1
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Gimenez Molina A, Raguraman P, Delcomyn L, Veedu RN, Nielsen P. Oligonucleotides containing 2'-O-methyl-5-(1-phenyl-1,2,3-triazol-4-yl)uridines demonstrate increased affinity for RNA and induce exon-skipping in vitro. Bioorg Med Chem 2022; 55:116559. [PMID: 34999527 DOI: 10.1016/j.bmc.2021.116559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022]
Abstract
The nucleotide monomer containing the 1-phenyl-1,2,3-triazole group attached to the 5-position of 2'-O-methyluridine is hereby presented together with a derivative further substituted with a p-sulfonamide group on the phenyl ring. Both were conveniently synthesised, and synergistic effect of the modifications were demonstrated when introduced into oligonucleotides and hybridised to complementary RNA. The combination of stacking of the phenyltriazoles and the conformational steering from the 2'-OMe group gave thermally very stable duplexes. Exon skipping in the distrophin transcript using 20-mer 2'-OMePS sequences with two phenyltriazoles introduced in different positions with and without the sulfonamide demonstrated efficient exon skipping but at the same level as the 2'-OMePS reference ASO.
Collapse
Affiliation(s)
- Alejandro Gimenez Molina
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Prithi Raguraman
- Centre for Molecular Medicine and Innovative therapeutics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Line Delcomyn
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative therapeutics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Romero-Pérez S, López-Martín I, Martos-Maldonado MC, Somoza Á, González-Rodríguez D. Synthesis of Phosphoramidite Monomers Equipped with Complementary Bases for Solid-Phase DNA Oligomerization. Org Lett 2020; 22:41-45. [PMID: 31860314 DOI: 10.1021/acs.orglett.9b03801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the preparation of two monomers that bear complementary nucleobases at the edges (guanine-2'-deoxycytidine and 2-aminoadenine-2'-deoxyuridine) and that are conveniently protected and activated for solid-phase automated DNA synthesis. We report the optimized synthetic routes leading to the four nucleobase derivatives involved, their cross-coupling reactions into dinucleobase-containing monomers, and their oligomerization in the DNA synthesizer.
Collapse
Affiliation(s)
- Sonia Romero-Pérez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain.,NanoBiotechnology Research Group , Instituto IMDEA Nanociencia , 28049 Madrid , Spain
| | - Isabel López-Martín
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Manuel C Martos-Maldonado
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Álvaro Somoza
- NanoBiotechnology Research Group , Instituto IMDEA Nanociencia , 28049 Madrid , Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem) , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
4
|
Fujii A, Nakagawa O, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S. Oligonucleotides Containing Phenoxazine Artificial Nucleobases: Triplex-Forming Abilities and Fluorescence Properties. Chembiochem 2019; 21:860-864. [PMID: 31568630 DOI: 10.1002/cbic.201900536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 11/11/2022]
Abstract
1,3-Diaza-2-oxophenoxazine ("phenoxazine"), a tricyclic cytosine analogue, can strongly bind to guanine moieties and improve π-π stacking effects with adjacent bases in a duplex. Phenoxazine has been widely used for improving duplex-forming abilities. In this study, we have investigated whether phenoxazine and its analogue, 1,3,9-triaza-2-oxophenoxazine (9-TAP), could improve triplex-forming abilities. A triplex-forming oligonucleotide (TFO) incorporating a phenoxazine component was found to show considerably decreased binding affinity with homopurine/homopyrimidine double-stranded DNA, so the phenoxazine system was considered not to function as either a protonated cytosine or thymine analogue. Alternatively, a 9-TAP-containing artificial nucleobase developed by us earlier as a new phenoxazine analogue functioned as a thymine analogue with respect to AT base pairs in a parallel triplex DNA motif. The fluorescence of the 9-TAP moiety was maintained even in triplex (9-TAP:AT) formation, so 9-TAP might be useful as an imaging tool for various oligonucleotide nanotechnologies requiring triplex formation.
Collapse
Affiliation(s)
- Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Natsumi Nozaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Mansot J, Aubert S, Duchemin N, Vasseur JJ, Arseniyadis S, Smietana M. A rational quest for selectivity through precise ligand-positioning in tandem DNA-catalysed Friedel-Crafts alkylation/asymmetric protonation. Chem Sci 2019; 10:2875-2881. [PMID: 30996865 PMCID: PMC6429601 DOI: 10.1039/c8sc05543b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Covalent anchorage of a metallic co-factor to a DNA-based architecture is merely the only way to ensure an accurate positioning of a catalytic site within the chiral micro-environment offered by the DNA double helix. Ultimately, it also allows a fine-tuning of the catalytic pocket through simple synthetic modifications of the DNA sequence. Here, we report highly selective copper(ii)-catalysed asymmetric Friedel-Crafts conjugate addition/enantioselective protonation, which is due to a careful positioning of a bipyridine ligand within a DNA framework. Most importantly, this study unveils specific structural features that account for an optimal chirality transfer from the duplex to the Friedel-Crafts adducts.
Collapse
Affiliation(s)
- Justine Mansot
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| | - Sidonie Aubert
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Nicolas Duchemin
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| | - Stellios Arseniyadis
- School of Biological and Chemical Sciences , Queen Mary University of London , Joseph Priestley Building, Mile End Road , London E1 4NS , UK .
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron , CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34095 Montpellier , France .
| |
Collapse
|
6
|
Le BT, Hornum M, Sharma PK, Nielsen P, Veedu RN. Nucleobase-modified antisense oligonucleotides containing 5-(phenyltriazol)-2′-deoxyuridine nucleotides induce exon-skipping in vitro. RSC Adv 2017. [DOI: 10.1039/c7ra10964d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We investigated the potential of nucleobase-modified antisense oligonucleotides to induce exon-skipping, and found that 5-(phenyltriazol)-2′-deoxyuridine-modified antisense oligonucleotides induced efficient exon-skipping in vitro.
Collapse
Affiliation(s)
- Bao T. Le
- Centre for Comparative Genomics
- Murdoch University
- Perth
- Australia-6150
- Perron Institute for Neurological and Translational Science
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Pawan K. Sharma
- Department of Chemistry
- Kurukshetra University
- Kurukshetra-113-119
- India
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Rakesh N. Veedu
- Centre for Comparative Genomics
- Murdoch University
- Perth
- Australia-6150
- Perron Institute for Neurological and Translational Science
| |
Collapse
|
7
|
Taskova M, Madsen CS, Jensen KJ, Hansen LH, Vester B, Astakhova K. Antisense Oligonucleotides Internally Labeled with Peptides Show Improved Target Recognition and Stability to Enzymatic Degradation. Bioconjug Chem 2016; 28:768-774. [PMID: 28292178 DOI: 10.1021/acs.bioconjchem.6b00567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Specific target binding and stability in diverse biological media is of crucial importance for applications of synthetic oligonucleotides as diagnostic and therapeutic tools. So far, these issues have been addressed by chemical modification of oligonucleotides and by conjugation with a peptide, most often at the terminal position of the oligonucleotide. Herein, we for the first time systematically investigate the influence of internally attached short peptides on the properties of antisense oligonucleotides. We report the synthesis and internal double labeling of 21-mer oligonucleotides that target the BRAF V600E oncogene, with a library of rationally designed peptides employing CuAAC "click" chemistry. The peptide sequence has an influence on the specificity and affinity of target DNA/RNA binding. We also investigated the impact of locked nucleic acids (LNAs) on the latter. Lysine residues improve binding of POCs to target DNA and RNA, whereas the distance to lysine correlates exclusively with a decrease in binding of mismatched RNA targets. Glycine and tyrosine residues affect target binding as well. Importantly, the resistance of POCs to enzymatic degradation is dramatically improved by the internal attachment of peptides but not by LNA alone. Independently of the peptide sequence, the conjugates are stable for up to 24 h in 90% human serum and duplexes of POCs with complementary DNA for up to 160 h in 90% human serum. Such excellent stability has not been previously reported for DNA and makes internally labeled POCs an exciting object of study, i.e., showing high target specificity and simultaneous stability in biological media.
Collapse
Affiliation(s)
| | - Charlotte S Madsen
- Department of Chemistry, University of Copenhagen , Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen , Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | | | | | |
Collapse
|
8
|
Ingale SA, Seela F. 7-Deaza-2′-deoxyguanosine: Selective Nucleobase Halogenation, Positional Impact of Space-Occupying Substituents, and Stability of DNA with Parallel and Antiparallel Strand Orientation. J Org Chem 2016; 81:8331-42. [DOI: 10.1021/acs.joc.6b01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sachin A. Ingale
- Laboratory
of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory
of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Laboratorium
für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße
7, 49069 Osnabrück, Germany
| |
Collapse
|
9
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
10
|
Hornum M, Djukina A, Sassnau AK, Nielsen P. Synthesis of new C-5-triazolyl-functionalized thymidine analogs and their ability to engage in aromatic stacking in DNA : DNA and DNA : RNA duplexes. Org Biomol Chem 2016; 14:4436-47. [DOI: 10.1039/c6ob00609d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stacking interactions of substituted triazoles in the major groove were studied, and with a polar uracil, increased duplex stabilities were found.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center
- Department of Physics
- Chemistry & Pharmacy
- University of Southern Denmark
- DK-5230 Odense
| | - Alevtina Djukina
- Nucleic Acid Center
- Department of Physics
- Chemistry & Pharmacy
- University of Southern Denmark
- DK-5230 Odense
| | - Ann-Katrin Sassnau
- Nucleic Acid Center
- Department of Physics
- Chemistry & Pharmacy
- University of Southern Denmark
- DK-5230 Odense
| | - Poul Nielsen
- Nucleic Acid Center
- Department of Physics
- Chemistry & Pharmacy
- University of Southern Denmark
- DK-5230 Odense
| |
Collapse
|
11
|
Kumar P, Sharma PK, Hansen J, Jedinak L, Reslow-Jacobsen C, Hornum M, Nielsen P. Three new double-headed nucleotides with additional nucleobases connected to C-5 of pyrimidines; synthesis, duplex and triplex studies. Bioorg Med Chem 2015; 24:742-9. [PMID: 26778611 DOI: 10.1016/j.bmc.2015.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
In the search for double-coding DNA-systems, three new pyrimidine nucleosides, each coded with an additional nucleobase anchored to the major groove face, are synthesized. Two of these building blocks carry a thymine at the 5-position of 2'-deoxyuridine through a methylene linker and a triazolomethylene linker, respectively. The third building block carries an adenine at the 6-position of pyrrolo-2'-deoxycytidine through a methylene linker. These double-headed nucleosides are introduced into oligonucleotides and their effects on the thermal stabilities of duplexes are studied. All studied double-headed nucleotide monomers reduce the thermal stability of the modified duplexes, which is partially compensated by using consecutive incorporations of the modified monomers or by flanking the new double-headed analogs with members of our former series containing propyne linkers. Also their potential in triplex-forming oligonucleotides is studied for two of the new double-headed nucleotides as well as the series of analogs with propyne linkers. The most stable triplexes are obtained with single incorporations of additional pyrimidine nucleobases connected via the propyne linker.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
| | - Jonas Hansen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lukas Jedinak
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Reslow-Jacobsen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
12
|
Hornum M, Kumar P, Podsiadly P, Nielsen P. Increasing the Stability of DNA:RNA Duplexes by Introducing Stacking Phenyl-Substituted Pyrazole, Furan, and Triazole Moieties in the Major Groove. J Org Chem 2015; 80:9592-602. [PMID: 26334359 DOI: 10.1021/acs.joc.5b01577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Consecutive incorporations of our previously published thymidine analogue, 5-(1-phenyl-1H-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W in oligonucleotides, has demonstrated significant duplex-stabilizing properties due to its efficient staking properties in the major groove of DNA:RNA duplexes. The corresponding 2'-deoxycytidine analogue is not as well-accommodated in duplexes, however, due to its clear preference for the ring-flipped coplanar conformation. In our present work, we have used ab initio calculations to design two new building blocks, 5-(5-phenylfuran-2-yl)-2'-deoxycytidine monomer Y and 5-(1-phenyl-1H-pyrazol-3-yl)-2'-deoxycytidine monomer Z, that emulate the conformation of W. These monomers were synthesized by Suzuki-Miyaura couplings, and the pyrazole moiety was obtained in a cycloaddition from N-phenylsydnone. We show that the novel analogues Y and Z engage in efficient stacking either with themselves or with W due to a better overlap of the aromatic moieties. Importantly, we demonstrate that this translates into very thermally stable DNA:RNA duplexes, thus making Y and especially Z good candidates for improving the binding affinities of oligonucleotide-based therapeutics. Since we now have both efficiently stacking T and C analogues in hand, any purine rich stretch can be effectively targeted using these simple analogues. Notably, we show that the introduction of the aromatic rings in the major groove does not significantly change the helical geometry.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Patricia Podsiadly
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
13
|
Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2015. [PMID: 26222265 DOI: 10.1089/nat.2015.0547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the effect of introducing a single incorporation of 2-thio-deoxythymidine (2S-dT) or C5-Triazolylphenyl-deoxythymidine (5-TrPh-dT) at four positions within the gap region of RNase H gapmer antisense oligonucleotides (ASOs) for reducing wild-type and mutant huntingtin mRNA in human patient fibroblasts. We show that these modifications can modulate processing of the ASO/RNA heteroduplexes by recombinant human RNase H1 in a position-dependent manner. We also created a structural model of the catalytic domain of human RNase H bound to ASO/RNA heteroduplexes to rationalize the activity and selectivity observations in cells and in the biochemical assays. Our results highlight the ability of chemical modifications in the gap region to produce profound changes in ASO behavior.
Collapse
Affiliation(s)
| | - Pawan Kumar
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | | - Andrew Watt
- 1 Isis Pharmaceuticals , Carlsbad, California
| | - Pawan K Sharma
- 3 Department of Chemistry, Kurukshetra University , Kurukshetra, India
| | - Poul Nielsen
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | |
Collapse
|
14
|
Kumar P, Hornum M, Nielsen LJ, Enderlin G, Andersen NK, Len C, Hervé G, Sartori G, Nielsen P. High-affinity RNA targeting by oligonucleotides displaying aromatic stacking and amino groups in the major groove. Comparison of triazoles and phenyl substituents. J Org Chem 2014; 79:2854-63. [PMID: 24611639 DOI: 10.1021/jo4025896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three 5-modified 2'-deoxyuridine nucleosides were synthesized and incorporated into oligonucleotides and compared with the previously published 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W. The introduction of an aminomethyl group on the phenyl group led to monomer X, which was found to thermally stabilize a 9-mer DNA:RNA duplex, presumably through the partial neutralization of the negative charge of the backbone. By also taking advantage of the stacking interactions in the major groove of two or more of the monomer X, an extremely high thermal stability was obtained. A regioisomer of the phenyltriazole substituent, that is the 5-(4-phenyl-1,2,3-triazol-1-yl)-2'-deoxyuridine monomer Y, was found to destabilize the DNA:RNA duplex significantly, but stacking in the major groove compensated for this when two to four monomers were incorporated consecutively. Finally, the 5-phenyl-2'-deoxyuridine monomer Z was incorporated for comparison, and it was found to give a more neutral influence on duplex stability indicating less efficient stacking interactions. The duplexes were investigated by CD spectroscopy and MD simulations.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Astakhova IK, Hansen LH, Vester B, Wengel J. Peptide-LNA oligonucleotide conjugates. Org Biomol Chem 2013; 11:4240-9. [PMID: 23681061 DOI: 10.1039/c3ob40786a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA references. Molecular modeling suggests strong interactions between positively charged regions of the peptides and the negative oligonucleotide backbones which leads to clamping of the peptides in a fixed orientation along the duplexes.
Collapse
Affiliation(s)
- I Kira Astakhova
- Nucleic Acid Center and the Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
16
|
Ingale SA, Mei H, Leonard P, Seela F. Ethynyl side chain hydration during synthesis and workup of "clickable" oligonucleotides: bypassing acetyl group formation by triisopropylsilyl protection. J Org Chem 2013; 78:11271-82. [PMID: 24138578 DOI: 10.1021/jo401780u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clickable oligonucleotides with ethynyl residues in the 5-position of pyrimidines ((eth)dC and (eth)dU) or the 7-position of 7-deazaguanine ((eth)c(7)G(d)) are hydrated during solid-phase oligonucleotide synthesis and workup conditions. The side products were identified as acetyl derivatives by MALDI-TOF mass spectra of oligonucleotides and by detection of modified nucleosides after enzymatic phosphodiester hydrolysis. Ethynyl → acetyl group conversion was also studied on ethynylated nucleosides under acidic and basic conditions. It could be shown that side chain conversion depends on the nucleobase structure. Triisopropylsilyl residues were introduced to protect ethynyl residues from hydration. Pure, acetyl group free oligonucleotides were isolated after desilylation in all cases.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | |
Collapse
|
17
|
Mahesh Kumar J, Idris MM, Srinivas G, Vinay Kumar P, Meghah V, Kavitha M, Reddy CR, Mainkar PS, Pal B, Chandrasekar S, Nagesh N. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine. PLoS One 2013; 8:e70798. [PMID: 23976957 PMCID: PMC3747139 DOI: 10.1371/journal.pone.0070798] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 01/10/2023] Open
Abstract
Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3) and non-nucleoside 1,2,3-triazoles (L4-L14) were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2) and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3), demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM) among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3) cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA) than non quadruplex forming DNA (NQF DNA). T(m) of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA). From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3) interact with quadruplex DNA with significantly higher affinity (K(d)≈10⁻⁷ M). Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands are useful for improving and building potential pro-apoptotic ligands.
Collapse
Affiliation(s)
| | | | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Mitta Kavitha
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
18
|
Cho J, Lee S, Hwang S, Kim SH, Kim JS, Kim S. Calix[2]triazole[2]arenes; A Class of Hybrid Heterocalixarenes. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis and hybridization properties of oligonucleotides modified with 5-(1-aryl-1,2,3-triazol-4-yl)-2'-deoxyuridines. Org Biomol Chem 2013; 10:8575-8. [PMID: 23042241 DOI: 10.1039/c2ob26717a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligonucleotides modified with consecutive incorporations of 5-(1-aryl-1,2,3-triazol-4-yl)-2'-deoxyuridine monomers display strong thermal affinity and binding specificity toward RNA targets, due to formation of chromophore arrays in the major groove.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho, PO Box 442343, Moscow, ID 83844-2343, USA
| | | | | |
Collapse
|
20
|
Efthymiou T, Gong W, Desaulniers JP. Chemical architecture and applications of nucleic acid derivatives containing 1,2,3-triazole functionalities synthesized via click chemistry. Molecules 2012; 17:12665-703. [PMID: 23103533 PMCID: PMC6268694 DOI: 10.3390/molecules171112665] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/16/2022] Open
Abstract
There is considerable attention directed at chemically modifying nucleic acids with robust functional groups in order to alter their properties. Since the breakthrough of copper-assisted azide-alkyne cycloadditions (CuAAC), there have been several reports describing the synthesis and properties of novel triazole-modified nucleic acid derivatives for potential downstream DNA- and RNA-based applications. This review will focus on highlighting representative novel nucleic acid molecular structures that have been synthesized via the “click” azide-alkyne cycloaddition. Many of these derivatives show compatibility for various applications that involve enzymatic transformation, nucleic acid hybridization, molecular tagging and purification, and gene silencing. The details of these applications are discussed. In conclusion, the future of nucleic acid analogues functionalized with triazoles is promising.
Collapse
Affiliation(s)
| | | | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
21
|
Kumar P, Shaikh KI, Jørgensen AS, Kumar S, Nielsen P. Three pyrene-modified nucleotides: synthesis and effects in secondary nucleic acid structures. J Org Chem 2012; 77:9562-73. [PMID: 23039223 DOI: 10.1021/jo301571s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthesis of three pyrene-modified nucleosides was accomplished using the CuAAC reaction. Hereby, pyrene is attached either to the 5'-position of thymidine or to the 2'-position of 2'-deoxyuridine through triazolemethylene linkers, or to the 2'-position of 2'-deoxyuridine through a more rigid triazole linker. The three nucleosides were incorporated into oligonucleotides, and these were combined in different duplexes and other secondary structures, which were analyzed by thermal stability and fluorescence studies. The three monomers were found to have different impacts on the nucleic acid complexes. Hence, pyrene attached to the 5'-position shows a tendency for intercalation into the duplex as indicated by a general decrease in fluorescence intensity followed by an increase in duplex thermal stability. Pyrene attached to the 2'-position through a rigid triazole linker also shows a tendency for intercalation but with decrease in duplex stability, whereas the pyrene attached to the 2'-position through a triazolemethylene linker is primarily situated in the minor groove as indicated by an increase in fluorescence but here in most cases leading to increase in duplex stability. All three pyrene nucleotides lead to thermal stabilization of bulged duplexes and three-way junctions. In some cases when two pyrenes were introduced into the core of these complexes, the formation or disappearance of a fluorescence excimer band can be used to indicate the hybridization process. Hereby these oligonucleotides can act as specific recognition probes.
Collapse
Affiliation(s)
- Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
22
|
Seela F, Mei H, Xiong H, Budow S, Eickmeier H, Reuter H. 5-Ethynyl-2'-deoxycytidine: a DNA building block with a 'clickable' side chain. Acta Crystallogr C 2012; 68:o395-8. [PMID: 23007541 DOI: 10.1107/s0108270112038267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/14/2023] Open
Abstract
The title compound [systematic name: 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-ethynylpyrimidin-2(1H)-one], C(11)H(13)N(3)O(4), shows two conformations in the crystalline state. The N-glycosylic bonds of both conformers adopt similar conformations, with χ = -149.2 (1)° for conformer (I-1) and -151.4 (1)° for conformer (I-2), both in the anti range. The sugar residue of (I-1) shows a C2'-endo envelope conformation ((2)E, S-type), with P = 164.7 (1)° and τ(m) = 36.9 (1)°, while (I-2) shows a major C3'-exo sugar pucker (C3'-exo-C2'-endo, (3)T(2), S-type), with P = 189.2 (1)° and τ(m) = 33.3 (1)°. Both conformers participate in the formation of a layered three-dimensional crystal structure with a chain-like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.
Collapse
Affiliation(s)
- Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Kumar P, Chandak N, Nielsen P, Sharma PK. Sulfonamide bearing oligonucleotides: simple synthesis and efficient RNA recognition. Bioorg Med Chem 2012; 20:3843-9. [PMID: 22579616 DOI: 10.1016/j.bmc.2012.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/14/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
Abstract
Four pyrimidine nucleosides wherein a benzensulfonamide group is linked to the C-5 position of the uracil nucleobase through a triazolyl or an alkynyl linker were prepared by Cu(I)-assisted azide-alkyne cycloadditions (CuAAC) or Sonogashira reactions, respectively, and incorporated into oligonucleotides. Efficient π-π-stacking between two or more phenyltriazoles in the major groove was found to increase the thermal stability of a DNA:RNA duplex significantly. On the other hand, the alkynyl group was not as efficient in stacking as the triazolyl group. No effect of positional orientation of the sulfonamide group on the stacking efficiency was observed, and the most stable DNA:RNA duplex contained four consecutive sulfonamide substituted phenyltriazole moieties in the major groove.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
| | | | | | | |
Collapse
|
24
|
Seela F, Xiong H, Budow S, Eickmeier H, Reuter H. A 2'-deoxycytidine long-linker click adduct forming two conformers in the asymmetric unit. Acta Crystallogr C 2012; 68:o174-8. [PMID: 22476151 DOI: 10.1107/s0108270112010682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/10/2012] [Indexed: 11/11/2022] Open
Abstract
The title compound {systematic name: 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-[6-(1-benzyl-1H-1,2,3-triazol-4-yl)hex-1-ynyl]pyrimidin-2(1H)-one}, C(24)H(28)N(6)O(4), shows two conformations in the crystalline state, viz. (I-1) and (I-2). The pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between them are observed for the sugar groups. The N-glycosylic bonds of both conformers adopt similar anti conformations, with χ = -168.02 (12)° for conformer (I-1) and χ = -159.08 (12)° for conformer (I-2). The sugar residue of (I-1) shows an N-type (C3'-endo) conformation, with P = 33.1 (2)° and τ(m) = 29.5 (1)°, while the conformation of the 2'-deoxyribofuranosyl group of (I-2) is S-type (C3'-exo), with P = 204.5 (2)° and τ(m) = 33.8 (1)°. Both conformers participate in hydrogen-bond formation and exhibit identical patterns resulting in three-dimensional networks. Intermolecular hydrogen bonds are formed with neighbouring molecules of different and identical conformations (N-H...N, N-H... O, O-H...N and O-H...O).
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Münster, Germany.
| | | | | | | | | |
Collapse
|
25
|
|