1
|
Huang SC, Zhang YK, Geng Q, Huang QK, Xu JH, Chen YF, Yu HL. Improving the Enantioselectivity of CHMO Brevi1 for Asymmetric Synthesis of Podophyllotoxin Precursor. Chembiochem 2023; 24:e202300582. [PMID: 37728423 DOI: 10.1002/cbic.202300582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
(R)-β-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Å from substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-β-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.
Collapse
Affiliation(s)
- Shou-Cheng Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Ke Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi-Kang Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Feng Chen
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Yan B, Ran X, Gollu A, Cheng Z, Zhou X, Chen Y, Yang ZJ. IntEnzyDB: an Integrated Structure-Kinetics Enzymology Database. J Chem Inf Model 2022; 62:5841-5848. [PMID: 36286319 DOI: 10.1021/acs.jcim.2c01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Data-driven modeling has emerged as a new paradigm for biocatalyst design and discovery. Biocatalytic databases that integrate enzyme structure and function data are in urgent need. Here we describe IntEnzyDB as an integrated structure-kinetics database for facile statistical modeling and machine learning. IntEnzyDB employs a relational database architecture with a flattened data structure, which allows rapid data operation. This architecture also makes it easy for IntEnzyDB to incorporate more types of enzyme function data. IntEnzyDB contains enzyme kinetics and structure data from six enzyme commission classes. Using 1050 enzyme structure-kinetics pairs, we investigated the efficiency-perturbing propensities of mutations that are close or distal to the active site. The statistical results show that efficiency-enhancing mutations are globally encoded and that deleterious mutations are much more likely to occur in close mutations than in distal mutations. Finally, we describe a web interface that allows public users to access enzymology data stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-driven modeling in biocatalysis and molecular evolution.
Collapse
Affiliation(s)
- Bailu Yan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Xiang Zhou
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yiwen Chen
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37205, United States
| |
Collapse
|
3
|
Hu Y, Xu W, Hui C, Xu J, Huang M, Lin X, Wu Q. The mutagenesis of a single site for enhancing or reversing the enantio- or regiopreference of cyclohexanone monooxygenases. Chem Commun (Camb) 2020; 56:9356-9359. [PMID: 32672300 DOI: 10.1039/d0cc03721d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mutagenesis of a "second sphere" switch residue of CHMOAcineto could control its enantio- and regiopreference. Replacing phenylalanine (F) at position 277 of CHMOAcineto into larger tryptophan (W) enabled a significant enhancement of enantio- or regioselectivity toward structurally diverse substrates, moreover, a complete reversal of enantio- or regiopreference was realized by mutating F277 into a range of smaller amino acids (A/C/D/E/G/H/I/K/L/M/N/P/Q/R/S/T/V).
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Tomoiagă RB, Tork SD, Horváth I, Filip A, Nagy LC, Bencze LC. Saturation Mutagenesis for Phenylalanine Ammonia Lyases of Enhanced Catalytic Properties. Biomolecules 2020; 10:biom10060838. [PMID: 32486192 PMCID: PMC7355458 DOI: 10.3390/biom10060838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 01/26/2023] Open
Abstract
Phenylalanine ammonia-lyases (PALs) are attractive biocatalysts for the stereoselective synthesis of non-natural phenylalanines. The rational design of PALs with extended substrate scope, highlighted the substrate specificity-modulator role of residue I460 of Petroselinum crispum PAL. Herein, saturation mutagenesis at key residue I460 was performed in order to identify PcPAL variants of enhanced activity or to validate the superior catalytic properties of the rationally explored I460V PcPAL compared with the other possible mutant variants. After optimizations, the saturation mutagenesis employing the NNK-degeneracy generated a high-quality transformant library. For high-throughput enzyme-activity screens of the mutant library, a PAL-activity assay was developed, allowing the identification of hits showing activity in the reaction of non-natural substrate, p-MeO-phenylalanine. Among the hits, besides the known I460V PcPAL, several mutants were identified, and their increased catalytic efficiency was confirmed by biotransformations using whole-cells or purified PAL-biocatalysts. Variants I460T and I460S were superior to I460V-PcPAL in terms of catalytic efficiency within the reaction of p-MeO-Phe. Moreover, I460T PcPAL maintained the high specificity constant of the wild-type enzyme for the natural substrate, l-Phe. Molecular docking supported the favorable substrate orientation of p-MeO-cinnamic acid within the active site of I460T variant, similarly as shown earlier for I460V PcPAL (PDB ID: 6RGS).
Collapse
|
5
|
Hu Y, Zhang Y, Xu W, Xu J, Lin X, Wu Q. Dual-Enzyme-Catalyzed Synthesis of Enantiocomplementary Polyesters. ACS Macro Lett 2019; 8:1432-1436. [PMID: 35651193 DOI: 10.1021/acsmacrolett.9b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, a series of enantiocomplementary polyesters with either (S)- or (R)-configurations were successfully prepared by applying a dual-enzyme biocatalytic system. In the step of Baeyer-Villiger oxidation, cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto) was engineered rationally to tailor the enantiopreference of mutants, providing (S)- and (R)-lactones, respectively, with high optical purities (up to 99% ee) as polymeric precursors. By subsequent enzymatic ring-opening polymerization of the enantiopure monomers, enantiocomplementary polyesters with high molecular weight (up to 21.8 kDa Mn) were synthesized by lipase CALB/MML. Our research offers an environmentally friendly synthesis route for the production of optically pure lactones and chiral polyesters, which are of particular significance for their application in organic syntheis or biomedical materials.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Weihua Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
6
|
Duan J, Li B, Qin Y, Dong Y, Ren J, Li G. Recent progress in directed evolution of stereoselective monoamine oxidases. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0272-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoamine oxidases (MAOs) use molecular dioxygen as oxidant to catalyze the oxidation of amines to imines. This type of enzyme can be employed for the synthesis of primary, secondary, and tertiary amines by an appropriate deracemization protocol. Consequently, MAOs are an attractive class of enzymes in biocatalysis. However, they also have limitations in enzyme-catalyzed processes due to the often-observed narrow substrate scope, low activity, or poor/wrong stereoselectivity. Therefore, directed evolution was introduced to eliminate these obstacles, which is the subject of this review. The main focus is on recent efforts concerning the directed evolution of four MAOs: monoamine oxidase (MAO-N), cyclohexylamine oxidase (CHAO),D-amino acid oxidase (pkDAO), and 6-hydroxy-D-nicotine oxidase (6-HDNO).
Collapse
|
7
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
8
|
Hu Y, Wang J, Cen Y, Zheng H, Huang M, Lin X, Wu Q. “Top” or “bottom” switches of a cyclohexanone monooxygenase controlling the enantioselectivity of the sandwiched substrate. Chem Commun (Camb) 2019; 55:2198-2201. [DOI: 10.1039/c8cc09951k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single mutation F432I/L or L435A/G remarkably reversed the (−)-selectivity of WT CHMOAcineto.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
- School of Chemistry and Chemical Engineering
| | - Jie Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Yixin Cen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - He Zheng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering
- Queen's University
- UK
| | - Xianfu Lin
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Qi Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
9
|
Ji Y, Mertens AM, Gertler C, Fekiri S, Keser M, Sauer DF, Smith KEC, Schwaneberg U. Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry 2018; 24:16865-16872. [DOI: 10.1002/chem.201803806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Ji
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Alan Maurice Mertens
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Christoph Gertler
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Sallama Fekiri
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Merve Keser
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Kilian E. C. Smith
- Institute for Environmental Research RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
10
|
Li A, Sun Z, Reetz MT. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? Chembiochem 2018; 19:2023-2032. [PMID: 30044530 DOI: 10.1002/cbic.201800339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of, Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
- Department of Chemistry; Philipps University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
11
|
Balke K, Beier A, Bornscheuer UT. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol Adv 2018; 36:247-263. [DOI: 10.1016/j.biotechadv.2017.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
12
|
Abstract
The last decade has seen a dramatic increase in the utilization of enzymes as green and sustainable (bio)catalysts in pharmaceutical and industrial applications. This trend has to a significant degree been fueled by advances in scientists' and engineers' ability to customize native enzymes by protein engineering. A review of the literature quickly reveals the tremendous success of this approach; protein engineering has generated enzyme variants with improved catalytic activity, broadened or altered substrate specificity, as well as raised or reversed stereoselectivity. Enzymes have been tailored to retain activity at elevated temperatures and to function in the presence of organic solvents, salts and pH values far from physiological conditions. However, readers unfamiliar with the field will soon encounter the confusingly large number of experimental techniques that have been employed to accomplish these engineering feats. Herein, we use history to guide a brief overview of the major strategies for protein engineering-past, present, and future.
Collapse
Affiliation(s)
- Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| | - Samantha M Iamurri
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Bisagni S, Abolhalaj M, de Brevern AG, Rebehmed J, Hatti-Kaul R, Mamo G. Enhancing the Activity of a Dietzia
sp. D5 Baeyer-Villiger Monooxygenase towards Cyclohexanone by Saturation Mutagenesis. ChemistrySelect 2017. [DOI: 10.1002/slct.201701212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serena Bisagni
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
- Johnson Matthey; Cambridge Science Park 28 CB4 0FP Cambridge United Kingdom
| | - Milad Abolhalaj
- Department of Immunotechnology; Medicon Village; Scheelevägen 2 22100 Lund Sweden
| | - Alexandre G. de Brevern
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
| | - Joseph Rebehmed
- Inserm U1134; Paris France
- Université Paris Diderot; Sorbonne, Paris Cité, UMR_S 1134; Paris France
- Institut National de la Transfusion Sanguine; Paris France
- Laboratory of Excellence GR-Ex; Paris France
- Department of Computer Science and Mathematics; Lebanese American University; Byblos 1 h401 2010 Lebanon
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| | - Gashaw Mamo
- Biotechnology, Department of Chemistry; Centre for Chemistry and Chemical Engineering; Lund University; Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
14
|
Milker S, Fink MJ, Rudroff F, Mihovilovic MD. Non-hazardous biocatalytic oxidation in Nylon-9 monomer synthesis on a 40 g scale with efficient downstream processing. Biotechnol Bioeng 2017; 114:1670-1678. [PMID: 28409822 DOI: 10.1002/bit.26312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 11/11/2022]
Abstract
This paper describes the development of a biocatalytic process on the multi-dozen gram scale for the synthesis of a precursor to Nylon-9, a specialty polyamide. Such materials are growing in demand, but their corresponding monomers are often difficult to synthesize, giving rise to biocatalytic approaches. Here, we implemented cyclopentadecanone monooxygenase as an Escherichia coli whole-cell biocatalyst in a defined medium, together with a substrate feeding-product removal concept, and an optimized downstream processing (DSP). A previously described hazardous peracid-mediated oxidation was thus replaced with a safe and scalable protocol, using aerial oxygen as oxidant, and water as reaction solvent. The engineered process converted 42 g (0.28 mol) starting material ketone to the corresponding lactone with an isolated yield of 70% (33 g), after highly efficient DSP with 95% recovery of the converted material, translating to a volumetric yield of 8 g pure product per liter. Biotechnol. Bioeng. 2017;114: 1670-1678. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sofia Milker
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria
| | - Michael J Fink
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria
| |
Collapse
|
15
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Li G, Fürst MJLJ, Mansouri HR, Ressmann AK, Ilie A, Rudroff F, Mihovilovic MD, Fraaije MW, Reetz MT. Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Org Biomol Chem 2017; 15:9824-9829. [DOI: 10.1039/c7ob02692g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermostable Baeyer–Villiger monooxygenase TmCHMO and evolved mutants are viable catalysts in stereoselective reactions of structurally different ketones.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | | | | | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | | | - Marco W. Fraaije
- Molecular Enzymology Group
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| |
Collapse
|
17
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
18
|
First chemo-enzymatic synthesis of the ( R)-Taniguchi lactone and substrate profiles of CAMO and OTEMO, two new Baeyer-Villiger monooxygenases. MONATSHEFTE FUR CHEMIE 2016; 148:157-165. [PMID: 28127101 PMCID: PMC5225235 DOI: 10.1007/s00706-016-1873-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/06/2016] [Indexed: 10/31/2022]
Abstract
ABSTRACT This study investigates the substrate profile of cycloalkanone monooxygenase and 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase, two recently discovered enzymes of the Baeyer-Villiger monooxygenase family, used as whole-cell biocatalysts. Biooxidations of a diverse set of ketones were performed on analytical scale: desymmetrization of substituted prochiral cyclobutanones and cyclohexanones, regiodivergent oxidation of terpenones and bicyclic ketones, as well as kinetic resolution of racemic cycloketones. We demonstrated the applicability of the title enzymes in the enantioselective synthesis of (R)-(-)-Taniguchi lactone, a building block for the preparation of various natural product analogs such as ent-quinine. GRAPHICAL ABSTRACT
Collapse
|
19
|
Fink MJ, Snajdrova R, Winninger A, Mihovilovic MD. Regio- and stereoselective synthesis of chiral nitrilolactones using Baeyer–Villiger monooxygenases. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Ferroni FM, Tolmie C, Smit MS, Opperman DJ. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase. PLoS One 2016; 11:e0160186. [PMID: 27472055 PMCID: PMC4966971 DOI: 10.1371/journal.pone.0160186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin. Here we report the catalytic and structural characterization of BVMOAFL838 from Aspergillus flavus. BVMOAFL838 converts linear and aryl ketones with high regioselectivity. Steady-state kinetics revealed BVMOAFL838 to show significant substrate inhibition with phenylacetone, which was more pronounced at low pH, enzyme and buffer concentrations. Para substitutions on the phenyl group significantly improved substrate affinity and increased turnover frequencies. Steady-state kinetics revealed BVMOAFL838 to preferentially oxidize aliphatic ketones and aryl ketones when the phenyl group are separated by at least two carbons from the carbonyl group. The X-ray crystal structure, the first of a fungal BVMO, was determined at 1.9 Å and revealed the typical overall fold seen in type I bacterial BVMOs. The active site Arg and Asp are conserved, with the Arg found in the “in” position. Similar to phenylacetone monooxygenase (PAMO), a two residue insert relative to cyclohexanone monooxygenase (CHMO) forms a bulge within the active site. Approximately half of the “variable” loop is folded into a short α-helix and covers part of the active site entry channel in the non-NADPH bound structure. This study adds to the current efforts to rationalize the substrate scope of BVMOs through comparative catalytic and structural investigation of different BVMOs.
Collapse
Affiliation(s)
- Felix Martin Ferroni
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carmien Tolmie
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martha Sophia Smit
- Department of Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
21
|
Reetz MT. What are the Limitations of Enzymes in Synthetic Organic Chemistry? CHEM REC 2016; 16:2449-2459. [DOI: 10.1002/tcr.201600040] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Manfred T. Reetz
- Fachbereich Chemie (15) Philipps-Universität Marburg Hans-Meerwein Straße; 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
22
|
Fink MJ, Mihovilovic MD. Non-hazardous Baeyer-Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. Chem Commun (Camb) 2015; 51:2874-7. [PMID: 25583122 DOI: 10.1039/c4cc08734h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baeyer-Villiger monooxygenases catalyze the energetically challenging oxidation of levulinates (4-oxopentanoates) to 3-hydroxypropionic acid (3-HPA) derivates under ambient conditions, replacing propellant-grade H2O2 with aerial oxygen as the oxidant. This reaction enables a new pathway to a platform for chemical 3-HPA, an important intermediate in the non-petrol based production of a variety of bulk chemicals (acrylates, malonates, 1,3-propanediol).
Collapse
Affiliation(s)
- Michael J Fink
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | | |
Collapse
|
23
|
|
24
|
Functional divergence between closely related Baeyer-Villiger monooxygenases from Aspergillus flavus. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Zhai XH, Ma YH, Lai DY, Zhou S, Chen ZM. Development of a whole-cell biocatalyst with NADPH regeneration system for biosulfoxidation. J Ind Microbiol Biotechnol 2013; 40:797-803. [PMID: 23729190 DOI: 10.1007/s10295-013-1288-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
A formate dehydrogenase gene (fdh) originated from Candida boidinii was co-expressed in E. coli BL21 (DE3) with the cyclohexanone monooxygenase gene (chmo) cloned from Acinetobacter calcoaceticus NCIMB 9871. The co-expression system was then used as a whole-cell biocatalyst to synthesize chiral phenyl methyl sulfoxide (PMSO) from thioanisole (PMS) and the reaction conditions were investigated. When the initial concentration of PMS was 20 mM, the specific productivity of PMSO in this system was 2.07 μmol g(-1) cw min(-1) (cw: wet cell weight) and the ee value for the R-sulfoxide was 99 %. In contrast, when chmo was the only gene expressed in E. coli, the specific productivity of PMSO was 0.053 μmol g(-1) cw min(-1) with no exact enantioselectivity. Further determination of NADPH concentration in the whole-cell catalysts suggested that co-expression of fdh with chmo significantly improved NADPH supply. Thus, this whole-cell biocatalyst system is highly advantageous for the synthesis of optically pure R-sulfoxide.
Collapse
Affiliation(s)
- Xiao-Hong Zhai
- Lab of Biocatalysis, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | | | | | | | | |
Collapse
|
26
|
Polyak I, Reetz MT, Thiel W. Quantum Mechanical/Molecular Mechanical Study on the Enantioselectivity of the Enzymatic Baeyer–Villiger Reaction of 4-Hydroxycyclohexanone. J Phys Chem B 2013; 117:4993-5001. [DOI: 10.1021/jp4018019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
D-35032 Marburg, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Dudek HM, Popken P, van Bloois E, Duetz WA, Fraaije MW. A generic, whole-cell-based screening method for Baeyer-Villiger monooxygenases. ACTA ACUST UNITED AC 2013; 18:678-87. [PMID: 23536548 DOI: 10.1177/1087057113480390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) have been receiving increasing attention as enzymes useful for biocatalytic applications. Industrial requirements call for rapid and extensive redesign of these enzymes. In response to the need for screening large libraries of BVMO mutants, we established a generic screening method that allows screening of Escherichia coli cells expressing active BVMOs in 96-well plate format. For this, we first developed an expression system for production of phenylacetone monooxygenase (PAMO) in the periplasm of E. coli. This allows probing the enzyme for any target substrate while it is also compatible with extracellular coenzyme regeneration. For coenzyme regeneration, we used phosphite dehydrogenase, which forms phosphate upon NADPH recycling. This allowed the use of a chromogenic molybdate-based phosphate determination assay. The screening procedure was supplemented with a detection method for identification of mutant enzymes that act as NADPH oxidases, thereby excluding false-positives. The whole-cell-based screening method was validated by screening site-saturation libraries of PAMO and resulted in the identification of PAMO mutants with altered catalytic properties. This new method can be used for screening libraries of BVMOs for activity with any desired substrate and therefore is a powerful tool for engineering of these enzymes.
Collapse
Affiliation(s)
- Hanna M Dudek
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Kuriata-Adamusiak R, Strub D, Lochyński S. Application of microorganisms towards synthesis of chiral terpenoid derivatives. Appl Microbiol Biotechnol 2012; 95:1427-36. [PMID: 22846902 PMCID: PMC3427490 DOI: 10.1007/s00253-012-4304-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 11/27/2022]
Abstract
Biotransformations are a standard tool of green chemistry and thus are following the rules of sustainable development. In this article, we describe the most common types of reactions conducted by microorganisms applied towards synthesis of chiral terpenoid derivatives. Potential applications of obtained products in various areas of industry and agriculture are shown. We also describe biological activity of presented compounds. Stereoselective hydroxylation, epoxidation, Baeyer-Villiger oxidation, stereo- and enantioselective reduction of ketones, and various kinetic resolutions carried out by bacteria and fungi have been reviewed. Mechanistic considerations regarding chemical and enzymatic reactions are presented. We also briefly describe modern approaches towards enhancing desired enzymatic activity in order to apply modified biocatalysts as an efficient tool and green alternative to chemical catalysts used in industry.
Collapse
Affiliation(s)
- Renata Kuriata-Adamusiak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
| | - Daniel Strub
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
| | - Stanisław Lochyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
- Institute of Cosmetology, Wrocław College of Physiotherapy, Kościuszki 4, 50–038 Wrocław, Poland
| |
Collapse
|
29
|
Zhang ZG, Parra LP, Reetz MT. Protein Engineering of Stereoselective Baeyer-Villiger Monooxygenases. Chemistry 2012; 18:10160-72. [DOI: 10.1002/chem.201202163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Polyak I, Reetz MT, Thiel W. Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction. J Am Chem Soc 2012; 134:2732-41. [DOI: 10.1021/ja2103839] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse,
D-35032 Marburg, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
van Leeuwen JGE, Wijma HJ, Floor RJ, van der Laan JM, Janssen DB. Directed Evolution Strategies for Enantiocomplementary Haloalkane Dehalogenases: From Chemical Waste to Enantiopure Building Blocks. Chembiochem 2011; 13:137-48. [DOI: 10.1002/cbic.201100579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 01/06/2023]
|
32
|
|
33
|
Dudek HM, de Gonzalo G, Torres Pazmiño DE, Stępniak P, Wyrwicz LS, Rychlewski L, Fraaije MW. Mapping the substrate binding site of phenylacetone monooxygenase from Thermobifida fusca by mutational analysis. Appl Environ Microbiol 2011; 77:5730-8. [PMID: 21724896 PMCID: PMC3165276 DOI: 10.1128/aem.00687-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/18/2011] [Indexed: 11/20/2022] Open
Abstract
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.
Collapse
Affiliation(s)
- Hanna M. Dudek
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gonzalo de Gonzalo
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel E. Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Piotr Stępniak
- Bioinfobank Institute, Limanowskiego 24A, 60-744 Poznań, Poland
| | - Lucjan S. Wyrwicz
- Bioinfobank Institute, Limanowskiego 24A, 60-744 Poznań, Poland
- Laboratory of Bioinformatics and Systems Biology, M. Skłodowska-Curie Cancer Centre and Institute of Oncology, WK Roentgena 5, 02-781 Warsaw, Poland
| | | | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
35
|
Hulley ME, Toogood HS, Fryszkowska A, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Chembiochem 2011; 11:2433-47. [PMID: 21064170 DOI: 10.1002/cbic.201000527] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96-well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site-saturation libraries targeted at active site residues of PETN reductase, are described. Two mutants (T26S and W102F) were shown to have switched in substrate enantiopreference against substrates (E)-2-aryl-1-nitropropene and α-methyl-trans-cinnamaldehyde, respectively, with an increase in ee (62 % (R) for W102F). In addition, the detection of mutants with weak activity against α,β-unsaturated carboxylic acid substrates showed progress in the expansion of the substrate range of PETN reductase. These methods can readily be adapted for rapid evolution of enzyme variants with other oxidoreductase enzymes.
Collapse
Affiliation(s)
- Martyn E Hulley
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Wojaczyńska E, Wojaczyński J. Enantioselective synthesis of sulfoxides: 2000-2009. Chem Rev 2010; 110:4303-56. [PMID: 20415478 DOI: 10.1021/cr900147h] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Elzbieta Wojaczyńska
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | | |
Collapse
|
37
|
Reetz MT. Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator‐Quelle für asymmetrische Reaktionen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000826] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
38
|
Reetz MT. Laboratory Evolution of Stereoselective Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions. Angew Chem Int Ed Engl 2010; 50:138-74. [DOI: 10.1002/anie.201000826] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
39
|
Rehdorf J, Mihovilovic M, Fraaije M, Bornscheuer U. Enzymatic Synthesis of Enantiomerically Pure β-Amino Ketones, β-Amino Esters, and β-Amino Alcohols with Baeyer-Villiger Monooxygenases. Chemistry 2010; 16:9525-35. [DOI: 10.1002/chem.201001480] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Rioz-Martínez A, de Gonzalo G, Torres Pazmiño DE, Fraaije MW, Gotor V. Synthesis of Chiral 3-Alkyl-3,4-dihydroisocoumarins by Dynamic Kinetic Resolutions Catalyzed by a Baeyer−Villiger Monooxygenase. J Org Chem 2010; 75:2073-6. [DOI: 10.1021/jo902519j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Rioz-Martínez
- Departamento de Química Orgánica e Inorgánica, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica e Inorgánica, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Daniel E. Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto de Biotecnología de Asturias, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
41
|
Protein engineering of microbial enzymes. Curr Opin Microbiol 2010; 13:274-82. [PMID: 20171138 DOI: 10.1016/j.mib.2010.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/20/2022]
Abstract
Protein engineering has emerged as an important tool to overcome the limitations of natural enzymes as biocatalysts. Recent advances have mainly focused on applying directed evolution to enzymes, especially important for organic synthesis, such as monooxygenases, ketoreductases, lipases or aldolases in order to improve their activity, enantioselectivity, and stability. The combination of directed evolution and rational protein design using computational tools is becoming increasingly important in order to explore enzyme sequence-space and to create improved or novel enzymes. These developments should allow to further expand the application of microbial enzymes in industry.
Collapse
|
42
|
Lau PCK, Leisch H, Yachnin BJ, Mirza IA, Berghuis AM, Iwaki H, Hasegawa Y. Sustained Development in Baeyer-Villiger Biooxidation Technology. ACS SYMPOSIUM SERIES 2010. [DOI: 10.1021/bk-2010-1043.ch024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Brahm J. Yachnin
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - I. Ahmad Mirza
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Albert M. Berghuis
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Hiroaki Iwaki
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Yoshie Hasegawa
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
43
|
Park YC, Shaffer CEH, Bennett GN. Microbial formation of esters. Appl Microbiol Biotechnol 2009; 85:13-25. [PMID: 19714327 DOI: 10.1007/s00253-009-2170-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 12/22/2022]
Abstract
Small aliphatic esters are important natural flavor and fragrance compounds and have numerous uses as solvents and as chemical intermediates. Besides the chemical or lipase-catalyzed formation of esters from alcohols and organic acids, small volatile esters are made by several biochemical routes in microbes. This short review will cover the biosynthesis of esters from acyl-CoA and alcohol condensation, from oxidation of hemiacetals formed from aldehydes and alcohols, and from the insertion of oxygen adjacent to the carbonyl group in a straight chain or cyclic ketone by Baeyer-Villiger monooxygenases. The physiological role of the ester-forming reactions can allow degradation of ketones for use as a carbon source and may play a role in detoxification of aldehydes or recycling cofactors. The enzymes catalyzing each of these processes have been isolated and characterized, and a number of genes encoding the proteins from various microbes have been cloned and functionally expressed. The use of these ester-forming organisms or recombinant organisms expressing the appropriate genes as biocatalysts in biotechnology to make specific esters and chiral lactones has been studied in recent years.
Collapse
Affiliation(s)
- Yong Cheol Park
- Department of General Education, Kookmin University, Seoul, South Korea
| | | | | |
Collapse
|
44
|
Bougioukou D, Kille S, Taglieber A, Reetz M. Directed Evolution of an Enantioselective Enoate-Reductase: Testing the Utility of Iterative Saturation Mutagenesis. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900644] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Carballeira J, Quezada M, Hoyos P, Simeó Y, Hernaiz M, Alcantara A, Sinisterra J. Microbial cells as catalysts for stereoselective red–ox reactions. Biotechnol Adv 2009; 27:686-714. [DOI: 10.1016/j.biotechadv.2009.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/26/2009] [Accepted: 05/04/2009] [Indexed: 01/31/2023]
|
46
|
Mirza IA, Yachnin BJ, Wang S, Grosse S, Bergeron H, Imura A, Iwaki H, Hasegawa Y, Lau PCK, Berghuis AM. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. J Am Chem Soc 2009; 131:8848-54. [PMID: 19385644 DOI: 10.1021/ja9010578] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O(2) as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP(+) in two distinct states, to resolutions of 2.3 and 2.2 A. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.
Collapse
Affiliation(s)
- I Ahmad Mirza
- Department of Biochemistry, McGill University, 3649 Prom Sir William Osler, Bellini Pavilion, Room 466, Montreal, QC, Canada H3G 0B1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sandström AG, Engström K, Nyhlén J, Kasrayan A, Bäckvall JE. Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid†. Protein Eng Des Sel 2009; 22:413-20. [DOI: 10.1093/protein/gzp019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Szolkowy C, Eltis LD, Bruce NC, Grogan G. Insights into Sequence-Activity Relationships amongst Baeyer-Villiger Monooxygenases as Revealed by the Intragenomic Complement of Enzymes fromRhodococcus jostiiRHA1. Chembiochem 2009; 10:1208-17. [DOI: 10.1002/cbic.200900011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Masayama A, Tsukada K, Ikeda C, Nakano H, Iwasaki Y. Isolation of Phospholipase D Mutants Having Phosphatidylinositol-Synthesizing Activity with Positional Specificity onmyo-Inositol. Chembiochem 2009; 10:559-64. [DOI: 10.1002/cbic.200800651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Abstract
Redox-active enzymes perform many key biological reactions. The electron transfer process is complex, not only because of its versatility, but also because of the intricate and delicate modulation exerted by the protein scaffold on the redox properties of the catalytic sites. Nowadays, there is a wealth of information available about the catalytic mechanisms of redox-active enzymes and the time is propitious for the development of projects based on the protein engineering of redox-active enzymes. In this review, we aim to provide an updated account of the available methods used for protein engineering, including both genetic and chemical tools, which are usually reviewed separately. Specific applications to redox-active enzymes are mentioned within each technology, with emphasis on those cases where the generation of novel functionality was pursued. Finally, we focus on two emerging fields in the protein engineering of redox-active enzymes: the construction of novel nucleic acid-based catalysts and the remodeling of intra-molecular electron transfer networks. We consider that the future development of these areas will represent fine examples of the concurrence of chemical and genetic tools.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|