1
|
Eichler C, Himmelstoß M, Plangger R, Weber LI, Hartl M, Kreutz C, Micura R. Advances in RNA Labeling with Trifluoromethyl Groups. Chemistry 2023; 29:e202302220. [PMID: 37534701 PMCID: PMC10947337 DOI: 10.1002/chem.202302220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.
Collapse
Affiliation(s)
- Clemens Eichler
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maximilian Himmelstoß
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Leonie I. Weber
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Markus Hartl
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
2
|
Quiroz RV, Reutershan MH, Schneider SE, Sloman D, Lacey BM, Swalm BM, Yeung CS, Gibeau C, Spellman DS, Rankic DA, Chen D, Witter D, Linn D, Munsell E, Feng G, Xu H, Hughes JME, Lim J, Saurí J, Geddes K, Wan M, Mansueto MS, Follmer NE, Fier PS, Siliphaivanh P, Daublain P, Palte RL, Hayes RP, Lee S, Kawamura S, Silverman S, Sanyal S, Henderson TJ, Ye Y, Gao Y, Nicholson B, Machacek MR. The Discovery of Two Novel Classes of 5,5-Bicyclic Nucleoside-Derived PRMT5 Inhibitors for the Treatment of Cancer. J Med Chem 2021; 64:3911-3939. [PMID: 33755451 DOI: 10.1021/acs.jmedchem.0c02083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.
Collapse
Affiliation(s)
- Ryan V Quiroz
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael H Reutershan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian E Schneider
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Sloman
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brian M Lacey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brooke M Swalm
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Craig Gibeau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Daniel S Spellman
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Danica A Rankic
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dapeng Chen
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Witter
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Doug Linn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Erik Munsell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Guo Feng
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Haiyan Xu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jonathan M E Hughes
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jongwon Lim
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Josep Saurí
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kristin Geddes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Murray Wan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - My Sam Mansueto
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Nicole E Follmer
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrick S Fier
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Phieng Siliphaivanh
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Pierre Daublain
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert P Hayes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Sandra Lee
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Shuhei Kawamura
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Steven Silverman
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sulagna Sanyal
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Timothy J Henderson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yingchun Ye
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yuanwei Gao
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Benjamin Nicholson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michelle R Machacek
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Himmelstoß M, Erharter K, Renard E, Ennifar E, Kreutz C, Micura R. 2'- O-Trifluoromethylated RNA - a powerful modification for RNA chemistry and NMR spectroscopy. Chem Sci 2020; 11:11322-11330. [PMID: 34094374 PMCID: PMC8162808 DOI: 10.1039/d0sc04520a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA-ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2'-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2'-SCF3 modification being the most prominent one. A major drawback of the 2'-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2'-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2'-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2'-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2'-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3'-endo conformation of the 2'-OCF3 ribose as reflected in the 3 J (H1'-H2') coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA-small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2'-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.
Collapse
Affiliation(s)
- Maximilian Himmelstoß
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Kevin Erharter
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Eva Renard
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Christoph Kreutz
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
4
|
Plangger R, Juen MA, Hoernes TP, Nußbaumer F, Kremser J, Strebitzer E, Klingler D, Erharter K, Tollinger M, Erlacher MD, Kreutz C. Branch site bulge conformations in domain 6 determine functional sugar puckers in group II intron splicing. Nucleic Acids Res 2019; 47:11430-11440. [PMID: 31665419 PMCID: PMC6868427 DOI: 10.1093/nar/gkz965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Although group II intron ribozymes are intensively studied the question how structural dynamics affects splicing catalysis has remained elusive. We report for the first time that the group II intron domain 6 exists in a secondary structure equilibrium between a single- and a two-nucleotide bulge conformation, which is directly linked to a switch between sugar puckers of the branch site adenosine. Our study determined a functional sugar pucker equilibrium between the transesterification active C2'-endo conformation of the branch site adenosine in the 1nt bulge and an inactive C3'-endo state in the 2nt bulge fold, allowing the group II intron to switch its activity from the branching to the exon ligation step. Our detailed NMR spectroscopic investigation identified magnesium (II) ions and the branching reaction as regulators of the equilibrium populations. The tuneable secondary structure/sugar pucker equilibrium supports a conformational selection mechanism to up- and downregulate catalytically active and inactive states of the branch site adenosine to orchestrate the multi-step splicing process. The conformational dynamics of group II intron domain 6 is also proposed to be a key aspect for the directionality selection in reversible splicing.
Collapse
Affiliation(s)
- Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Philipp Hoernes
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - David Klingler
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Pfund E, Dupouy C, Rouanet S, Legay R, Lebargy C, Vasseur JJ, Lequeux T. Difluorophosphonylated Allylic Ether Moiety as a 2′-Modification of RNA-Type Molecules: Synthesis, Thermal, and Metabolic Studies. Org Lett 2019; 21:4803-4807. [DOI: 10.1021/acs.orglett.9b01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Christelle Dupouy
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Sonia Rouanet
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Rémi Legay
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Cyril Lebargy
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, 34060 Montpellier, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
6
|
Istrate A, Katolik A, Istrate A, Leumann CJ. 2'β-Fluoro-Tricyclo Nucleic Acids (2'F-tc-ANA): Thermal Duplex Stability, Structural Studies, and RNase H Activation. Chemistry 2017; 23:10310-10318. [PMID: 28477335 DOI: 10.1002/chem.201701476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/16/2023]
Abstract
We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'β-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications.
Collapse
Affiliation(s)
- Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Giacometti RD, Salinas JC, Østergaard ME, Swayze EE, Seth PP, Hanessian S. Design, synthesis, and duplex-stabilizing properties of conformationally constrained tricyclic analogues of LNA. Org Biomol Chem 2016; 14:2034-40. [PMID: 26765794 DOI: 10.1039/c5ob02576a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The design, synthesis and biophysical evaluation of two highly-constrained tricyclic analogues of locked nucleic acid (LNA), which restrict rotation around the C4'-C5'-exocyclic bond (torsion angle γ) and enhance hydrophobicity in the minor groove and along the major groove, are reported. A structural model that provides insights into the sugar-phosphate backbone conformations required for efficient hybridization to complementary nucleic acids is also presented.
Collapse
Affiliation(s)
- Robert D Giacometti
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| | - Juan C Salinas
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| | - Michael E Østergaard
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Eric E Swayze
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
8
|
Bozhok TS, Sivets GG, Baranovsky AV, Kalinichenko EN. Synthesis of novel 6-substituted thymine ribonucleosides and their 3′-fluorinated analogues. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
10
|
Jud L, Košutić M, Schwarz V, Hartl M, Kreutz C, Bister K, Micura R. Expanding the Scope of 2'-SCF3 Modified RNA. Chemistry 2015; 21:10400-7. [PMID: 26074479 PMCID: PMC4515092 DOI: 10.1002/chem.201500415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/14/2022]
Abstract
The 2′-trifluoromethylthio (2′-SCF3) modification endows ribonucleic acids with exceptional properties and has attracted considerable interest as a reporter group for NMR spectroscopic applications. However, only modified pyrimidine nucleosides have been generated so far. Here, the syntheses of 2′-SCF3 adenosine and guanosine phosphoramidites of which the latter was obtained in highly efficient manner by an unconventional Boc-protecting group strategy, are reported. RNA solid-phase synthesis provided site-specifically 2′-SCF3-modified oligoribonucleotides that were investigated intensively. Their excellent behavior in 19F NMR spectroscopic probing of RNA ligand binding was exemplified for a noncovalent small molecule–RNA interaction. Moreover, comparably to the 2′-SCF3 pyrimidine nucleosides, the purine counterparts were also found to cause a significant thermodynamic destabilization when located in double helical regions. This property was considered beneficial for siRNA design under the aspect to minimize off-target effects and their performance in silencing of the BASP1 gene was demonstrated.
Collapse
Affiliation(s)
- Lukas Jud
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Marija Košutić
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Veronika Schwarz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Markus Hartl
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria).
| |
Collapse
|
11
|
Kruszynski R, Czestkowski W. The first structurally analysed nucleic acid building block containing the Reese protecting group: 2'-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl]-β-D-(1'R,2'R,3'R,4'R)-uridine. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:402-6. [PMID: 25940897 DOI: 10.1107/s2053229615006646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/02/2015] [Indexed: 11/10/2022]
Abstract
The title compound, C21H26FN3O7, is assembled by N-H...O and O-H...O hydrogen bonds into well-separated two-dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C-H...O and C-H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C-N and C-C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.
Collapse
Affiliation(s)
- Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, ul. Zeromskiego 116, 90-924 Lodz, Poland
| | - Wojciech Czestkowski
- Institute of Organic Chemistry, Lodz University of Technology, ul. Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
12
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014; 79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
13
|
Kumar P, Baral B, Anderson BA, Guenther DC, Østergaard ME, Sharma PK, Hrdlicka PJ. C5-alkynyl-functionalized α-L-LNA: synthesis, thermal denaturation experiments and enzymatic stability. J Org Chem 2014; 79:5062-73. [PMID: 24797769 PMCID: PMC4049248 DOI: 10.1021/jo5006153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 12/23/2022]
Abstract
Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformationally restricted nucleotide building blocks such as locked nucleic acid (LNA). In the preceding article in this issue, we introduced a different strategy toward this end, i.e., C5-functionalization of LNA uridines. In the present article, we extend this strategy to α-L-LNA: i.e., one of the most interesting diastereomers of LNA. α-L-LNA uridine monomers that are conjugated to small C5-alkynyl substituents induce significant improvements in target affinity, binding specificity, and enzymatic stability relative to conventional α-L-LNA. The results from the back-to-back articles therefore suggest that C5-functionalization of pyrimidines is a general and synthetically straightforward approach to modulate biophysical properties of oligonucleotides modified with LNA or other conformationally restricted monomers.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Bharat Baral
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Brooke A. Anderson
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
14
|
Kumar P, Østergaard ME, Baral B, Anderson BA, Guenther DC, Kaura M, Raible DJ, Sharma PK, Hrdlicka PJ. Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid). J Org Chem 2014; 79:5047-61. [PMID: 24825249 PMCID: PMC4049237 DOI: 10.1021/jo500614a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 01/07/2023]
Abstract
Oligonucleotides modified with conformationally restricted nucleotides such as locked nucleic acid (LNA) monomers are used extensively in molecular biology and medicinal chemistry to modulate gene expression at the RNA level. Major efforts have been devoted to the design of LNA derivatives that induce even higher binding affinity and specificity, greater enzymatic stability, and more desirable pharmacokinetic profiles. Most of this work has focused on modifications of LNA's oxymethylene bridge. Here, we describe an alternative approach for modulation of the properties of LNA: i.e., through functionalization of LNA nucleobases. Twelve structurally diverse C5-functionalized LNA uridine (U) phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides (ONs), which were then characterized with respect to thermal denaturation, enzymatic stability, and fluorescence properties. ONs modified with monomers that are conjugated to small alkynes display significantly improved target affinity, binding specificity, and protection against 3'-exonucleases relative to regular LNA. In contrast, ONs modified with monomers that are conjugated to bulky hydrophobic alkynes display lower target affinity yet much greater 3'-exonuclease resistance. ONs modified with C5-fluorophore-functionalized LNA-U monomers enable fluorescent discrimination of targets with single nucleotide polymorphisms (SNPs). In concert, these properties render C5-functionalized LNA as a promising class of building blocks for RNA-targeting applications and nucleic acid diagnostics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Bharat Baral
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Brooke A. Anderson
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Mamta Kaura
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Daniel J. Raible
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
15
|
Kaura M, Guenther DC, Hrdlicka PJ. Carbohydrate-functionalized locked nucleic acids: oligonucleotides with extraordinary binding affinity, target specificity, and enzymatic stability. Org Lett 2014; 16:3308-11. [PMID: 24890872 DOI: 10.1021/ol501306u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different C5-carbohydrate-functionalized LNA uridine phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides. C5-Carbohydrate-functionalized LNA display higher affinity toward complementary DNA/RNA targets (ΔTm/modification up to +11.0 °C), more efficient discrimination of mismatched targets, and superior resistance against 3'-exonucleases compared to conventional LNA. These properties render C5-carbohydrate-functionalized LNAs as promising modifications in antisense technology and other nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
16
|
Košutić M, Jud L, Da Veiga C, Frener M, Fauster K, Kreutz C, Ennifar E, Micura R. Surprising base pairing and structural properties of 2'-trifluoromethylthio-modified ribonucleic acids. J Am Chem Soc 2014; 136:6656-63. [PMID: 24766131 PMCID: PMC4021565 DOI: 10.1021/ja5005637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The chemical synthesis of ribonucleic
acids (RNA) with novel chemical
modifications is largely driven by the motivation to identify eligible
functional probes for the various applications in life sciences. To
this end, we have a strong focus on the development of novel fluorinated
RNA derivatives that are powerful in NMR spectroscopic analysis of
RNA folding and RNA ligand interactions. Here, we report on the synthesis
of 2′-SCF3 pyrimidine nucleoside containing oligoribonucleotides
and the comprehensive investigation of their structure and base pairing
properties. While this modification has a modest impact on thermodynamic
stability when it resides in single-stranded regions, it was found
to be destabilizing to a surprisingly high extent when located in
double helical regions. Our NMR spectroscopic investigations on short
single-stranded RNA revealed a strong preference for C2′-endo
conformation of the 2′-SCF3 ribose unit. Together
with a recent computational study (L. Li, J. W. Szostak, J.
Am. Chem. Soc. 2014, 136, 2858–2865)
that estimated the extent of destabilization caused by a single C2′-endo
nucleotide within a native RNA duplex to amount to 6 kcal mol−1 because of disruption of the planar base pair structure,
these findings support the notion that the intrinsic preference for
C2′-endo conformation of 2′-SCF3 nucleosides
is most likely responsible for the pronounced destabilization of double
helices. Importantly, we were able to crystallize 2′-SCF3 modified RNAs and solved their X-ray structures at atomic
resolution. Interestingly, the 2′-SCF3 containing
nucleosides that were engaged in distinct mismatch arrangements, but
also in a standard Watson–Crick base pair, adopted the same
C3′-endo ribose conformations as observed in the structure
of the unmodified RNA. Likely, strong crystal packing interactions
account for this observation. In all structures, the fluorine atoms
made surprisingly close contacts to the oxygen atoms of the corresponding
pyrimidine nucleobase (O2), and the 2′-SCF3 moieties
participated in defined water-bridged hydrogen-bonding networks in
the minor groove. All these features allow a rationalization of the
structural determinants of the 2′-SCF3 nucleoside
modification and correlate them to base pairing properties.
Collapse
Affiliation(s)
- Marija Košutić
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Seth PP, Swayze EE. Unnatural Nucleoside Analogs for Antisense Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Andersen NK, Anderson BA, Wengel J, Hrdlicka PJ. Synthesis and characterization of oligodeoxyribonucleotides modified with 2'-amino-α-L-LNA adenine monomers: high-affinity targeting of single-stranded DNA. J Org Chem 2013; 78:12690-702. [PMID: 24304240 DOI: 10.1021/jo4022937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-L-LNA are two interesting examples thereof. Oligonucleotides modified with these units display greatly increased affinity toward nucleic acid targets, improved binding specificity, and enhanced enzymatic stability relative to unmodified strands. Here we present the synthesis and biophysical characterization of oligodeoxyribonucleotides (ONs) modified with 2'-amino-α-L-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger/intramolecular nucleophilic substitution converts 8 into 2'-amino-α-L-LNA adenine intermediate 9, which after a series of nontrivial protecting-group manipulations affords key intermediate 15. Subsequent chemoselective N2'-functionalization and O3'-phosphitylation give targets 1-4 in ~1-3% overall yield over 11 steps from 5. ONs modified with pyrene-functionalized 2'-amino-α-L-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation. These characteristics render N2'-pyrene-functionalized 2'-amino-α-L-LNAs of considerable interest for DNA-targeting applications.
Collapse
Affiliation(s)
- Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , 5230 Odense, Denmark
| | | | | | | |
Collapse
|
19
|
|
20
|
Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNAAla. Org Biomol Chem 2013; 11:6161-9. [DOI: 10.1039/c3ob41206g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Fauster K, Kreutz C, Micura R. 2'-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy. Angew Chem Int Ed Engl 2012; 51:13080-4. [PMID: 23161779 PMCID: PMC3555429 DOI: 10.1002/anie.201207128] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 12/20/2022]
Abstract
Fluorishing: the Togni reagent allows efficient synthetic access to fluorine-labeled RNA molecules. These are in turn highly useful for NMR spectroscopic analyses of secondary and tertiary structures, RNA-protein interactions, and functionality of riboswitch modules.
Collapse
Affiliation(s)
- Katja Fauster
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry (IOC) and Center for Molecular Biosciences (CMBI), University of Innsbruck, Center for Chemistry and Biomedicine (CCB)020 Innsbruck (Austria)
| |
Collapse
|
22
|
Fauster K, Kreutz C, Micura R. 2′-SCF3Uridine-A Powerful Label for Probing Structure and Function of RNA by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|