1
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
2
|
Pan XY, Sun GX, Huang FP, Qin WJ, Teng QH, Wang K. Photogenerated chlorine radicals activate C(sp3)-H bonds of alkylbenzenes to access quinazolinones. Org Biomol Chem 2024; 22:2968-2973. [PMID: 38529682 DOI: 10.1039/d4ob00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
An Fe-catalyzed visible-light induced condensation of alkylbenzenes with anthranilamides has been developed. Upon irradiation, the trivalent iron complex could generate chlorine radicals, which successfully abstracted the hydrogen of benzylic C-H bonds to form benzyl radicals. And these benzyl radicals were converted into oxygenated products under air conditions, which subsequently reacted with anthranilamides for the synthesis of quinazolinones.
Collapse
Affiliation(s)
- Xin-Yao Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Gui-Xia Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Fang-Ping Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Jian Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Qing-Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
3
|
Yao XR, Jia MZ, Miao XL, Chen YR, Pan JQ, Zhang J. One-pot Tandem Synthesis and Spontaneous Product Separation of N-heterocycles based on Bifunctional Small-molecule Photocatalyst. CHEMSUSCHEM 2024; 17:e202301495. [PMID: 38086787 DOI: 10.1002/cssc.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
Homogeneous and heterogeneous reactions wherein the resulting products remain dissolved in solvents generally require complicated separation and purification process, despite the advantage of heterogeneous systems allowing retrieval of catalysts. Herein, we have developed an efficient approach for the one-pot tandem synthesis of quinazolines, quinazolinones and benzothiadiazine 1,1-dioxides from alcohols and amines utilizing a bifunctional bipyridinium photocatalyst with redox and Lewis acid sites using air as an oxidant. Through solvent-modulation strategy, the photocatalytic system exhibits high performance and enables most products to separate spontaneously. Consequently, the homogeneous catalyst can be reused by direct centrifugation isolation of the products. Notably, the method is also applicable to the less active substrates, such as heterocyclic alcohols and aliphatic alcohols, and thus provides an efficient and environmentally friendly photocatalytic route with spontaneous separation of N-heterocycles to reduce production costs and meet the needs of atomic economy and green chemistry.
Collapse
Affiliation(s)
- Xin-Rong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiao-Li Miao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Rui Chen
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jia-Qi Pan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
4
|
Kumar S, Padala K, Maiti B. H 2O 2-Mediated Synthesis of a Quinazolin-4(3 H)-one Scaffold: A Sustainable Approach. ACS OMEGA 2023; 8:33058-33068. [PMID: 37720769 PMCID: PMC10500651 DOI: 10.1021/acsomega.3c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
A quinazolin-4(3H)-one ring system is a privileged heterocyclic moiety with distinctive biological properties. From this perspective, the development of an efficient strategy for the synthesis of quinazolin-4(3H)-one has always been in demand for the synthetic chemistry community. In this report, we envisaged an efficient protocol for the synthesis of quinazolin-4(3H)-one using substituted 2-amino benzamide with dimethyl sulfoxide (DMSO) as a carbon source and H2O2 as an effective oxidant. Mechanistically, the reaction proceeds through the radical approach with DMSO as one carbon source. To further substantiate the synthetic claim, the synthetic protocol has been extended to the synthesis of the anti-endotoxic active compound 3-(2-carboxyphenyl)-4-(3H)-quinazolinone.
Collapse
Affiliation(s)
- Sumit Kumar
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Kishor Padala
- Department
of Chemistry, Central Tribal University
of Andhra Pradesh, Kondakarakam
Village, Cantonment area, Vizianagaram, Andhra Pradesh 535003, India
| | - Barnali Maiti
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
5
|
He Y, Yang Z, Luo D, Luo X, Chen X, Yang W. An Oxidant-Free and Mild Strategy for Quinazolin-4(3 H)-One Synthesis via CuAAC/Ring Cleavage Reaction. Molecules 2023; 28:5734. [PMID: 37570705 PMCID: PMC10420183 DOI: 10.3390/molecules28155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
An oxidant-free and highly efficient synthesis of phenolic quinazolin-4(3H)-ones was achieved by simply stirring a mixture of 2-aminobenzamides, sulfonyl azides, and terminal alkynes. The intermediate N-sulfonylketenimine underwent two nucleophilic additions and the sulfonyl group eliminated through the power of aromatization. The natural product 2-(4-hydroxybenzyl)quinazolin-4(3H)-one can be synthesized on a large scale under mild conditions with this method.
Collapse
Affiliation(s)
- Yueling He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
| | - Danyang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
| | - Xiai Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- Hunan Province Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xiaodong Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| | - Weiguang Yang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China; (Y.H.); (Z.Y.); (D.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| |
Collapse
|
6
|
Soda AK, Chinthapally KP, C S PK, Chilaka SK, Madabhushi S. Lewis acid catalyzed spiro annulation of ( Z)-3-amino-acrylates with 2-amino arylbenzamides: one-pot synthesis of pyrrole-quinazoline hybrids. RSC Adv 2023; 13:15001-15005. [PMID: 37200694 PMCID: PMC10187044 DOI: 10.1039/d3ra02639f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
The one-pot domino reaction of ethyl (Z)-3-amino-3-phenylacrylates with 2-amino-N-alkyl/arylbenzamides under Lewis acid catalysis was described as an effective way to construct novel spiro [pyrrole-3,2'-quinazoline] carboxylate derivatives. By combining substituted alkyl/aryl amides with spiro annulated 1H-pyrrole-2,3-diones, this method provides a novel way for producing spiro pyrrole derivatives in good to excellent yields. The current procedure has a number of benefits, including quicker reaction times, a broad tolerance range for functional groups, and the ability to synthesize 2,3-dihydroquinazolin-4(1H)-ones that are of biological importance and take part in organic transformations. This is the first use of molecular hybridization involving linking with pyrrole derivatives and dihydroquinazolin-4(1H)-ones.
Collapse
Affiliation(s)
- Anil Kumar Soda
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | | | - Phani Krishna C S
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sai Krishna Chilaka
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sridhar Madabhushi
- Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
7
|
Wang M, Ren J, Xiao Q, Song A, Yu S, Wang R, Xing L. Photocatalytic One-Pot Synthesis of Quinazolinone Under Ambient Conditions. Catal Letters 2023. [DOI: 10.1007/s10562-022-04266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Acid‐Catalysed Cyclization of
o
‐Aminobenzamide with
α
‐Oxodithioesters: A Divergent and Regioselective Synthesis of Quinazolinones and 1,3‐Benzothiazinones. ChemistrySelect 2023. [DOI: 10.1002/slct.202203618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
10
|
Wu J, Yu X, Zhong L, Jin K, Zhao G, Zhu J, Shi H, Wei Y. Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metal‐Free Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiaoxiao Yu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Liangchen Zhong
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Kejun Jin
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Guoxu Zhao
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Jianye Zhu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Haowen Shi
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Yuanyuan Wei
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
11
|
Microwave-Assisted Tandem Cross-Coupling Green Synthesis and In Vitro Biological Screening, Molecular Docking Studies of Quinazolin-4-Ones. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
S. M, Narasaiah BP, B. H, G. L. B, Pradeepkiran JA, Padhy H. Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities. Antioxidants (Basel) 2022; 11:antiox11040688. [PMID: 35453373 PMCID: PMC9025409 DOI: 10.3390/antiox11040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4a–o) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity.
Collapse
Affiliation(s)
- Mahesh S.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
| | | | - Himabindu B.
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
| | - Balaji G. L.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Correspondence: (G.L.B.); (J.A.P.)
| | - Jangampalli Adi Pradeepkiran
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
- Department of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX 79415, USA
- Correspondence: (G.L.B.); (J.A.P.)
| | - Harihara Padhy
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Visakapatnam 530045, India
| |
Collapse
|
13
|
Anandaraj P, Ramesh R, Kamatchi TS. N^N^O hydrazone capped pincer type palladium complex catalysed construction of quinazolinones from alcohols. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Deng W, Qiu R, Zeng D, Yang T, Tang N, Xiang J, Yin SF, Kambe N. UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes To Give 2-Aminobenzamides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1736-4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA simple, mild, green, and efficient method for the synthesis of 2-aminobenzamides is highly desirable. Herein, we report the development of an efficient, one-pot strategy starting from 2-aminobenzaldehydes and amines with acetic acid in ethyl acetate/acetone using irradiation with UV light for the synthesis of 2-aminobenzamides in high yields; 32 examples proceeded successfully by this photo-induced protocol in up to 92% yield. The reaction was also readily achieved on a gram scale. The utility of the 2-aminobenzamide building block in organic synthesis was shown by their use in the preparation of quinazolinone derivatives. The method was applied to amino acid derivatives as the amine component, which smoothly gave N-(2-aminobenzoyl)acetate derivatives at room temperature. Finally, a plausible mechanism is proposed.
Collapse
Affiliation(s)
- Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Dishu Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Jiannan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
15
|
Sun W, Ma X, Pang Y, Zhao L, Zhong Q, Liu C, Fan Q. Straightforward synthesis of quinazolin-4(3 H)-ones via visible light-induced condensation cyclization. RSC Adv 2022; 12:1494-1498. [PMID: 35425171 PMCID: PMC8978923 DOI: 10.1039/d1ra07944a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
A green, simple and efficient method is developed for the synthesis of quinazolin-4(3H)-ones via visible light-induced condensation cyclization of 2-aminobenzamides and aldehydes under visible light irradiation. The reaction proceeds using fluorescein as a photocatalyst in the presence of TBHP without the need for a metal catalyst. In addition, this reaction tolerates a broad scope of substrates and could afford a variety of desirable products in good to excellent yields. Thus, the present synthetic method provides a straightforward strategy for the synthesis of quinazolin-4(3H)-ones.
Collapse
Affiliation(s)
- Wuji Sun
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Xue Ma
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Yuqi Pang
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Lifeng Zhao
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Chunyan Liu
- School of Pharmacy, North China University of Science and Technology Tangshan 063210 China
| | - Qiangwen Fan
- School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| |
Collapse
|
16
|
Pal D, Mondal A, Srimani D. Well-defined manganese complex catalyzed dehydrogenative synthesis of quinazolin-4(3 H)-ones and 3,4-dihydro-2 H-1,2,4-benzothiadiazine 1,1-dioxides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00260d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-heterocycles has been considered an emerging topic of chemical research due to its widespread usage in medicinal chemistry, materials science, and natural product synthesis.
Collapse
Affiliation(s)
- Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
17
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
18
|
Yu X, Bai W, Zhu J, Zhang Y, Zhang M, Wu J. Synthesis of Quinazolin-4(3 H)-ones via Ammonium Iodide-Catalyzed Dual Amination of sp 3 C—H Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Song YL, Li B, Xie ZB, Wang D, Sun HM. Iron-Catalyzed Oxidative Amination of Benzylic C(sp 3)-H Bonds with Anilines. J Org Chem 2021; 86:17975-17985. [PMID: 34860531 DOI: 10.1021/acs.joc.1c02311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Iron-catalyzed oxidative amination of benzylic C(sp3)-H bonds with anilines bearing electron-withdrawing groups (EWGs) or electron-donating groups (EDGs) is realized based on simple variations of N-substituents on imidazolium cations in novel ionic Fe(III) complexes. The structural modification of the imidazolium cation resulted in regulation of the redox potential and the catalytic performance of the iron metal center. Using DTBP as oxidant, [HItBu][FeBr4] showed the highest catalytic activity for anilines bearing EWGs, while [HIPym][FeBr4] was more efficient for EDG-substituted anilines. This work provides alternative access to benzylamines with the advantages of both a wide substrate scope and iron catalysis.
Collapse
Affiliation(s)
- Yan-Ling Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Bei Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Zhen-Biao Xie
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Dan Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Hong-Mei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Wen S, Du Y, Liu Y, Cui X, Liu Q, Zhou H. Access to 2‐Arylquinazolin‐4(3H)‐ones through Intramolecular Oxidative C(sp
3
)−H/N−H Cross‐Coupling Mediated by I
2
/DMSO. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Simiaomiao Wen
- Research Center of Green Pharmaceutical Technology and Process Hubei Key Laboratory of Natural Products Research and Development College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang China
| | - Yifan Du
- Research Center of Green Pharmaceutical Technology and Process Hubei Key Laboratory of Natural Products Research and Development College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang China
| | - Yiwen Liu
- Wufeng Chicheng Biotech Co., Ltd. 443413 Yichang China
| | - Xiaofeng Cui
- Research Center of Green Pharmaceutical Technology and Process Hubei Key Laboratory of Natural Products Research and Development College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang China
| | - Qixing Liu
- Research Center of Green Pharmaceutical Technology and Process Hubei Key Laboratory of Natural Products Research and Development College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang China
| | - Haifeng Zhou
- Research Center of Green Pharmaceutical Technology and Process Hubei Key Laboratory of Natural Products Research and Development College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang China
| |
Collapse
|
21
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
22
|
Zheng L, Xie Z, Cai L, Liu G, Mei W, Zou X, Zhuo X, Fan X, Guo W. Green Catalyst‐ and Additive‐Free Three‐Component Deamination Cyclization Synthesis of 3‐Substituted‐4‐ oxo‐2‐quinazolinonyl Sulfides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
23
|
Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J Org Chem 2021; 86:14866-14882. [PMID: 34624963 DOI: 10.1021/acs.joc.1c01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general and efficient method for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil. More importantly, these reactions can be conducted on a mass scale, and the products can be easily purified through filtration and washing with ethanol (or crystallized).
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yan Fan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mu-Wang Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
24
|
Hu Y, Hou H, Yu L, Zhou S, Wu X, Sun W, Ke F. Electro-oxidative cyclization: access to quinazolinones via K 2S 2O 8 without transition metal catalyst and base. RSC Adv 2021; 11:31650-31655. [PMID: 35496883 PMCID: PMC9041726 DOI: 10.1039/d1ra05092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
A K2S2O8-promoted oxidative tandem cyclization of primary alcohols with 2-aminobenzamides to synthesize quinazolinones was successfully achieved under undivided electrolytic conditions without a transition metal and base. The key feature of this protocol is the utilization of K2S2O8 as an inexpensive and easy-to-handle radical surrogate that can effectively promote the reaction via a simple procedure, leading to the formation of nitrogen heterocycles via direct oxidative cyclization at room temperature in a one-pot procedure under constant current. Owing to the use of continuous-flow electrochemical setups, this green, mild and practical electrosynthesis features high efficiency and excellent functional group tolerance and is easy to scale up. A K2S2O8-promoted oxidative tandem cyclization of primary alcohols with 2-aminobenzamides to synthesize quinazolinones was successfully achieved under undivided electrolytic conditions without a transition metal and base.![]()
Collapse
Affiliation(s)
- Yongzhi Hu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Huiqing Hou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Ling Yu
- College of Chemistry and Chemical Engineering, Xingtai University Xingtai 054001 P. R. China
| | - Sunying Zhou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xianghua Wu
- School of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650092 P. R. China
| | - Weiming Sun
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| |
Collapse
|
25
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
26
|
Hikawa H, Nakayama T, Takahashi M, Kikkawa S, Azumaya I. Direct Use of Benzylic Alcohols for Multicomponent Synthesis of 2‐Aryl Quinazolinones Utilizing the π‐Benzylpalladium(II) System in Water. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Taku Nakayama
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Makiko Takahashi
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
27
|
Wang R, Liu S, Li L, Song A, Yu S, Zhuo S, Xing LB. Metal-free catalyst for the visible-light-induced photocatalytic synthesis of quinazolinones. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Kerdphon S, Jongcharoenkamol J, Chatwichien J, Singh T, Channei D, Choommongkol V, Rithchumpon P, Meepowpan P. Microwave‐Assisted Green Synthesis of 2,3‐Dihydroquinazolinones under Base‐ and Catalyst‐Free conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sutthichat Kerdphon
- Department of Chemistry Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| | - Jira Jongcharoenkamol
- Department of Pharmaceutical Chemistry and Pharmacognosy Faculty of Pharmaceutical Sciences Naresuan University Phitsanulok 65000 Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences Chulabhorn Graduate Institute Chulabhorn Royal Academy Bangkok 10210 Thailand
| | - Thishana Singh
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban, 4000 South Africa
| | - Duangdao Channei
- Department of Chemistry Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| | - Vachira Choommongkol
- Department of Chemistry Faculty of Science Maejo University Chiang Mai 50290 Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry Faculty of Science and Graduate School Chiang Mai University Chiang Mai 50200 Thailand
| | - Puttinan Meepowpan
- Department of Chemistry Faculty of Science and Graduate School Chiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Material Science and Technology Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
29
|
Sarma D, Majumdar B, Deori B, Jain S, Sarma TK. Photoinduced Enhanced Decomposition of TBHP: A Convenient and Greener Pathway for Aqueous Domino Synthesis of Quinazolinones and Quinoxalines. ACS OMEGA 2021; 6:11902-11910. [PMID: 34056344 PMCID: PMC8154027 DOI: 10.1021/acsomega.1c00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Catalyst-free photoinduced processes in aqueous medium represent significant advancement toward development of green and sustainable pathways in organic synthesis. tert-Butyl hydroperoxide (TBHP) is a widely used oxidant in organic reactions, where the decomposition of TBHP into its radicals by metal catalysts or other reagents is a key factor for efficient catalytic outcome. Herein, we report a simple and environmentally friendly visible light-promoted synthetic pathway for the synthesis of N-heterocyclic moieties, such as quinazolinones and quinoxalines, in the presence of TBHP as an oxidizing agent in aqueous medium that requires no catalysts/photocatalysts. The enhanced rate of decomposition to generate free radicals from TBHP upon visible light irradiation is the driving force for the domino reaction.
Collapse
|
30
|
Xie Z, Lan J, Zhu H, Lei G, Jiang G, Le Z. Visible light induced tandem reactions: An efficient one pot strategy for constructing quinazolinones using in-situ formed aldehydes under photocatalyst-free and room-temperature conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Balaji S, Balamurugan G, Ramesh R, Semeril D. Palladium(II) N^O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3H)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sundarraman Balaji
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Gunasekaran Balamurugan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, Strasbourg, 67070, France
| |
Collapse
|
32
|
Wang L, Zhang Y, Chen Z, Wu X. Palladium‐Catalyzed Carbonylative Synthesis of 2‐(Trifluoromethyl)quinazolin‐4(3
H
)‐ones from Trifluoroacetimidoyl Chlorides and Nitro Compounds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Le‐Cheng Wang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Yu Zhang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
33
|
Gupta R, Arora G, Yadav P, Dixit R, Srivastava A, Sharma RK. A magnetically retrievable copper ionic liquid nanocatalyst for cyclooxidative synthesis of 2-phenylquinazolin-4(3 H)-ones. Dalton Trans 2021; 50:890-898. [PMID: 33350417 DOI: 10.1039/d0dt03634j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present work, we report the design and fabrication of a copper-containing ionic liquid supported magnetic nanocatalyst via a convenient and straightforward synthetic approach for the formation of 2-phenylquinazolin-4(3H)-ones using o-aminobenzamide and benzaldehydes as the reaction partners. The successful formation and properties of the as-prepared catalyst have been thoroughly investigated using diverse physico-chemical techniques including FT-IR, XRD, FE-SEM, TEM, ICP, VSM, BET and TGA. Using this nanocatalytic system, a variety of 2-phenylquinazolin-4(3H)-ones are synthesized in excellent yields with operational ease and short reaction times in an environmentally preferable solvent under open air and without using any external oxidizing agent. Besides, the catalyst possessed facile magnetic recoverability and remarkable reusability for six consecutive runs without any appreciable decrease in the catalytic efficiency.
Collapse
Affiliation(s)
- Radhika Gupta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Priya Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India. and Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Anju Srivastava
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
34
|
Mitra B, Chandra Pariyar G, Ghosh P. β-Cyclodextrin: a supramolecular catalyst for metal-free approach towards the synthesis of 2-amino-4,6-diphenylnicotinonitriles and 2,3-dihydroquinazolin-4(1 H)-one. RSC Adv 2021; 11:1271-1281. [PMID: 35424112 PMCID: PMC8693512 DOI: 10.1039/d0ra09562a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
β-Cyclodextrin, a green and widespread supramolecular catalyst, has been explored as a highly proficient promoter for the metal-free one-pot multi-component synthesis of a vast range of highly functionalized bioactive heterocyclic moiety, 2-amino-4,6-diphenylnicotinonitriles and 2,3-dihydroquinazolin-4(1H)-one, from easily available precursor aldehydes. The main endeavor of these protocols is to explore this organic supramolecule in one-pot multi-component synthesis. Absence of metal catalyst or toxic acid and harsh reaction conditions, excellent functional group tolerance, inexpensive, greener and environmentally safe protocol are the key advantages of this work.
Collapse
Affiliation(s)
- Bijeta Mitra
- Department of Chemistry, University of North Bengal Dist. Darjeeling West Bengal India +91 353 2699001 +91 353 2776381
| | - Gyan Chandra Pariyar
- Department of Food Technology, University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry, University of North Bengal Dist. Darjeeling West Bengal India +91 353 2699001 +91 353 2776381
| |
Collapse
|
35
|
Chen J, Liang E, Shi J, Wu Y, Wen K, Yao X, Tang X. Metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates at room temperature. RSC Adv 2021; 11:4966-4970. [PMID: 35424458 PMCID: PMC8694548 DOI: 10.1039/d1ra00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the novel reactivity of hexafluoroisopropyl 2-aminobenzoates. The metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature. These procedures feature good functional group tolerance, mild reaction conditions, and excellent yields. The newly formed products can readily be converted to other useful N-heterocycles. Moreover, the products and their derivatives showed potent anticancer activities in vitro by MTT assay. A metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature.![]()
Collapse
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
36
|
Xing Z, Wu W, Miao Y, Tang Y, Zhou Y, Zheng L, Fu Y, Song Z, Peng Y. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Org Chem Front 2021. [DOI: 10.1039/d0qo01425g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarized recent advances relating to the luminescence properties of quinazolinones and their applications in fluorescent probes, biological imaging and luminescent materials. Their future outlook is also included.
Collapse
Affiliation(s)
- Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wanhui Wu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yongxiang Miao
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yingqun Tang
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Lifang Zheng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
37
|
Thorve PR, Maji B. Aerobic primary and secondary amine oxidation cascade by a copper amine oxidase inspired catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01764g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A CAO inspired catalyst catalyzed the cascade aerobic oxidation of primary and secondary amines for the synthesis of quinazolin-4(3H)-one core in high yields. Like the natural CAOs, a copper ion improves the o-quinone cofactor's catalytic activity.
Collapse
Affiliation(s)
- Pradip Ramdas Thorve
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
38
|
Wu M, Yu L, Hou H, Chen H, Zhuang Q, Zhou S, Lin X. Electrochemistry-Enabled Copper-Catalyzed Oxidation of Benzyl Alcohols for the Preparation of Quinazolinones in Water. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Wang K, Chen H, Dai X, Huang X, Feng Z. Palladium-catalyzed one-pot synthesis of 2-substituted quinazolin-4(3 H)-ones from o-nitrobenzamide and alcohols. RSC Adv 2021; 11:13119-13123. [PMID: 35423854 PMCID: PMC8697358 DOI: 10.1039/d1ra01755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields. The cascade reaction including alcohol oxidation, nitro reduction, condensation, and dehydrogenation occurs without any added reducing or oxidizing agent. Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields.![]()
Collapse
Affiliation(s)
- Ke Wang
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Hao Chen
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xinyan Dai
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xupeng Huang
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Zhiqiang Feng
- Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
40
|
Onodera G, Kumagae H, Nakamura D, Hayasaki T, Fukuda T, Kimura M. Direct benzylation of amines with benzylic alcohols catalyzed by palladium/phosphine-borane catalyst system. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Samim SA, Roy BC, Nayak S, Kundu S. Cobalt-Catalyzed Tandem Transformation of 2-Aminobenzonitriles to Quinazolinones Using Hydration and Dehydrogenative Coupling Strategy. J Org Chem 2020; 85:11359-11367. [PMID: 32786628 DOI: 10.1021/acs.joc.0c01307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tandem synthesis of quinazolinones from 2-aminobenzonitriles is demonstrated here by using an aliphatic alcohol-water system. For this transformation, a cheap and easily available cobalt salt and P(CH2CH2PPh2)3 (PP3) ligand were employed. The substrate scope, scalability, and synthesis of natural products exhibited the vitality of this protocol.
Collapse
Affiliation(s)
- Sk Abdus Samim
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| | | | - Sourav Nayak
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| | - Sabuj Kundu
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
42
|
Latha G, Devarajan N, Suresh P. Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu
3
(BTC)
2
MOF as an Efficient and Reusable Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202002661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ganesapandian Latha
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| |
Collapse
|
43
|
Jang Y, Lee SB, Hong J, Chun S, Lee J, Hong S. Synthesis of 2-aryl quinazolinones via iron-catalyzed cross-dehydrogenative coupling (CDC) between N-H and C-H bonds. Org Biomol Chem 2020; 18:5435-5441. [PMID: 32633314 DOI: 10.1039/d0ob00866d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we describe the direct synthesis of quinazolinones via cross-dehydrogenative coupling between methyl arenes and anthranilamides. The C-H functionalization of the benzylic sp3 carbon is achieved by di-t-butyl peroxide under air, and the subsequent amination-aerobic oxidation process completes the annulation process. Iron catalyzed the whole reaction process and various kinds of functional groups were tolerated under the reaction conditions, providing 31 examples of 2-aryl quinazolinones using methyl arene derivatives in yields of 57-95%. The synthetic potential has been demonstrated by the additional synthesis of aryl-containing heterocycles.
Collapse
Affiliation(s)
- Yoonkyung Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
44
|
Tao S, Liu R, Zhou J, Zhu Y. Palladium‐Catalyzed One‐Pot Coupling / Cyclization through Mo(CO)
6
as the Carbon Monoxide Donor: Synthesis of Quinazolinones. ChemistrySelect 2020. [DOI: 10.1002/slct.202002111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shou‐Wei Tao
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Rui‐Qing Liu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Jing‐Ya Zhou
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yong‐Ming Zhu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
45
|
Yang H, Xu J, Zhang Y, He L, Zhang P, Li W. Synthesis of quinazoin-4-ones through an acid ion exchange resin mediated cascade reaction. Org Biomol Chem 2020; 18:4406-4414. [PMID: 32459237 DOI: 10.1039/d0ob00881h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
An interesting cascade reaction of N-(2-(4,5-dihydrooxazol-2-yl)phenyl)benzamide in the presence of an acid ion exchange resin is described. In this reaction, a range of substrates bearing various substituent groups are well compatible. This work provides a green and atom-economical alternative approach for the synthesis of quinazolin-4-ones in good yields.
Collapse
Affiliation(s)
- Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yilan Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
46
|
Ascorbic Acid as an Efficient Organocatalyst for the Synthesis of 2‐Substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐one and 2‐Substituted Quinazolin‐4(3
H
)‐one in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.201903937] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
47
|
Kim K, Kim HY, Oh K. ortho-Naphthoquinone-catalyzed aerobic oxidation of amines to fused pyrimidin-4(3H)-ones: a convergent synthetic route to bouchardatine and sildenafil. RSC Adv 2020; 10:31101-31105. [PMID: 35520643 PMCID: PMC9056348 DOI: 10.1039/d0ra06820a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
A facile access to fused pyrimidin-4(3H)-one derivatives has been established by using the metal-free ortho-naphthoquinone-catalyzed aerobic cross-coupling reactions of amines. The utilization of two readily available amines allowed a direct coupling strategy to quinazolinone natural product, bouchardatine, as well as sildenafil (Viagra™) in a highly convergent manner. Fused pyrimidin-4(3H)-one derivatives have been accessed by using the ortho-naphthoquinone-catalyzed aerobic cross-coupling reactions of amines.![]()
Collapse
Affiliation(s)
- Kyeongha Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
48
|
Wang ZC, Ouyang GP, Zhang LQ, Liu JM, Gan YY, Shao LH, Fu YH. Synthesis and Evaluation of Biological Properties of 2-(2-(Phenoxy)pyridin-3-yl)quinazolin-4(3H)-one Derivatives. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Ghosh P, Ganguly B, Das S. C–H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem 2020; 18:4497-4518. [DOI: 10.1039/d0ob00742k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinazolinone and its derivatives are an important class of heterocyclic scaffolds in pharmaceuticals and natural products. This review provides the recent research advances in the transition metal catalyzed selective C–H bond functionalization of quinazolinone.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Bhaskar Ganguly
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| |
Collapse
|
50
|
Shinde AR, Mane YD, Muley DB. One-pot B(C6F5)3 catalyzed cascade synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1679539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Achut R. Shinde
- Department of Chemistry, Sanjeevanee Mahavidyalaya, Chapoli, India
| | - Yogesh D. Mane
- Department of Chemistry, Shri Chhatrapati Shivaji College, Omerga, India
| | | |
Collapse
|