environmentally friendly, selective, and highly reactive.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Peng-Fei Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xiao-Ling Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hai-Ye Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Qing-Qing Nie
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - Mei-Yi Luo
- Guilin Normal College
- Guilin 541001
- P. R. China
| | - Qing Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| | - He-Dong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
41
|
Nica S, Rudolph M, Lippold I, Buchholz A, Görls H, Plass W. Vanadium(V) complex with Schiff-base ligand containing a flexible amino side chain: Synthesis, structure and reactivity. J Inorg Biochem 2015; 147:193-203. [DOI: 10.1016/j.jinorgbio.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
42
|
A novel oxido-vanadium(V) Schiff base complex: synthesis, spectral characterization, crystal structure, electrochemical evaluation, and biological activity. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2045-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Mathavan A, Ramdass A, Ramachandran M, Rajagopal S. Oxovanadium(IV)-Salen Ion Catalyzed H2
O2
Oxidation of Tertiary Amines to N
-Oxides- Critical Role of Acetate Ion as External Axial Ligand. INT J CHEM KINET 2015. [DOI: 10.1002/kin.20910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alagarsamy Mathavan
- Department of Chemistry; V.O.Chidambaram College; Tuticorin 628 008 India
- School of Chemistry; Madurai Kamaraj University; Madurai 625 021 India
| | - Arumugam Ramdass
- School of Chemistry; Madurai Kamaraj University; Madurai 625 021 India
| | | | | |
Collapse
|
44
|
Mandal M, Chakraborty D. Kinetic investigation on the highly efficient and selective oxidation of sulfides to sulfoxides and sulfones with t-BuOOH catalyzed by La2O3. RSC Adv 2015. [DOI: 10.1039/c4ra14391d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient and highly selective methodology for the oxidation of various sulfides with 70% t-BuOOH as oxidant in the presence of catalytic amounts of La2O3 is described.
Collapse
Affiliation(s)
- Mrinmay Mandal
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-800 013
- India
| | | |
Collapse
|
45
|
Bera PK, Kumari P, Abdi SHR, Khan NUH, Kureshy RI, Subramanian PS, Bajaj HC. In situ-generated chiral iron complex as efficient catalyst for enantioselective sulfoxidation using aqueous H2O2 as oxidant. RSC Adv 2014. [DOI: 10.1039/c4ra09237f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study represents the rare combination of non-toxic Fe based catalyst/H2O2 as an efficient catalytic protocol for asymmetric sulfoxidation reaction.
Collapse
Affiliation(s)
- Prasanta Kumar Bera
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
| | - Prathibha Kumari
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sayed H. R. Abdi
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Noor-ul H. Khan
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rukhsana I. Kureshy
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| | - P. S. Subramanian
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Hari C. Bajaj
- Discipline of Inorganic Materials and Catalysis
- CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI)
- Council of Scientific & Industrial Research (CSIR)
- Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
46
|
Dai W, Li G, Wang L, Chen B, Shang S, Lv Y, Gao S. Enantioselective oxidation of sulfides with H2O2 catalyzed by a pre-formed manganese complex. RSC Adv 2014. [DOI: 10.1039/c4ra09832c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A facile and environmentally friendly method is presented for the asymmetric oxidation of sulfides with H2O2 by an in situ-formed manganese complex, affording the corresponding chiral sulfoxides in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Wen Dai
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
- University of Chinese Academy of Sciences
| | - Guosong Li
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
| | - Lianyue Wang
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
| | - Bo Chen
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
- University of Chinese Academy of Sciences
| | - Sensen Shang
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
- University of Chinese Academy of Sciences
| | - Ying Lv
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
| | - Shuang Gao
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, People's Republic of China
| |
Collapse
|
47
|
Secci F, Frongia A, Piras PP. Ammonium salt catalyzed oxidation of organosulfides to organosulfoxydes. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Srour H, Le Maux P, Chevance S, Simonneaux G. Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Mao Z, Zhu X, Lin A, Li W, Shi Y, Mao H, Zhu C, Cheng Y. In SituFormed Bifunctional Primary Amine-Imine Catalyst: Application to the Construction of Chiral Tertiary Alcohols through Asymmetric Aldol-Type Reaction. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Dong L, Wang Y, Lv Y, Chen Z, Mei F, Xiong H, Yin G. Lewis-Acid-Promoted Stoichiometric and Catalytic Oxidations by Manganese Complexes Having Cross-Bridged Cyclam Ligand: A Comprehensive Study. Inorg Chem 2013; 52:5418-27. [DOI: 10.1021/ic400361s] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Dong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yujuan Wang
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yanzong Lv
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Hui Xiong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| |
Collapse
|