1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Nutter M, Stone H, Shipman M, Roesner S. Stereoselective synthesis of ( R)- and ( S)-1,2-diazetidine-3-carboxylic acid derivatives for peptidomimetics. Org Biomol Chem 2024; 22:2974-2977. [PMID: 38533707 DOI: 10.1039/d4ob00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The stereoselective synthesis of both enantiomers of N-protected 1,2-diazetidine-3-carboxylic acid (aAze) from homochiral glycidol is described. Orthogonal protection of this novel cyclic α-hydrazino acid allows for selective functionalisation at either Nγ or Nδ. This novel peptidomimetic building block was incorporated into the pseudotripeptides Gly-γaAze-Ala and Gly-δaAze-Ala.
Collapse
Affiliation(s)
- Matthew Nutter
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Henry Stone
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Stefan Roesner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
3
|
Lal J, Kaul G, Akhir A, Saxena D, Dubkara H, Shekhar S, Chopra S, Reddy DN. β-Turn editing in Gramicidin S: Activity impact on replacing proline α-carbon with stereodynamic nitrogen. Bioorg Chem 2023; 138:106641. [PMID: 37300963 DOI: 10.1016/j.bioorg.2023.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro β-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.
Collapse
Affiliation(s)
- Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Harshita Dubkara
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
4
|
Lal J, Prajapati G, Meena R, Kant R, Sankar Ampapathi R, Reddy DN. Influence of Proline Chirality on Neighbouring Azaproline Residue Stereodynamic Nitrogen Preorganization. Chem Asian J 2023; 18:e202201023. [PMID: 36349404 DOI: 10.1002/asia.202201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Indexed: 11/10/2022]
Abstract
We report herein the first systematic crystal structural investigation of azaproline incorporated in homo- and heterochiral diprolyl peptides. The X-ray crystallography data of peptides 1-5 illustrates that stereodynamic nitrogen in azaproline adopted the stereochemistry of neighbouring proline residue without depending on its position in the peptide sequence. Natural bond orbital analysis of crystal structures indicates OazPro -C'Pro of peptides 4 and 5 participating in n→π* interaction with stabilization energy about 1.21-1.33 kcal/mol. Density functional theory calculations suggested that the endo-proline ring puckering favoured over exo-conformation by 6.72-7.64 kcal/mol. NBO and DFT data reveals that the n→π* interactions and proline ring puckering stabilize azaproline chirality with the neighbouring proline stereochemistry. The CD, solvent titration, variable-temperature and 2D NMR experimental results further supported the crystal structures conformation.
Collapse
Affiliation(s)
- Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India) .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Gurudayal Prajapati
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-CDRI, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Rachana Meena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India) .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-CDRI, Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-CDRI, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India) .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| |
Collapse
|
5
|
Abstract
Azapeptides undergo on-resin, late-stage N-alkylations to install side chains with high chemoselectivity for the hydrazide nitrogen atoms. The major product is the N1-alkylated "azapeptoid", with only small amounts (<10%) of alkylation occurring at the other aza-amino acid nitrogen (N2). Dialkylations are also possible and afford highly functionalized, disubstituted azapeptides with side chains installed on both aza-amino acid nitrogen atoms. The site-selectivity was determined using Edman degradation, MS/MS sequencing, and comparative LCMS and NMR analyses.
Collapse
Affiliation(s)
- Maxwell O Bowles
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
6
|
Sanchez CA, Gadais C, Chaume G, Girard S, Chelain E, Brigaud T. Enantiopure 5-CF 3-Proline: Synthesis, Incorporation in Peptides, and Tuning of the Peptide Bond Geometry. Org Lett 2021; 23:382-387. [PMID: 33369434 DOI: 10.1021/acs.orglett.0c03880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The straightforward synthesis of enantiopure 5-(R)-and 5-(S)-trifluoromethylproline is reported. The key steps are a Ruppert-Prakash reagent addition on l-pyroglutamic esters followed by an elimination reaction and a selective reduction. The solution-phase and solid-phase incorporation of this unprotected enantiopure fluorinated amino acid in a short peptide chain was demonstrated. Compared to proline, the CF3 group provides a decrease of the trans to cis amide bond isomerization energy and an increase of the cis conformer population.
Collapse
Affiliation(s)
- Clément A Sanchez
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Charlène Gadais
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Grégory Chaume
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sylvaine Girard
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Evelyne Chelain
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Thierry Brigaud
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
7
|
Proulx C, Zhang J, Sabatino D, Chemtob S, Ong H, Lubell WD. Synthesis and Biomedical Potential of Azapeptide Modulators of the Cluster of Differentiation 36 Receptor (CD36). Biomedicines 2020; 8:biomedicines8080241. [PMID: 32717955 PMCID: PMC7459725 DOI: 10.3390/biomedicines8080241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
The innovative development of azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) has produced selective modulators of the cluster of differentiation 36 receptor (CD36). The azapeptide CD36 modulators curb macrophage-driven inflammation and mitigate atherosclerotic and angiogenic pathology. In macrophages activated with Toll-like receptor-2 heterodimer agonist, they reduced nitric oxide production and proinflammatory cytokine release. In a mouse choroidal explant microvascular sprouting model, they inhibited neovascularization. In murine models of cardiovascular injury, CD36-selective azapeptide modulators exhibited cardioprotective and anti-atherosclerotic effects. In subretinal inflammation models, they altered activated mononuclear phagocyte metabolism and decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury associated with retinitis pigmentosa, diabetic retinopathy and age-related macular degeneration. The translation of GHRP-6 to potent and selective linear and cyclic azapeptide modulators of CD36 is outlined in this review which highlights the relevance of turn geometry for activity and the biomedical potential of prototypes for the beneficial treatment of a wide range of cardiovascular, metabolic and immunological disorders.
Collapse
Affiliation(s)
- Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jinqiang Zhang
- Innovative Drug Research Centre, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China;
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, USA;
| | - Sylvain Chemtob
- Département d’Ophtalmologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C3J7, Canada;
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C3J7, Canada;
| | - William D. Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C3J7, Canada
- Correspondence:
| |
Collapse
|
8
|
Elbatrawi YM, Pedretty KP, Giddings N, Woodcock HL, Del Valle JR. δ-Azaproline and Its Oxidized Variants. J Org Chem 2020; 85:4207-4219. [DOI: 10.1021/acs.joc.9b03384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yassin M. Elbatrawi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle P. Pedretty
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nicole Giddings
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Howard EH, Cain CF, Kang C, Del Valle JR. Synthesis of Enantiopure ε-Oxapipecolic Acid. J Org Chem 2019; 85:1680-1686. [DOI: 10.1021/acs.joc.9b02382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evan H. Howard
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Christopher F. Cain
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Changwon Kang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
10
|
Kasznel AJ, Harris T, Porter NJ, Zhang Y, Chenoweth DM. Aza-proline effectively mimics l-proline stereochemistry in triple helical collagen. Chem Sci 2019; 10:6979-6983. [PMID: 31588264 PMCID: PMC6761869 DOI: 10.1039/c9sc02211b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022] Open
Abstract
Chenoweth and co-workers provide an atomic resolution crystal structure and computational analysis illustrating that aza-proline mimics l-proline stereochemistry in collagen.
The prevalence of l-amino acids in biomolecules has been shown to have teleological importance in biomolecular structure and self-assembly. Recently, biophysical studies have demonstrated that natural l-amino acids can be replaced with non-natural achiral aza-amino acids in folded protein structures such as triple helical collagen. However, the structural consequences of achiral aza-amino acid incorporation has not been elucidated in the context of any relevant folded biomolecule. Herein, we use X-ray crystallography to provide the first atomic resolution crystal structure of an achiral aza-amino acid residue embedded within a folded protein structure, definitively illustrating that achiral aza-proline has the capacity to effectively mimic the stereochemistry of natural amino acids within the context of triple helical collagen. We further corroborate this finding with density functional theory computational analysis showing that the natural l-amino acid stereochemistry for aza-proline is energetically favored when arranged in the aza-proline-hydroxyproline-glycine motif. In addition to providing fundamental insight into peptide and protein structure, the incorporation of achiral stereochemical mimics such as aza-amino acids could have far reaching impacts in areas ranging from synthetic materials to drug design.
Collapse
Affiliation(s)
- Alexander J Kasznel
- Department of Chemistry , University of Pennsylvania , 231 S. 34th St. , Philadelphia , PA 19104-6323 , USA . .,Department of Bioengineering , University of Pennsylvania , 210 S. 33rd St. , Philadelphia , PA 19104-6323 , USA
| | - Trevor Harris
- Department of Chemistry , University of Pennsylvania , 231 S. 34th St. , Philadelphia , PA 19104-6323 , USA .
| | - Nicholas J Porter
- Department of Chemistry , University of Pennsylvania , 231 S. 34th St. , Philadelphia , PA 19104-6323 , USA .
| | - Yitao Zhang
- Department of Chemistry , University of Pennsylvania , 231 S. 34th St. , Philadelphia , PA 19104-6323 , USA .
| | - David M Chenoweth
- Department of Chemistry , University of Pennsylvania , 231 S. 34th St. , Philadelphia , PA 19104-6323 , USA .
| |
Collapse
|
11
|
Chingle R, Mulumba M, Chung NN, Nguyen TMD, Ong H, Ballet S, Schiller PW, Lubell WD. Solid-Phase Azopeptide Diels–Alder Chemistry for Aza-pipecolyl Residue Synthesis To Study Peptide Conformation. J Org Chem 2019; 84:6006-6016. [DOI: 10.1021/acs.joc.8b03283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Nga N. Chung
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | - Thi M.-D. Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | |
Collapse
|
12
|
Reddy DN, Singh S, Ho CMW, Patel J, Schlesinger P, Rodgers S, Doctor A, Marshall GR. Design, synthesis, and biological evaluation of stable β 6.3-Helices: Discovery of non-hemolytic antibacterial peptides. Eur J Med Chem 2018; 149:193-210. [PMID: 29501941 DOI: 10.1016/j.ejmech.2018.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
Gramicidin A, a topical antibiotic made from alternating L and D amino acids, is characterized by its wide central pore; upon insertion into membranes, it forms channels that disrupts ion gradients. We present helical peptidomimetics with this characteristic wide central pore that have been designed to mimic gramicidin A channels. Mimetics were designed using molecular modeling focused on oligomers of heterochiral dipeptides of proline analogs, in particular azaproline (AzPro). Molecular Dynamics simulations in water confirmed the stability of the designed helices. A sixteen-residue Formyl-(AzPro-Pro)8-NHCH2CH2OH helix was synthesized as well as a full thirty-two residue Cbz-(AzPro-Pro)16-OtBu channels. No liposomal lysis activity was observed suggesting lack of channel formation, possibly due to inappropriate hydrogen-bonding interactions in the membrane. These peptidomimetics also did not hemolyze red blood cells, unlike gramicidin A.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chris M W Ho
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janki Patel
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul Schlesinger
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen Rodgers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allan Doctor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garland R Marshall
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
14
|
Li Y, Du S, Du Z, Chen C. A theoretical study of DABCO and PPh3 catalyzed annulations of allenoates with azodicarboxylate. RSC Adv 2016. [DOI: 10.1039/c6ra19308k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous experiments have shown that DABCO-catalyzed annulation of 2,3-butadienoate and diethylazodicarboxylate leads to 1,2-diazetidine (reaction (1)), whereas PPh3-catalyzed 2-benzyl-2,3-butadienoate and diethylazodicarboxylate gives pyrazoline (reaction (2)).
Collapse
Affiliation(s)
- Yan Li
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Shiwen Du
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| | - Zheng Du
- National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center)
- Shenzhen
- China
| | - Congmei Chen
- National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center)
- Shenzhen
- China
| |
Collapse
|
15
|
Xu S, Chen J, Shang J, Qing Z, Zhang J, Tang Y. Divergent amine-catalyzed [2+2] annulation of allenoates with azodicarboxylates: facile synthesis of 1,2-diazetidines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Duttagupta I, Misra D, Bhunya S, Paul A, Sinha S. Cis–Trans Conformational Analysis of δ-Azaproline in Peptides. J Org Chem 2015; 80:10585-604. [DOI: 10.1021/acs.joc.5b01668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Indranil Duttagupta
- Department of Organic
Chemistry and ‡Raman Centre for Atomic, Optical
and Molecular Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Debojyoti Misra
- Department of Organic
Chemistry and ‡Raman Centre for Atomic, Optical
and Molecular Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sourav Bhunya
- Department of Organic
Chemistry and ‡Raman Centre for Atomic, Optical
and Molecular Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Ankan Paul
- Department of Organic
Chemistry and ‡Raman Centre for Atomic, Optical
and Molecular Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Surajit Sinha
- Department of Organic
Chemistry and ‡Raman Centre for Atomic, Optical
and Molecular Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
17
|
Zhang Y, Malamakal RM, Chenoweth DM. A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Zhang Y, Malamakal RM, Chenoweth DM. A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System. Angew Chem Int Ed Engl 2015. [PMID: 26212926 DOI: 10.1002/anie.201504459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is a property of asymmetry important to both physical and abstract systems. Understanding how molecular systems respond to perturbations in their chiral building blocks can provide insight into diverse areas such as biomolecular self-assembly, protein folding, drug design, materials, and catalysis. Despite the fundamental importance of stereochemical preorganization in nature and designed materials, the ramifications of replacing chiral centers with stereodynamic atomic mimics in the context of biomolecular systems is unknown. Herein, we demonstrate that replacement of a single amino acid stereocenter with a stereodynamic nitrogen atom has profound consequences on the self-assembly of a biomolecular system. Our results provide insight into how the fundamental biopolymers of life would behave if their chiral centers were not configurationally stable, highlighting the vital importance of stereochemistry as a pre-organizing element in biomolecular folding and assembly events.
Collapse
Affiliation(s)
- Yitao Zhang
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA)
| | - Roy M Malamakal
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA)
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34thStreet, Philadelphia, PA 19104 (USA).
| |
Collapse
|
19
|
Davis LO. Recent Developments in the Synthesis and Applications of Pyrazolidines. A Review. ORG PREP PROCED INT 2013. [DOI: 10.1080/00304948.2013.834769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Teklebrhan RB, Owens NW, Xidos JD, Schreckenbach G, Wetmore SD, Schweizer F. Conformational Preference of Fused Carbohydrate-Templated Proline Analogues—A Computational Study. J Phys Chem B 2012; 117:199-205. [DOI: 10.1021/jp310690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robel B. Teklebrhan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
| | - Neil W. Owens
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
| | - James D. Xidos
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
| | - Stacey D. Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
21
|
|
22
|
Abstract
Azapeptides are peptide analogs in which one or more of the amino residues is replaced by a semicarbazide. This substitution of a nitrogen for the α-carbon center results in conformational restrictions, which bend the peptide about the aza-amino acid residue away from a linear geometry. The resulting azapeptide turn conformations have been observed by x-ray crystallography and spectroscopy, as well as predicted based on computational models. In biologically active peptide analogs, the aza-substitution has led to enhanced activity and selectivity as well as improved properties, such as prolonged duration of action and metabolic stability. In light of these characteristics, azapeptides have found important uses as receptor ligands, enzyme inhibitors, drugs, pro-drugs, probes and imaging agents. Recent improvements in synthetic methods for their procurement have ushered in a new era of azapeptide chemistry. This review aims to provide a historical look at the development of azapeptide science along with a focus on recent developments and perspectives on the future of this useful tool for medicinal chemistry.
Collapse
|
23
|
Brown MJ, Clarkson GJ, Inglis GG, Shipman M. Synthesis and Functionalization of 3-Alkylidene-1,2-diazetidines Using Transition Metal Catalysis. Org Lett 2011; 13:1686-9. [DOI: 10.1021/ol200193n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Brown
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom, and GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Guy J. Clarkson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom, and GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Graham G. Inglis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom, and GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom, and GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| |
Collapse
|
24
|
Cipolla L, Airoldi C, Bini D, Gregori M, Marcelo F, Jiménez-Barbero J, Nicotra F. Fructose-Based Proline Analogues: Exploring the Prolyl trans/cis-Amide Rotamer Population in Model Peptides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Teklebrhan RB, Zhang K, Schreckenbach G, Schweizer F, Wetmore SD. Intramolecular Hydrogen Bond-Controlled Prolyl Amide Isomerization in Glucosyl 3(S)-Hydroxy-5-hydroxymethylproline Hybrids: A Computational Study. J Phys Chem B 2010; 114:11594-602. [DOI: 10.1021/jp1006186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robel B. Teklebrhan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 Canada, and Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4 Canada
| | - Kaidong Zhang
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 Canada, and Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4 Canada
| | - G. Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 Canada, and Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4 Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 Canada, and Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4 Canada
| | - Stacey D. Wetmore
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 Canada, and Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4 Canada
| |
Collapse
|
26
|
Voss E, Arrault A, Bodiguel J, Jamart-Grégoire B. Efficient synthesis of enantiomerically pure (S)-δ-azaproline starting from (R)-α-hydroxy-γ-butyrolactone via the Mitsunobu reaction. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Zhang K, Teklebrhan RB, Schreckenbach G, Wetmore S, Schweizer F. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization. J Org Chem 2009; 74:3735-43. [PMID: 19354261 DOI: 10.1021/jo9003458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide mimics containing spirocyclic glucosyl-(3'-hydroxy-5'-hydroxymethyl)proline hybrids (Glc3'(S)-5'(CH(2)OH)HypHs) with a polar hydroxymethyl substituent at the C-5' position, such as C-terminal ester Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe and C-terminal amide Ac-Glc3'(S)-5'(CH(2)OH)Hyp-N'-CH(3), were synthesized. C-Terminal esters exhibit increased cis population (23-53%) relative to Ac-3(S)HyPro-OMe (17%) or Ac-Pro-OMe (14%) in D(2)O. The prolyl amide cis population is further increased to 38-74% in the C-terminal amide form in D(2)O. Our study shows that the stereochemistry of the hydroxymethyl substituent at the C-5' position of proline permits tuning of the prolyl amide cis/trans isomer ratio. Inversion-magnetization transfer NMR experiments indicate that the stereochemistry of the hydroxymethyl substituent has a dramatic effect on the kinetics of prolyl amide cis/trans isomerization. A 200-fold difference in the trans-to-cis (k(tc)) isomerization and a 90-fold rate difference in the cis-to-trans (k(ct)) isomerization is observed between epimeric C-5' 3 and 4. When compared to reference peptide mimics Ac-Pro-OMe and Ac-3(S)Hyp-OMe, our study demonstrates that a (13-16)-fold decrease in k(tc) and k(ct) is observed for the C-5'(S), while a (5-24)-fold acceleration is observed for the C-5'(R) epimer. DFT calculations indicate that the pyrrolidine ring prefers a C(beta) exo pucker in both Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe diastereoisomers. Computational calculations and chemical shift temperature coefficient (Delta delta/Delta T) experiments indicate that the hydroxymethyl group at C-5' in Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe forms a stabilizing intramolecular hydrogen bond to the carbonyl of the N-acetyl group in both epimeric cis isomers. However, a competing intramolecular hydrogen bond between the hydroxymethyl groups in the pyrrolidine ring and pyran ring stabilizes the trans isomer in the C-5'(S) diastereoisomer. The dramatic differences in the kinetic properties of the diastereoisomeric peptide mimics are rationalized by the presence or absence of an intramolecular hydrogen bond between the hydroxymethyl substituent located at C-5' and the developing lone pair on the nitrogen atom of the N-acetyl group in the transition state.
Collapse
Affiliation(s)
- Kaidong Zhang
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
During molecular recognition of proteins in biological systems, helices, reverse turns, and beta-sheets are dominant motifs. Often there are therapeutic reasons for blocking such recognition sites, and significant progress has been made by medicinal chemists in the design and synthesis of semirigid molecular scaffolds on which to display amino acid side chains. The basic premise is that preorganization of the competing ligand enhances the binding affinity and potential selectivity of the inhibitor. In this chapter, current progress in these efforts is reviewed.
Collapse
|
29
|
Medina JR, Blackledge CW, Erhard KF, Axten JM, Miller WH. Benzyl 2-Cyano-3,3-Dimethyl-1-pyrrolidinecarboxylate, a Versatile Intermediate for the Synthesis of 3,3-Dimethylproline Derivatives. J Org Chem 2008; 73:3946-9. [DOI: 10.1021/jo7027163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jesus R. Medina
- Oncology Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - Charles W. Blackledge
- Oncology Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - Karl F. Erhard
- Oncology Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - Jeffrey M. Axten
- Oncology Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - William H. Miller
- Oncology Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| |
Collapse
|
30
|
Cadamuro S, Reichold R, Kusebauch U, Musiol HJ, Renner C, Tavan P, Moroder L. Conformational Properties of 4-Mercaptoproline and Related Derivatives. Angew Chem Int Ed Engl 2008; 47:2143-6. [DOI: 10.1002/anie.200704310] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Cadamuro S, Reichold R, Kusebauch U, Musiol HJ, Renner C, Tavan P, Moroder L. Konformationseigenschaften des 4-Mercaptoprolins und verwandter Derivate. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
O'Nuallain B, Allen A, Ataman D, Weiss DT, Solomon A, Wall JS. Phage display and peptide mapping of an immunoglobulin light chain fibril-related conformational epitope. Biochemistry 2007; 46:13049-58. [PMID: 17944486 DOI: 10.1021/bi701255m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils and partially unfolded intermediates can be distinguished serologically from native amyloidogenic precursor proteins or peptides. In this regard, we previously had reported that mAb 11-1F4, generated by immunizing mice with a thermally denatured variable domain (VL) fragment of the human kappa4 Bence Jones protein Len, bound to a non-native conformational epitope located within the N-terminal 18 residues of fibrillar, as well as partially denatured, Ig light chains (O'Nuallain, B., et al. (2006) Biochemistry 46, 1240-1247). To define further the antibody binding site, we used random peptide phage display and epitope mapping of VL Len using wild-type and alanine-mutated Len peptides where it was shown that the antibody epitope was reliant on up to 10 of the first 15 residues of protein Len. Comparison of Vkappa and Vlambda N-terminal germline consensus sequences with protein Len and 11-1F4-binding phages indicated that this antibody's cross-reactivity with light chains was related to an invariant proline at position(s) 7 and/or 8, bulky hydrophobic residues at positions 11 and 13, and additionally, to the ability to accommodate amino acid diversity at positions 1-4. Sequence alignments of the phage peptides revealed a central proline, often flanked by aromatic residues. Taken together, these results have provided evidence for the structural basis of the specificity of 11-1F4 for both kappa and lambda light chain fibrils. We posit that the associated binding site involves a rare type VI beta-turn or touch-turn that is anchored by a cis-proline residue. The identification of an 11-1F4-related mimotope should facilitate development of pan-light chain fibril-reactive antibodies that could be used in the diagnosis and treatment of patients with AL amyloidosis.
Collapse
Affiliation(s)
- Brian O'Nuallain
- Human Immunology and Cancer/Alzheimer's Disease and Amyloid-Related Disorders Research Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Pancreatic ribonuclease A (EC 3.1.27.5, RNase) is, perhaps, the best-studied enzyme of the 20th century. It was isolated by René Dubos, crystallized by Moses Kunitz, sequenced by Stanford Moore and William Stein, and synthesized in the laboratory of Bruce Merrifield, all at the Rockefeller Institute/University. It has proven to be an excellent model system for many different types of experiments, both as an enzyme and as a well-characterized protein for biophysical studies. Of major significance was the demonstration by Chris Anfinsen at NIH that the primary sequence of RNase encoded the three-dimensional structure of the enzyme. Many other prominent protein chemists/enzymologists have utilized RNase as a dominant theme in their research. In this review, the history of RNase and its offspring, RNase S (S-protein/S-peptide), will be considered, especially the work in the Merrifield group, as a preface to preliminary data and proposed experiments addressing topics of current interest. These include entropy-enthalpy compensation, entropy of ligand binding, the impact of protein modification on thermal stability, and the role of protein dynamics in enzyme action. In continuing to use RNase as a prototypical enzyme, we stand on the shoulders of the giants of protein chemistry to survey the future.
Collapse
Affiliation(s)
- Garland R Marshall
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
34
|
Kang YK, Byun BJ. Conformational Preferences and cis−trans Isomerization of Azaproline Residue. J Phys Chem B 2007; 111:5377-85. [PMID: 17439267 DOI: 10.1021/jp067826t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational study of N-acetyl-N'-methylamide of azaproline (Ac-azPro-NHMe, the azPro dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the effects of the replacement of the backbone CHalpha group by the nitrogen atom on the conformational preferences and prolyl cis-trans isomerization in the gas phase and in solution (chloroform and water). The incorporation of the Nalpha atom into the prolyl ring results in the different puckering, backbone population, and barriers to prolyl cis-trans isomerization from those of Ac-Pro-NHMe (the Pro dipeptide). In particular, the azPro dipeptide has a dominant backbone conformation D (beta2) with the cis peptide bond preceding the azPro residue in both the gas phase and solution. This may be ascribed to the favorable electrostatic interaction or intramolecular hydrogen bond between the prolyl nitrogen and the amide hydrogen following the azPro residue and to the absence of the unfavorable interactions between electron lone pairs of the acetyl carbonyl oxygen and the prolyl Nalpha. This calculated higher population of the cis peptide bond is consistent with the results from X-ray and NMR experiments. As the solvent polarity increases, the conformations B and B* with the trans peptide bond become more populated and the cis population decreases more, which is opposite to the results for the Pro dipeptide. The conformation B lies between conformations D and A (alpha) and conformation B* is a mirror image of the conformation B on the phi-psi map. The barriers to prolyl cis-trans isomerization for the azPro dipeptide increase with the increase of solvent polarity, and the cis-trans isomerization proceeds through only the clockwise rotation with omega' approximately +120 degrees about the prolyl peptide bond for the azPro dipeptide in the gas phase and in solution, as seen for the Pro dipeptide. The pertinent distance d(N...H-NNHMe) and the pyramidality of imide nitrogen can describe the role of this hydrogen bond in stabilizing the transition state structure and the lower rotational barriers for the azPro dipeptide than those for the Pro dipeptide in the gas phase and in solution.
Collapse
Affiliation(s)
- Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | |
Collapse
|
35
|
Lee HJ, Park HM, Lee KB. The β-turn scaffold of tripeptide containing an azaphenylalanine residue. Biophys Chem 2007; 125:117-26. [PMID: 16890344 DOI: 10.1016/j.bpc.2006.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 11/27/2022]
Abstract
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryangri, Seoul 130-650, Korea
| | | | | |
Collapse
|
36
|
Abstract
The beta-turn is a common motif in both proteins and peptides and often a recognition site in protein interactions. A beta-turn of four sequential residues reverses the direction of the peptide chain and is classified by the phi and psi backbone torsional angles of residues i + 1 and i + 2. The type VI turn usually contains a proline with a cis-amide bond at residue i + 2. Cis-proline analogs that constrain the peptide to adopt a type VI turn led to peptidomimetics with enhanced activity or metabolic stability. To compare the impact of different analogs on amide cis-trans isomerism and peptide conformation, the conformational preference for the cis-amide bond and the type VI turn was investigated at the MP2/6-31+G** level of theory in water (polarizable continuum water model). Analogs stabilize the cis-amide conformations through different mechanisms: (1) 5-alkylproline, with bulky hydrocarbon substituent on the C(delta) of proline, increases the cis-amide population through steric hindrance between the alkyl substituent and the N-terminal residues; (2) oxaproline or thioproline, the oxazolidine- or thiazolidine-derived proline analog, favors interactions between the dipole of the heterocyclic ring and the preceding carbonyl oxygen; and (3) azaproline, containing a nitrogen atom in place of the C(alpha) of proline, prefers the cis-amide bond by lone-pair repulsion between the alpha-nitrogen and the preceding carbonyl oxygen. Preference for the cis conformation was augmented by combining different modifications within a single proline. Azaproline and its derivatives are most effective in stabilizing cis-amide bonds without introducing additional steric bulk to compromise receptor interactions.
Collapse
Affiliation(s)
- Ye Che
- Center for Computational Biology and Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
37
|
Meng HY, Thomas KM, Lee AE, Zondlo NJ. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation. Biopolymers 2006; 84:192-204. [PMID: 16208767 DOI: 10.1002/bip.20382] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.
Collapse
Affiliation(s)
- Hai Yun Meng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
38
|
Che Y, Brooks BR, Marshall GR. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Des 2006; 20:109-30. [PMID: 16622794 DOI: 10.1007/s10822-006-9040-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/13/2006] [Indexed: 01/25/2023]
Abstract
Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Developing small molecules that modulate protein-protein interactions is challenging, owing to the large size of protein-complex interface, the lack of well-defined binding pockets, etc. We describe a general approach based on the "privileged-structure hypothesis" [Che, Ph.D. Thesis, Washington University, 2003] - that any organic templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as protein-complex antagonists--to address the challenges inherent in the discovery of small-molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ye Che
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
39
|
Song JW, Lee HJ, Choi YS, Yoon CJ. Origin of Rotational Barriers of the N−N Bond in Hydrazine: NBO Analysis. J Phys Chem A 2006; 110:2065-71. [PMID: 16451044 DOI: 10.1021/jp055755c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrazine passes through two transition states, TS1 (phi = 0 degrees ) and TS2 (phi = 180 degrees ), in the course of internal rotation around its N-N bond. The origin of the corresponding rotational barriers in hydrazine has been extensively studied by experimental and theoretical methods. Here, we used natural bond orbital (NBO) analysis and energy decomposition of rotational barrier energy (DeltaE(barrier)) to understand the origin of the torsional potential energy profile of this molecule. DeltaE(barrier) was dissected into structural (DeltaE(struc)), steric exchange (DeltaE(steric)), and hyperconjugative (DeltaE(deloc)) energy contributions. In both transition states, the major barrier-forming contribution is DeltaE(deloc). The TS2 barrier is lowered by pyramidalization of nitrogen atoms through lowering DeltaE(struc), not by N-N bond lengthening through lowering DeltaE(steric). Higher pyramidality of nitrogen atoms of TS2 than that of TS1 explains well why the N-N bond of TS2 is longer than that of TS1. Finally, the steric repulsion between nitrogen lone pairs does not determine the rotational barrier; nuclear-nuclear Coulombic repulsion between outer H/H atoms in TS1 plays an important role in increasing DeltaE(struc). Taken together, we explain the reason for the different TS1 and TS2 barriers. We show that NBO analysis is a useful tool for understanding structures and potential energy surfaces of compounds containing the N-N bond.
Collapse
Affiliation(s)
- Jong-Won Song
- Department of Chemistry, Korea University, 1 Anam-dong, Seoul 136-701, Korea
| | | | | | | |
Collapse
|
40
|
Broadrup RL, Wang B, Malachowski WP. A general strategy for the synthesis of azapeptidomimetic lactams. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|