1
|
Surynt P, Wojtczak BA, Chrominski M, Panecka-Hofman J, Kwapiszewska K, Kalwarczyk T, Kubacka D, Spiewla T, Kasprzyk R, Holyst R, Kowalska J, Jemielity J. Trimethylguanosine cap-fluorescent molecular rotor (TMG-FMR) conjugates are potent, specific snurportin1 ligands enabling visualization in living cells. Org Biomol Chem 2024; 22:6763-6790. [PMID: 39105613 DOI: 10.1039/d4ob01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The trimethylguanosine (TMG) cap is a motif present inter alia at the 5' end of small nuclear RNAs, which are involved in RNA splicing. The TMG cap plays a crucial role in RNA processing and stability as it protects the RNA molecule from degradation by exonucleases and facilitates its export from the nucleus. Additionally, the TMG cap plays a role in the recognition of snRNA by snurportin, a protein that facilitates nuclear import. TMG cap analogs are used in biochemical experiments as molecular tools to substitute the natural TMG cap. To expand the range of available TMG-based tools, here we conjugated the TMG cap to Fluorescent Molecular Rotors (FMRs) to open the possibility of detecting protein-ligand interactions in vitro and, potentially, in vivo, particularly visualizing interactions with snurportin. Consequently, we report the synthesis of 34 differently modified TMG cap-FMR conjugates and their evaluation as molecular probes for snurportin. As FMRs we selected three GFP-like chromophores (derived from green fluorescent protein) and one julolidine derivative. The evaluation of binding affinities for snurportin showed unexpectedly a strong stabilizing effect for TMGpppG-derived dinucleotides containing the FMR at the 2'-O-position of guanosine. These newly discovered compounds are potent snurportin ligands with nanomolar KD (dissociation constant) values, which are two orders of magnitude lower than that of natural TMGpppG. The effect is diminished by ∼50-fold for the corresponding 3'-regioisomers. To deepen the understanding of the structure-activity relationship, we synthesized and tested FMR conjugates lacking the TMG cap moiety. These studies, supported by molecular docking, suggested that the enhanced affinity arises from additional hydrophobic contacts provided by the FMR moiety. The strongest snurportin ligand, which also gave the greatest fluorescence enhancement (Fm/F0) when saturated with the protein, were tested in living cells to detect interactions and visualize complexes by fluorescence lifetime monitoring. This approach has potential applications in the study of RNA processing and RNA-protein interactions.
Collapse
Affiliation(s)
- Piotr Surynt
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Joanna Panecka-Hofman
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
2
|
Chowdhury M, Turner JA, Cappello D, Hajjami M, Hudson RHE. Chimeric GFP-uracil based molecular rotor fluorophores. Org Biomol Chem 2023; 21:9463-9470. [PMID: 37997774 DOI: 10.1039/d3ob01539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Uracil has been modified at the 5-position to derive a small library of nucleobase-chromophores which were inspired by green fluorescent protein (GFP). The key steps in the syntheses were Erlenmeyer azlactone synthesis followed by amination by use of hexamethyl disilazane (HMDS) to produce the imidazolinone derivatives. The uracil analogues displayed emission in the green region of visible spectrum and exhibited microenvironmental sensitivity exemplified by polarity-based solvatochromism and viscosity-dependent emission enhancement. Solid-state quantum yields of approximately 0.2 and solvent dependent emission wavelengths beyond 500 nm were observed. Select analogues were incorporated into peptide nucleic acid (PNA) strands which upon duplex formation with DNA showed good response ranging from a turn-off of fluorescence in presence of an opposing mismatched residue to a greater than 3-fold turn-on of fluorescence upon binding to fully complementary DNA strand.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Julia A Turner
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Daniela Cappello
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Maryam Hajjami
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| |
Collapse
|
3
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
4
|
Faillace MS, Dolgopolova EA, Ceballos NM, Ruiz Pereyra EN, Lanfri L, Argüello GA, Burgos Paci M, Shustova NB, Peláez WJ. GFP-related chromophores: photoisomerization, thermal reversion, and DNA labelling. Phys Chem Chem Phys 2023. [PMID: 37376968 DOI: 10.1039/d3cp01655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Due to the pronounced effect of the confined environment on the photochemical properties of 4-hydroxybenzylidene imidazolinone (HBI), a GFP-related chromophore, imidazolidinone and imidazothiazolone analogues have been studied as fluorescent probes. Their photoisomerization and their thermal reversion were studied under 365-nm-irradiation, resulting in observation of an enthalpy-entropy compensation effect. Theoretical studies were carried out to shed light on the thermal reversion mechanism. Moreover, photophysical studies of benzylidene imidazothiazolone in the presence of dsDNA revealed fluorescence enhancement. The prepared compounds could be considered as a valuable tool for the detailed investigation of physicochemical, biochemical, or biological systems.
Collapse
Affiliation(s)
- Martin S Faillace
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Ekaterina A Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Noelia M Ceballos
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - E Nahir Ruiz Pereyra
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Lucia Lanfri
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Gustavo A Argüello
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Maximiliano Burgos Paci
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Walter J Peláez
- INFIQC-CONICET-Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
5
|
Wojtczak BA, Bednarczyk M, Sikorski PJ, Wojtczak A, Surynt P, Kowalska J, Jemielity J. Synthesis and Evaluation of Diguanosine Cap Analogs Modified at the C8-Position by Suzuki-Miyaura Cross-Coupling: Discovery of 7-Methylguanosine-Based Molecular Rotors. J Org Chem 2023. [PMID: 37209102 DOI: 10.1021/acs.joc.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modifications of the mRNA cap structure can enhance the stability, translational properties, and half-life of mRNAs, thereby altering the therapeutic properties of synthetic mRNA. However, cap structure modification is challenging because of the instability of the 5'-5'-triphosphate bridge and N7-methylguanosine. The Suzuki-Miyaura cross-coupling reaction between boronic acid and halogen compound is a mild, convenient, and potentially applicable approach for modifying biomolecules. Herein, we describe two methods to synthesize C8-modified cap structures using the Suzuki-Miyaura cross-coupling reaction. Both methods employed phosphorimidazolide chemistry to form the 5',5'-triphosphate bridge. However, in the first method, the introduction of the modification via the Suzuki-Miyaura cross-coupling reaction at the C8 position occurs postsynthetically, at the dinucleotide level, whereas in the second method, the modification was introduced at the level of the nucleoside 5'-monophosphate, and later, the triphosphate bridge was formed. Both methods were successfully applied to incorporate six different groups (methyl, cyclopropyl, phenyl, 4-dimethylaminophenyl, 4-cyanophenyl, and 1-pyrene) into either the m7G or G moieties of the cap structure. Aromatic substituents at the C8-position of guanosine form a push-pull system that exhibits environment-sensitive fluorescence. We demonstrated that this phenomenon can be harnessed to study the interaction with cap-binding proteins, e.g., eIF4E, DcpS, Nudt16, and snurportin.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Wojtczak
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Piotr Surynt
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Kuba M, Pohl R, Kraus T, Hocek M. Nucleotides Bearing Red Viscosity-Sensitive Dimethoxy-Bodipy Fluorophore for Enzymatic Incorporation and DNA Labeling. Bioconjug Chem 2023; 34:133-139. [PMID: 36519639 DOI: 10.1021/acs.bioconjchem.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 3,3'-dimethoxy-2,2'-diphenyl-6-(4-hydroxyphenyl)-bodipy fluorophore attached through a propargyl or propargyl-triethylene glycol linker to position 5 of 2'-deoxycytidine were designed and synthesized. They exerted bright red fluorescence and good sensitivity to viscosity changing their lifetime from 1.6 to 4.5 ns. The modifed dNTPs were substrates for DNA polymerases and were used in enzymatic synthesis of labeled DNA through primer extension. The modified DNA probes served as viscosity sensors responding to protein binding by changes of lifetime. The nucleotide with longer linker (dCpegMOBTP) was transported to live cells and incorporated into the genomic DNA, which can be useful for staining of DNA and imaging of DNA synthesis.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
7
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
8
|
Kim Y, Kang S, Lee BH, Song Y, Kang S, Park HY, Lee Y. De novo generation of a bright blue fluorophore from 2-oxoglutarate in biological samples. Chem Sci 2022; 13:365-372. [PMID: 35126969 PMCID: PMC8729799 DOI: 10.1039/d1sc05808h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
We discovered the generation of a new bright blue fluorophore from a particular type of amine and 2-oxoglutarate (2-OG) under mild conditions without any chemical additives. Two β-aminoethylamine molecules and three 2-OG molecules form an unprecedented 2-pyridone structure with a fused γ-lactam ring (DTPP) via complex reactions including double decarboxylation and quintuple dehydration. The DTPP fluorophore shows a high quantum yield (80%) and photostability. The great potential of the present DTPP generation in the quantitative analysis of 2-OG in biosamples is demonstrated.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Sangyoon Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
9
|
Kovács E, Cseri L, Jancsó A, Terényi F, Fülöp A, Rózsa B, Galbács G, Mucsi Z. Synthesis and Fluorescence Mechanism of the Aminoimidazolone Analogues of the Green Fluorescent Protein: Towards Advanced Dyes with Enhanced Stokes Shift, Quantum Yield and Two‐Photon Absorption. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ervin Kovács
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Levente Cseri
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Department of Chemical Engineering & Analytical Science The University of Manchester The Mill, Sackville Street Manchester M1 3BB United Kingdom
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Ferenc Terényi
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Anna Fülöp
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
| | - Balázs Rózsa
- Two-Photon Measurement Technology Research Group The Faculty of Information Technology Pázmány Péter Catholic University Práter u. 50/A Budapest 1083 Hungary
- Laboratory of 3D Functional Imaging of Neuronal Networks and Dendritic Integration Institute of Experimental Medicine Szigony utca 43 Budapest 1083 Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| | - Zoltán Mucsi
- Department of Chemistry Femtonics Inc. Tűzoltó u. 58 1094 Budapest Hungary
- Institute of Chemistry Faculty of Materials Science and Engineering University of Miskolc Egyetem út 1 Miskolc 3515 Hungary
| |
Collapse
|
10
|
Manning TW, Van Riesen AJ, Manderville RA. Screening Internal Donor-Acceptor Biaryl Nucleobase Surrogates for Turn-On Fluorescence Affords an Aniline-Carboxythiophene Probe for Protein Detection by G-Quadruplex DNA. Bioconjug Chem 2021; 32:1791-1801. [PMID: 34138558 DOI: 10.1021/acs.bioconjchem.1c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Donor-acceptor biaryls serve as microenvironment fluorescent sensors with highly quenched intramolecular charge transfer (ICT) emission in polar protic solvents that turns on in aprotic media. In DNA, canonical donor-acceptor fluorescent base analogs can be prepared through on-strand Suzuki-Miyaura cross-coupling reactions involving 8-bromo-2'-deoxyguanosine (8-Br-dG) with an acceptor aryboronic acid. Herein, we demonstrate that replacement of 8-Br-dG with N-methyl-4-bromoaniline (4-Br-An) containing an acyclic N-glycol group can be employed in the on-strand Suzuki-Miyaura reaction to afford new donor-acceptor biaryl nucleobase surrogates with a 40-fold increase in emission intensity for fluorescent readout within single-strand oligonucleotides. Screening the best acceptor for turn-on fluorescence upon duplex formation afforded the carboxythiophene derivative [COOTh]An with a 7.4-fold emission intensity increase upon formation of a single-bulged duplex (-1) with the surrogate occupying a pyrimidine-flanked bulge. Insertion of the [COOTh]An surrogate into the lateral TT loops produced by the antiparallel G-quadruplex (GQ) of the thrombin binding aptamer (TBA) afforded a 4.1-fold increase in probe fluorescence that was accompanied by a 20 nm wavelength shift to the blue upon thrombin binding. The modified TBA afforded a limit of detection of 129 nM for thrombin and displayed virtually no emission response to off-target proteins. The fluorescence response of [COOTh]An to thrombin binding highlights the utility of the thienyl-aniline moiety for monitoring DNA-protein interactions.
Collapse
Affiliation(s)
- Trevor W Manning
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Abigail J Van Riesen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jacob Rodriguez
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Heemal H. Dhanjee
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
12
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:12109-12115. [PMID: 33730425 DOI: 10.1002/anie.202103180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Organometallic reagents enable practical strategies for bioconjugation. Innovations in the design of water-soluble ligands and the enhancement of reaction rates have allowed for chemoselective cross-coupling reactions of peptides and proteins to be carried out in water. There are currently no organometallic-based methods for oligonucleotide bioconjugation to other biomolecules. Here we report bifunctional palladium(II)-oxidative addition complexes (OACs) as reagents for high-yielding oligonucleotide bioconjugation reactions. These bifunctional OACs react chemoselectively with amine-modified oligonucleotides to generate the first isolable, bench stable oligonucleotide-palladium(II) OACs. These complexes undergo site-selective C-S arylation with a broad range of native thiol-containing biomolecules at low micromolar concentrations in under one hour. This approach provided oligonucleotide-peptide, oligonucleotide-protein, oligonucleotide-small molecule, and oligonucleotide-oligonucleotide conjugates in >80 % yield and afforded conjugation of multiple copies of oligonucleotides onto a monoclonal antibody.
Collapse
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
13
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
14
|
2-Ethynylnaphthalene-modified 8-aza-3,7-dideaza-2′-deoxyadenosine derivative discriminates thymine in target DNA via changes in the fluorescence wavelength. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Saady A, Wojtyniak M, Varon E, Böttner V, Kinor N, Shav-Tal Y, Ducho C, Fischer B. Specific, Sensitive, and Quantitative Detection of HER-2 mRNA Breast Cancer Marker by Fluorescent Light-Up Hybridization Probes. Bioconjug Chem 2020; 31:1188-1198. [DOI: 10.1021/acs.bioconjchem.0c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Melissa Wojtyniak
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Eli Varon
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Verena Böttner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Noa Kinor
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yaron Shav-Tal
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
16
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
17
|
Güixens-Gallardo P, Humpolickova J, Miclea SP, Pohl R, Kraus T, Jurkiewicz P, Hof M, Hocek M. Thiophene-linked tetramethylbodipy-labeled nucleotide for viscosity-sensitive oligonucleotide probes of hybridization and protein-DNA interactions. Org Biomol Chem 2020; 18:912-919. [PMID: 31919486 DOI: 10.1039/c9ob02634g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytosine 2'-deoxyribonucleoside dCTBdp and its triphosphate (dCTBdpTP) bearing tetramethylated thiophene-bodipy fluorophore attached at position 5 were designed and synthesized. The green fluorescent nucleoside dCTBdp showed a perfect dependence of fluorescence lifetime on the viscosity. The modified triphosphate dCTBdpTP was substrate to several DNA polymerases and was used for in vitro enzymatic synthesis of labeled oligonucleotides (ONs) or DNA by primer extension. The labeled single-stranded ONs showed a significant decrease in mean fluorescence lifetime when hybridized to the complementary strand of DNA or RNA and were also sensitive to mismatches. The labeled dsDNA sensed protein binding (p53), which resulted in the increase of its fluorescence lifetime. The triphosphate dCTBdpTP was transported to live cells where its interactions could be detected by FLIM but it did not show incorporation to genomic DNA in cellulo.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Sebastian Paul Miclea
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
18
|
Kuba M, Pohl R, Hocek M. Synthesis of 2′-deoxycytidine and its triphosphate bearing tryptophan-based imidazolinone fluorophore for environment sensitive fluorescent labelling of DNA. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
20
|
Bag SS, Gogoi H. Design of "Click" Fluorescent Labeled 2'-deoxyuridines via C5-[4-(2-Propynyl(methyl)amino)]phenyl Acetylene as a Universal Linker: Synthesis, Photophysical Properties, and Interaction with BSA. J Org Chem 2018; 83:7606-7621. [PMID: 29877080 DOI: 10.1021/acs.joc.7b03097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microenvironment-sensitive fluorescent nucleosides present attractive advantages over single-emitting dyes for sensing inter-biomolecular interactions involving DNA. Herein, we report the rational design and synthesis of triazolyl push-pull fluorophore-labeled uridines via the intermediacy of C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker. The synthesized nucleosides showed interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) features. A few of them also exhibited dual-emitting characteristics evidencing our designing concept. The HOMO-LUMO distribution showed that the emissive states of these nucleosides were characterized with more significant electron redistribution between the C5-[4-(2-propynyl(methyl)amino)]phenyl triazolyl donor moiety and the aromatic chromophores linked to it, leading to modulated emission property. The solvent polarity sensitivity of these nucleosides was also tested. The synthesized triazolyl benzonitrile (10C), naphthyl (10E), and pyrenyl (10G) nucleosides were found to exhibit interesting ICT and dual (LE/ICT) emission properties. The dual-emitting pyrenyl nucleoside maintained a good ratiometric response in the BSA protein microenvironment, enabling the switch-on ratiometric sensing of BSA as the only protein biomolecule. Thus, it is expected that the new fluorescent nucleoside analogues would be useful in designing DNA probes for nucleic acid analysis or studying DNA-protein interactions via a drastic change in fluorescence response due to a change in micropolarity.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Hiranya Gogoi
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| |
Collapse
|
21
|
Kanamori T, Takamura A, Tago N, Masaki Y, Ohkubo A, Sekine M, Seio K. Fluorescence enhancement of oligodeoxynucleotides modified with green fluorescent protein chromophore mimics upon triplex formation. Org Biomol Chem 2018; 15:1190-1197. [PMID: 28084483 DOI: 10.1039/c6ob01278g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green fluorescent protein (GFP)-based molecular-rotor chromophores were attached to the 5-positions of deoxyuridines, and subsequently, incorporated into the middle positions of oligodeoxynucleotides. These oligonucleotides were designed to form triplex DNA in order to encapsulate the GFP chromophores, mimicking GFP structures. Upon triplex formation, the embedded GFP chromophores exhibited fluorescence enhancement, suggesting the potential application of these fluorescent probes for the detection of nucleic acids.
Collapse
Affiliation(s)
- Takashi Kanamori
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Akihiro Takamura
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Tago
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Yoshiaki Masaki
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
22
|
Han JH, Yamamoto S, Park S, Sugiyama H. Development of a Vivid FRET System Based on a Highly Emissive dG-dC Analogue Pair. Chemistry 2017; 23:7607-7613. [PMID: 28411372 DOI: 10.1002/chem.201701118] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 12/12/2022]
Abstract
A new type of Förster Resonance Energy Transfer (FRET) system using highly emissive isomorphic nucleobase analogues is reported. The FRET pair consists of 2-aminothieno[3,4-d]pyrimidine G-mimic deoxyribonucleoside (th dG) as an energy donor and 1,3-diaza-2-oxophenothiazine (tC) as an energy acceptor. The distance and orientation between donor and acceptor was controlled by systematic incorporation of th dG and tC into DNA sequences to investigate the FRET efficiencies. This is the first Watson-Crick base-pairable FRET pair to produce vivid colors. In addition, this nucleic acid-based FRET pair was used to monitor DNA conformation and achieved visualization of the B-Z transition.
Collapse
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Seigi Yamamoto
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University,Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Yamauchi T, Takeda T, Yanagi M, Takahashi N, Suzuki A, Saito Y. C2-substituted 8-aza-7-deaza-2′-deoxyadenosines as environmentally sensitive fluorescent nucleosides for discriminating apurinic/apyrimidinic sites in DNA duplex. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Tichy V, Sebest P, Orsag P, Havran L, Pivonkova H, Fojta M. Protein p53 Binding to Cisplatin-modified DNA Targets Evaluated by Modification-specific Electrochemical Immunoprecipitation Assay. ELECTROANAL 2016. [DOI: 10.1002/elan.201600480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vlastimil Tichy
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
| | - Peter Sebest
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
| | - Petr Orsag
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
- CEITEC-Central European Institute of Technology; Masaryk University; Kamenice 5 62500 Brno Czech Republic
| | - Ludek Havran
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
| | - Hana Pivonkova
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.,; Kralovopolska 135 61265 Brno Czech Republic
- CEITEC-Central European Institute of Technology; Masaryk University; Kamenice 5 62500 Brno Czech Republic
| |
Collapse
|
26
|
Okuda T, Mori S, Kasahara Y, Morihiro K, Ikejiri M, Miyashita K, Obika S. Synthesis and properties of 4-(diarylmethylene)imidazolinone-conjugated fluorescent nucleic acids. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Siraiwa S, Suzuki A, Katoh R, Saito Y. Design and synthesis of a novel fluorescent benzo[g]imidazo[4,5-c]quinoline nucleoside for monitoring base-pair-induced protonation with cytosine: distinguishing cytosine via changes in the intensity and wavelength of fluorescence. Org Biomol Chem 2016; 14:3934-42. [PMID: 27044927 DOI: 10.1039/c6ob00494f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel fluorescent benzo[g]imidazo[4,5-c]quinoline nucleoside (BIQ)A (1) comprising a 3-deaza-2'-deoxyadenosine skeleton was developed and used to monitor (BIQ)A-C base-pair formation in oligodeoxynucleotide (ODN) duplexes. The newly synthesized (BIQ)A exhibited distinct photophysical properties associated with its protonated/deprotonated forms (monomer: pKa 6.2) via dramatic changes in its absorption and fluorescence spectra. In ODN duplexes, the induced protonation of (BIQ)A occurred, even under alkalescent conditions when cytosine was the opposite base on the complementary strand; the resulting (BIQ)A-C base pairs were stable. By monitoring the protonation of (BIQ)A under neutral and alkalescent conditions, we could clearly discriminate cytosine through spectral changes in absorption and fluorescence. Similarly, we found that the demonstrated 3-deaza-2'-deoxyadenosine (3z)A forms a stable base pair with cytosine via N(1) protonation in ODN duplexes under neutral and acidic conditions (pH < 7.0). At lower pH values, (3z)A-containing ODNs could clearly discriminate cytosine through melting temperature (Tm) measurements. Therefore, ODN probes containing indicator nucleosides, such as (BIQ)A and (3z)A, exhibit great potential as bioprobes for genetic analysis and structural studies of nucleic acids.
Collapse
Affiliation(s)
- Shogo Siraiwa
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan.
| | | | | | | |
Collapse
|
28
|
Kuznetsova VE, Spitsyn MA, Shershov VE, Guseinov TO, Fesenko EE, Lapa SA, Ikonnikova AY, Avdonina MA, Nasedkina TV, Zasedatelev AS, Chudinov AV. Novel fluorescently labeled nucleotides: synthesis, spectral properties and application in polymerase chain reaction. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases. Bioorg Med Chem 2016; 24:1268-76. [PMID: 26899597 DOI: 10.1016/j.bmc.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.
Collapse
|
30
|
Tokugawa M, Masaki Y, Canggadibrata JC, Kaneko K, Shiozawa T, Kanamori T, Grøtli M, Wilhelmsson LM, Sekine M, Seio K. 7-(Benzofuran-2-yl)-7-deazadeoxyguanosine as a fluorescence turn-ON probe for single-strand DNA binding protein. Chem Commun (Camb) 2016; 52:3809-12. [DOI: 10.1039/c5cc09700b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
7-(Benzofuran-2-yl)-7-deazadeoxyguanosine (BFdG) was synthesized and incorporated into an oligodeoxynucleotide (ODN).
Collapse
Affiliation(s)
- Munefumi Tokugawa
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Yoshiaki Masaki
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | | | - Kazuhei Kaneko
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takashi Shiozawa
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takashi Kanamori
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- S-41296 Gothenburg
- Sweden
| | - L. Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering/Chemistry and Biochemistry
- Chalmers University of Technology
- S-41296 Gothenburg
- Sweden
| | - Mitsuo Sekine
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Kohji Seio
- Department of Life Science
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
31
|
Suzuki A, Kozakai R, Aso T, Saito I, Takeda T, Saito Y. Design and synthesis of environmentally sensitive fluorescent 2-naphthylethynylated 2′-deoxyadenosines: Detection of target DNA via changes in fluorescence intensity and wavelength. Bioorg Med Chem Lett 2016; 26:684-689. [DOI: 10.1016/j.bmcl.2015.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 02/02/2023]
|
32
|
Sontakke VA, Lawande PP, Kate AN, Khan A, Joshi R, Kumbhar AA, Shinde VS. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis. Org Biomol Chem 2016; 14:4136-45. [DOI: 10.1039/c6ob00527f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bicyclic benzimidazole nucleosides were synthesized from d-glucose as a starting material. DNA binding, antiproliferative activity and cell cycle analysis were performed.
Collapse
Affiliation(s)
- Vyankat A. Sontakke
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Pravin P. Lawande
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Anup N. Kate
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Ayesha Khan
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Anupa A. Kumbhar
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| | - Vaishali S. Shinde
- Department of Chemistry
- Savitribai Phule Pune University (formerly University of Pune)
- Pune-411007
- India
| |
Collapse
|
33
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015; 55:174-8. [PMID: 26768820 DOI: 10.1002/anie.201507922] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso-substituted BODIPY fluorescent molecular rotor (dC(bdp)) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dC(bdp) can respond to interactions with DNA-binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5-2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA-associated processes, cellular structures, and also DNA-based nanomaterials.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic).
| |
Collapse
|
35
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507922] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Temperature controlled stereoselectivity in the synthesis of 5-halo-2′-deoxyuridine derivatives. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Novel Signal-Enhancing Approaches for Optical Detection of Nucleic Acids—Going beyond Target Amplification. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3030224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
39
|
Aso T, Saito K, Suzuki A, Saito Y. Synthesis and photophysical properties of pyrene-labeled 3-deaza-2'-deoxyadenosines comprising a non-π-conjugated linker: fluorescence quenching-based oligodeoxynucleotide probes for thymine identification. Org Biomol Chem 2015; 13:10540-7. [PMID: 26338764 DOI: 10.1039/c5ob01605c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrene-labeled 3-deaza-2'-deoxyadenosine comprising a non-π-conjugated linker (py3z)A (1) was synthesized and its photophysical properties were investigated. Oligodeoxynucleotide (ODN) probes containing (py3z)A (1) exhibited remarkable fluorescence quenching only when the opposite base of the complementary strand was the perfectly matched thymine. Such fluorescence quenching-based ODN probes exhibited excellent on-off switching properties, making them useful tools for single nucleotide polymorphism (SNP) genotyping and for the identification of target genes and structural studies of nucleic acids.
Collapse
Affiliation(s)
- Tatsuya Aso
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan.
| | | | | | | |
Collapse
|
40
|
Walker CL, Lukyanov KA, Yampolsky IV, Mishin AS, Bommarius AS, Duraj-Thatte AM, Azizi B, Tolbert LM, Solntsev KM. Fluorescence imaging using synthetic GFP chromophores. Curr Opin Chem Biol 2015; 27:64-74. [DOI: 10.1016/j.cbpa.2015.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023]
|
41
|
Saito Y, Suzuki A, Yamauchi T, Saito I. Design and synthesis of 7-naphthyl-8-aza-7-deaza-2′-deoxyadenosines as environmentally sensitive fluorescent nucleosides. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.10.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
43
|
Dumat B, Bood M, Wranne MS, Lawson CP, Larsen AF, Preus S, Streling J, Gradén H, Wellner E, Grøtli M, Wilhelmsson LM. Second-generation fluorescent quadracyclic adenine analogues: environment-responsive probes with enhanced brightness. Chemistry 2015; 21:4039-48. [PMID: 25641628 DOI: 10.1002/chem.201405759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 01/10/2023]
Abstract
Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putative quadracyclic adenine analogues. The compounds were efficiently synthesized from a common intermediate through a two-step pathway with the Suzuki-Miyaura coupling as the key step. Two of the compounds, qAN1 and qAN4, display brightnesses (εΦF) of 1700 and 2300, respectively, in water and behave as wavelength-ratiometric pH probes under acidic conditions. The other two, qAN2 and qAN3, display lower brightnesses but exhibit polarity-sensitive dual-band emissions that could prove useful to investigate DNA structural changes induced by DNA-protein or -drug interactions. The four qANs are very promising microenvironment-sensitive fluorescent adenine analogues that display considerable brightness for such compounds.
Collapse
Affiliation(s)
- Blaise Dumat
- Department of Chemical and Chemical Engineering/, Chemistry and Biochemistry, Chalmers University of Technology, 41296 Gothenburg (Sweden)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Suzuki A, Saito M, Katoh R, Saito Y. Synthesis of 8-aza-3,7-dideaza-2′-deoxyadenosines possessing a new adenosine skeleton as an environmentally sensitive fluorescent nucleoside for monitoring the DNA minor groove. Org Biomol Chem 2015; 13:7459-68. [DOI: 10.1039/c5ob00862j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescent ODN probes containing3n7zA(2) acted as effective reporter probes for homogeneous single nucleotide polymorphism (SNP) typing.
Collapse
Affiliation(s)
- Azusa Suzuki
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Mio Saito
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Ryuzi Katoh
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| | - Yoshio Saito
- Department of Chemical Biology and Applied Chemistry
- College of Engineering
- Nihon University
- Koriyama
- Japan
| |
Collapse
|
45
|
Kim KT, Heo W, Joo T, Kim BH. Photophysical and structural investigation of a PyA-modified adenine cluster: its potential use for fluorescent DNA probes exhibiting distinct emission color changes. Org Biomol Chem 2015; 13:8470-8. [DOI: 10.1039/c5ob01159k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A PyA-modified adenine cluster, exhibiting a large Stokes shift based on interstrand stacking interactions of adenines, was investigated and exploited as signaling parts of fluorescent DNA probes.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Chemistry
- BK School of Molecular Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 790-784
- South Korea
| | - Wooseok Heo
- Department of Chemistry
- BK School of Molecular Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 790-784
- South Korea
| | - Taiha Joo
- Department of Chemistry
- BK School of Molecular Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 790-784
- South Korea
| | - Byeang Hyean Kim
- Department of Chemistry
- BK School of Molecular Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 790-784
- South Korea
| |
Collapse
|
46
|
Dziuba D, Pohl R, Hocek M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun (Camb) 2015; 51:4880-2. [DOI: 10.1039/c5cc00530b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent molecular rotors are for the first time used as light-up probes for sensing of DNA–protein interaction.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|
47
|
Barthes NPF, Karpenko IA, Dziuba D, Spadafora M, Auffret J, Demchenko AP, Mély Y, Benhida R, Michel BY, Burger A. Development of environmentally sensitive fluorescent and dual emissive deoxyuridine analogues. RSC Adv 2015. [DOI: 10.1039/c5ra02709h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We designed and developed fluorescent deoxyuridine analogues with strong sensitivity to hydration for the major groove labelling of DNA.
Collapse
Affiliation(s)
- N. P. F. Barthes
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - I. A. Karpenko
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - D. Dziuba
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - M. Spadafora
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - J. Auffret
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | | | - Y. Mély
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213
- Faculté de Pharmacie
- Université de Strasbourg
- CNRS
| | - R. Benhida
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - B. Y. Michel
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| | - A. Burger
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- 06108 Nice Cedex 2
| |
Collapse
|
48
|
Takada T, Tanimizu Y, Nakamura M, Yamana K. Preparation of fluorescent nucleic acids generating unique emission by primer extension reaction using pyrene-labeled deoxyuridine triphosphate derivatives. ACTA ACUST UNITED AC 2014. [DOI: 10.5857/rcp.2014.3.4.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Dziuba D, Pohl R, Hocek M. Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjug Chem 2014; 25:1984-95. [PMID: 25290695 DOI: 10.1021/bc5003554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New fluorescent nucleosides and nucleoside triphosphate (dNTPs) analogs bearing the F-Bodipy fluorophore linked through a short, flexible nonconjugate tether were synthesized. The Bodipy-labeled dNTPs were substrates for several DNA polymerases which incorporated them into DNA in primer extension, nicking enzyme amplification reaction, and polymerase chain reaction. The fluorescence of F-Bodipy is not quenched upon incorporation in DNA and can be detected both in solutions and on gels.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
50
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|