1
|
Yu X, Ji X, Shang D, Yu L, Chan PWH, Rao W. Rhodium(I)-Catalyzed Cascade Annulation of 1, n-Diynyl Nitrones to 3,4-Fused Fully Substituted Furans. Org Lett 2024; 26:6631-6636. [PMID: 39087730 DOI: 10.1021/acs.orglett.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A method for the assembly of fully substituted furans containing a 3,4-fused 5-8-membered carbocycle, heterocycle, or spirocycle from rhodium(I)-catalyzed and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)-assisted cascade annulation of 1,n-diynyl nitrones has been developed.
Collapse
Affiliation(s)
- Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaowen Ji
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Kumar M, Nayek HP. Syntheses and exploration of the catalytic activities of organotin(IV) compounds. Dalton Trans 2024; 53:9827-9837. [PMID: 38804088 DOI: 10.1039/d4dt00646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Six organotin(IV) compounds (1-6) have been synthesized by reaction of the polydentate pro-ligands H3L and H2L, respectively, with the corresponding diorganotin chlorides. All of the compounds were characterized by FT-IR spectroscopy, 1H, 13C{1H}, and 119Sn (1H) NMR spectroscopy, HRMS spectrometry, and single-crystal X-ray diffraction. The solid-state structures show that all of the compounds are monomeric (except compound 3) and contain a penta-coordinated tin atom. Compound 3 is a dimer with two hexa-coordinated tin atoms. Compounds 1-3 contain a non-coordinated hydroxymethyl group. All of the compounds have been screened for their catalytic efficacy in the synthesis of 1,2 disubstituted benzimidazoles using o-phenylenediamine and aldehyde derivatives. It has been observed that both the Lewis acidic Sn(IV) centre and the hydroxymethyl group (hydrogen bond donor) catalyse the reactions with a product yield of up to 92%.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
3
|
Korbekandi M, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Omidvar A, Notash B. Diphenhydramine Hydrochloride-CuCl as a New Catalyst for the Synthesis of Tetrahydrocinnolin-5(1 H)-ones. ACS OMEGA 2023; 8:15883-15895. [PMID: 37179652 PMCID: PMC10173344 DOI: 10.1021/acsomega.2c06765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
The current study deals with the synthesis and characterization of a novel catalyst made from diphenhydramine hydrochloride and CuCl ([HDPH]Cl-CuCl). The prepared catalyst was thoroughly characterized using various techniques, such as 1H NMR, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis and derivative thermogravimetry. More importantly, the observed hydrogen bond between the components was proven experimentally. The activity of this catalyst was checked in the preparation of some new derivatives of tetrahydrocinnolin-5(1H)-ones via a multicomponent reaction between dimedone, aromatic aldehydes, and aryl/alkyl hydrazines in ethanol as a green solvent. Also, for the first time, this new homogeneous catalytic system was effectively used for the preparation of unsymmetric tetrahydrocinnolin-5(1H)-one derivatives as well as mono- and bis-tetrahydrocinnolin-5(1H)-ones from two different aryl aldehydes and dialdehydes, respectively. The effectiveness of this catalyst was further confirmed by the preparation of compounds containing both tetrahydrocinnolin-5(1H)-one and benzimidazole moieties from dialdehydes. The one-pot operation, mild conditions, rapid reaction, and high atom economy, along with the recyclability and reusability of the catalyst, are other notable features of this approach.
Collapse
Affiliation(s)
- Mehri
Moeini Korbekandi
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Akbar Omidvar
- Department
of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983963113 Iran
| |
Collapse
|
4
|
Rath S, Mohanty B, Sen S. "All-Aqueous" Tandem Boc-Deprotection and Alkylation of N-Bocbenzimidazole Derivatives under Visible Light with Alkyl Aryl Diazoacetates: Application to Site-Selective Insertion of Carbenes into the N-H Bond of Purines. J Org Chem 2023; 88:1036-1048. [PMID: 36579969 DOI: 10.1021/acs.joc.2c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we have reported a blue LED-induced tandem Boc-deprotection and NH-alkylation of benzimidazole derivatives with methyl aryl diazoacetates. The reactions occur in water at room temperature. The desired products are obtained in good to excellent yields. The putative mechanism of this reaction is discussed based on control experiments and supported by DFT studies. Additionally, the strategy is used to alkylate various purine derivatives via site-selective N1-alkylation to generate acyclic nucleoside analogues.
Collapse
Affiliation(s)
- Suchismita Rath
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Chithera, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Biswajit Mohanty
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Chithera, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, Chithera, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| |
Collapse
|
5
|
Celik I, Çevik UA, Karayel A, Işık A, Kayış U, Gül Ü, Bostancı HE, Konca SF, Özkay Y, Kaplancıklı ZA. Synthesis, Molecular Docking, Dynamics, Quantum-Chemical Computation, and Antimicrobial Activity Studies of Some New Benzimidazole-Thiadiazole Hybrids. ACS OMEGA 2022; 7:47015-47030. [PMID: 36570216 PMCID: PMC9773947 DOI: 10.1021/acsomega.2c06142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
In this study, some new compounds, which are 2-aminothiadiazole derivatives linked by a phenyl bridge to the 2-position of the benzimidazole ring, were designed and synthesized as antimicrobial agents. The structures of the compounds were elucidated by 1H and 13C NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. The antifungal activities of the synthesized compounds were tested on Candida albicans, Candida krusei, Candida glabrata, and Candida parapsilosis. Compound 5f is more active against C. albicans and C. glabrata than standard fluconazole and varicanazole. Compounds were also evaluated for their counteracting activity against Gram-positive Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, and Pseudomonas aeruginosa and Gram-negative Enterococcus faecalis, Bacillus subtilis, and Staphylococcus aureus. Compounds 5c and 5h had minimum inhibitory concentrations against E. faecalis close to that of the standard azithromycin. Molecular docking studies were performed against Candida species' 14-α demethylase enzyme. 5f was the most active compound against Candida species, which gave the highest docking interaction energy. The stabilities of compounds 5c and 5f with CYP51 were tested using 100 ns molecular dynamics simulations. According to the theoretical ADME calculations, the profiles of the compounds are suitable in terms of limiting rules. HOMO-LUMO analysis showed that 5h is chemically more reactive (represented with the lower ΔE = 3.432 eV) than the other molecules, which is compatible with the highest antibacterial activity result.
Collapse
Affiliation(s)
- Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Arzu Karayel
- Department
of Physics, Faculty of Arts and Science, Hitit University, 19030 Çorum, Turkey
| | - Ayşen Işık
- Department
of Biochemistry, Faculty of Science, Selçuk
University, 42250 Konya, Turkey
| | - Uğur Kayış
- Pazaryeri
Vocational School, Program of Pharmacy Services, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Ülküye
Dudu Gül
- Department
of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140 Sivas, Turkey
| | - Süheyl Furkan Konca
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
6
|
Bhatt S, Meena N, Kumar M, Bhuvanesh N, Kumar A, Sharma AK, Joshi H. Design and Syntheses of Ruthenium ENE (E = S, Se) Pincer Complexes: A Versatile System for Catalytic and Biological Applications. Chem Asian J 2022; 17:e202200736. [PMID: 36065146 DOI: 10.1002/asia.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 11/09/2022]
Abstract
This report describes synthesis of two ruthenium(II) ENE pincer complexes (E = S, C1 and E = Se, C2 ) by the reaction of bis(2-(phenylchalcogenyl)ethyl)amine ( L1 , L2 ) with RuCl 2 (PPh 3 ) 3 . The complexes were characterized with the help of 1 H and 13 C{ 1 H} NMR, FTIR, HRMS, cyclic voltammetry and elemental analysis techniques. The structure and bonding mode of ligand with ruthenium in C2 was established with the help of single crystal X-ray diffraction. The complex showed distorted octahedral geometry with two chlorine atoms trans to each other. The Ru-Se bond distances (Å) are 2.4564(3)-2.4630(3), Ru-N distance is 2.181(2), Ru-P distance is 2.2999(6), and Ru-Cl distances are 2.4078(6)-2.4314(6). The complexes showed good to excellent catalytic activity for the N -alkylation of 1,2-phenylenediamine with benzyl alcohol derivatives to synthesize 1,2-disubstituted benzimidazole derivatives. The complexes were also found to be efficient for aerobic oxidation of benzyl alcohols to corresponding aldehydes which are precursors to the bisimines generated in situ during the synthesis of 1,2-disubstituted benzimidazole derivatives. Complex C2 where selenium is coordinated with ruthenium was found to be more efficient as compared to sulfur coordinated ruthenium complex C1 . Since ruthenium complexes are getting increasing attention for developing new anticancer agents, the preliminary studies like binding behavior of both the complexes towards CT-DNA were studied by competitive binding with ethidium bromide (EthBr) using emission spectroscopy. In addition, the interactions of C1-C2 were also studied with bovine serum albumin (BSA) using steady state fluorescence quenching and synchronous fluorescence studies. A good stability of Ru(II) state was observed by cyclic voltammetric studies of C1-C2 . Overall these molecules are good examples of bio-organometallic systems for catalytic and biological applications.
Collapse
Affiliation(s)
| | - Neha Meena
- BITS Pilani: Birla Institute of Technology and Science, Chemistry, INDIA
| | - Mukesh Kumar
- Central University of Rajasthan, Chemistry, INDIA
| | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University, Chemistry, INDIA
| | - Anil Kumar
- BITS: Birla Institute of Technology & Science Pilani, Chemistry, INDIA
| | | | - Hemant Joshi
- Central University of Rajasthan, Ajmer, Chemistry, Department of Chemistry, Central University of Rajasthan, 305817, Bandarsindri, Ajmer, INDIA
| |
Collapse
|
7
|
Tocco G, Laus A, Caboni P. Mukaiyama reagent: An efficient reaction mediator for rapid synthesis of 1,2-disubstituted-1H-benzo[d]imidazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Fu J, Yue Y, Liu K, Wang S, Zhang Y, Su Q, Gu Q, Lin F, Zhang Y. PTSA-catalyzed selective synthesis and antibacterial evaluation of 1,2-disubstituted benzimidazoles. Mol Divers 2022; 27:873-887. [PMID: 35718840 DOI: 10.1007/s11030-022-10460-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Herein, we developed a convenient and efficient method via protonation of p-toluenesulfonic acid promoted cyclocondensation of o-phenylenediamine and aldehydes for selectively synthesizing 1,2-disubstituted benzimidazoles. This method displayed broad substrate adaptability and afforded the desired products in moderate to excellent yield in short reaction time. The effect of different substituents on the yield was investigated by extending optimum reaction conditions, which was further confirmed by theoretical calculations. It suggested that the surface electrostatic potential of oxygen atom and nitrogen atom on the substrates played important role in the synthesis of 1,2-disubstituted benzimidazoles. Besides, the crystal structure of compound 2t in the orthorhombic space group P2(1)/c was presented. Also, the anti-mycolicibacterium smegmatis (MC2155) activity was evaluated using rifampicin as a positive control. The products (2a, 2b, 2c, 2i, 2j, 2k, 2m) showed good antibacterial activities which were comparable to rifampicin.
Collapse
Affiliation(s)
- Jiaxu Fu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuandong Yue
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yiliang Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qing Su
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
N E ASWATHIRAVINDRAN, Sindhuja D, Bhuvanesh N, Karvembu R. Synthesis of 1,2‐disubstituted benzimidazoles via acceptorless dehydrogenative coupling using Ru(II)‐arene catalysts containing ferrocene thiosemicarbazone. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- ASWATHI RAVINDRAN N E
- National Institute of Technology Tiruchirappalli Chemistry 620015 Tiruchirappalli INDIA
| | | | - Nattamai Bhuvanesh
- Texas A&M University College Station: Texas A&M University Chemistry INDIA
| | - R Karvembu
- National Institute of Technology Department of Chemistry Tanjore Road 620015 Tiruchirappalli INDIA
| |
Collapse
|
10
|
Selective synthesis of benzimidazoles and benzodiazepines catalyzed by Brønsted Acid/ base-cooperative Titanocene dichloride. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Alberto R, Csucker J, Jo DK, Nadeem Q, Blacque O, Fox T, Braband H. An Isoindoline Bridged [M(η6-arene)2]+ (M = Re, 99mTc) ansa-Arenophane and its Dinuclear Macrocycles with Axial Chirality. Dalton Trans 2022; 51:9591-9595. [DOI: 10.1039/d2dt00743f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a straightforward method for the preparation of an isoindoline bridged [M(arene)2]+ (M = Re, 99mTc) ansa-[3]arenophane. This intramolecular formation of an ansa-complex is accompanied by the intermolecular...
Collapse
|
12
|
Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mondal MA, Mondal S, Khan AA. Synthesis of Functionalized Quinazolinones via Acid‐Catalyzed Redox Neutral Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohabul A. Mondal
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700032 India
| | - Sudipta Mondal
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700032 India
| | - Abdul A. Khan
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700032 India
| |
Collapse
|
14
|
Kanta Mahato R, Kumar Mudi P, Deb M, Biswas B. A Direct Metal‐Free Synthetic Approach for the Efficient Production of Privileged Benzimidazoles in Water Medium under Aerobic Condition. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajani Kanta Mahato
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Prafullya Kumar Mudi
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Mayukh Deb
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Raja Rammohanpur Darjeeling West Bengal-734013 India
| |
Collapse
|
15
|
Liu T, Yao T, Zhang F, Ju Y, Tan J. Cleavage and Reassembly of the C═O Bond of 2-Alkynylbenzaldehydes: A Metal-Free Access to Inden-1-ones. J Org Chem 2021; 86:9455-9465. [PMID: 34213346 DOI: 10.1021/acs.joc.1c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A metal-free approach to inden-1-ones from 2-alkynylbenzaldehydes mediated by pyrrolidine has been developed. The reaction proceeds under mild conditions in a step- and atom-economy process by cleaving the C═O bond and constructing new C-C as well as C═O bonds. Oxygen-18 and deuterium labeling experiments revealed an aza-Petasis-Ferrier rearrangement of an intermediate 1-amino-3-methylene-dihydroisobenzofuran.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Feng Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Ju
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
16
|
Sofi FA, Sharma R, Rawat R, Chakraborti AK, Bharatam PV. Visible light promoted tandem dehydrogenation-deaminative cyclocondensation under aerobic conditions for the synthesis of 2-aryl benzimidazoles/quinoxalines from ortho-phenylenediamines and arylmethyl/ethyl amines. NEW J CHEM 2021. [DOI: 10.1039/d0nj03002c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light promoted tandem dehydrogenation-deaminative cyclocondensation of arylmethyl/ethyl amines with ortho-phenylenediamines under aerobic conditions is reported for the synthesis of 2-aryl benzimidazoles/quinoxalines.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Rohit Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Ravi Rawat
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| |
Collapse
|
17
|
Tian AQ, Luo XH, Ren ZL, Zhao J, Wang L. The synthesis and structure of an amazing and stable carbonized material Cu-PC@OFM and its catalytic applications in water with mechanism explorations. NEW J CHEM 2021. [DOI: 10.1039/d1nj00861g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amazing and stable carbonized octahedral frame material Cu-PC@OFM was synthesized and characterized through HRTEM, SEM, XRD, XPS, and Raman spectroscopy and nitrogen adsorption/desorption analysis.
Collapse
Affiliation(s)
- An-Qi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Xiang-Hao Luo
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Zhi-Lin Ren
- College of Chemical Engineering
- Hubei University of Arts and Science
- Xiangyang
- China
| | - Jun Zhao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| |
Collapse
|
18
|
Kaliyan P, Selvaraj L, Muthu SP. Water extract of onion catalyst: An economical green route for the synthesis of 2‐substituted and 1,2‐disubstituted benzimidazole derivatives with high selectivity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prabakaran Kaliyan
- Department of Chemistry The Gandhigram Rural Institute‐Deemed to be University Dindigul India
| | - Loganathan Selvaraj
- Department of Chemistry The Gandhigram Rural Institute‐Deemed to be University Dindigul India
| | - Seenivasa Perumal Muthu
- Department of Chemistry The Gandhigram Rural Institute‐Deemed to be University Dindigul India
| |
Collapse
|
19
|
Halder B, Banerjee F, Nag A. MWCNTs‐ZrO
2
as a reusable heterogeneous catalyst for the synthesis of
N
‐heterocyclic scaffolds under green reaction medium. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bipasa Halder
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Flora Banerjee
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Ahindra Nag
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
20
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
21
|
Godugu K, Yadala VDS, Pinjari MKM, Gundala TR, Sanapareddy LR, Nallagondu CGR. Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation. Beilstein J Org Chem 2020; 16:1881-1900. [PMID: 32802206 PMCID: PMC7404249 DOI: 10.3762/bjoc.16.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Natural dolomitic limestone (NDL) is employed as a heterogeneous green catalyst for the synthesis of medicinally valuable benzimidazoles, dihydropyrimidinones, and highly functionalized pyridines via C–N, C–C, and C–S bond formations in a mixture of ethanol and H2O under ultrasound irradiation. The catalyst is characterized by XRD, FTIR, Raman spectroscopy, SEM, and EDAX analysis. The main advantages of this methodology include the wide substrate scope, cleaner reaction profile, short reaction times, and excellent isolated yields. The products do not require chromatographic purification, and the catalyst can be reused seven times. Therefore, the catalyst is a greener alternative for the synthesis of the above N-heterocycles compared to the existing reported catalysts.
Collapse
Affiliation(s)
- Kumar Godugu
- Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| | - Venkata Divya Sri Yadala
- Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| | - Mohammad Khaja Mohinuddin Pinjari
- Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| | - Trivikram Reddy Gundala
- Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| | | | - Chinna Gangi Reddy Nallagondu
- Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005, Andhra Pradesh, India
| |
Collapse
|
22
|
Putta RR, Chun S, Lee SB, Oh DC, Hong S. Iron-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Aromatic Diamines: Selective Synthesis of 1,2-Disubstituted Benzimidazoles. Front Chem 2020; 8:429. [PMID: 32637390 PMCID: PMC7317090 DOI: 10.3389/fchem.2020.00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Benzimidazoles are important N-heteroaromatic compounds with various biological activities and pharmacological applications. Herein, we present the first iron-catalyzed selective synthesis of 1,2-disubstituted benzimidazoles via acceptorless dehydrogenative coupling of primary alcohols with aromatic diamines. The tricarbonyl (η4-cyclopentadienone) iron complex catalyzed dehydrogenative cyclization, releasing water and hydrogen gas as by-products. The earth abundance and low toxicity of iron metal enable the provision of an eco-friendly and efficient catalytic method for the synthesis of benzimidazoles.
Collapse
Affiliation(s)
| | - Simin Chun
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seok Beom Lee
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dong-Chan Oh
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Suckchang Hong
- BK21 PLUS Project, College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Pramanik M, Choudhuri K, Chakraborty S, Ghosh A, Mal P. (Z)-Selective anti-Markovnikov or Markovnikov thiol-yne-click reactions of an internal alkyne by amide hydrogen bond control. Chem Commun (Camb) 2020; 56:2991-2994. [PMID: 32043509 DOI: 10.1039/d0cc00702a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we show exclusive control of stereo and regioselective thiol-yne click (TYC) reactions of internal alkynes via amide hydrogen bond control. By exploiting appropriate hydrogen bonding interactions like N-HS, N-HN and C-HO, either (Z)-selective anti-Markovnikov or Markovnikov products could be obtained for an internal alkyne, exclusively.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
25
|
Thapa P, Palacios PM, Tran T, Pierce BS, Foss FW. 1,2-Disubstituted Benzimidazoles by the Iron Catalyzed Cross-Dehydrogenative Coupling of Isomeric o-Phenylenediamine Substrates. J Org Chem 2020; 85:1991-2009. [PMID: 31928002 DOI: 10.1021/acs.joc.9b02714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Benzimidazoles are common in nature, medicines, and materials. Numerous strategies for preparing 2-arylbenzimidazoles exist. In this work, 1,2-disubstituted benzimidazoles were prepared from various mono- and disubstituted ortho-phenylenediamines (OPD) by iron-catalyzed oxidative coupling. Specifically, O2 and FeCl3·6H2O catalyzed the cross-dehydrogenative coupling and aromatization of diarylmethyl and dialkyl benzimidazole precursors. N,N'-Disubstituted-OPD substrates were significantly more reactive than their N,N-disubstituted isomers, which appears to be relative to their propensity for complexation and charge transfer with Fe3+. The reaction also converted N-monosubstituted OPD substrates to 2-substituted benzimidazoles; however, electron-poor substrates produce 1,2-disubstituted benzimidazoles by intermolecular imino-transfer. Kinetic, reagent, and spectroscopic (UV-vis and EPR) studies suggest a mechanism involving metal-substrate complexation, charge transfer, and aerobic turnover, involving high-valent Fe(IV) intermediates. Overall, comparative strategies for the relatively sustainable and efficient synthesis of 1,2-disubstituted benzimidazoles are demonstrated.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| | - Philip M Palacios
- Department of Chemistry and Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| | - Tam Tran
- Department of Chemistry and Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| | - Brad S Pierce
- Department of Chemistry and Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| |
Collapse
|
26
|
Sang X, Hu X, Tao R, Zhang Y, Zhu H, Wang D. A Zirconium Indazole Carboxylate Coordination Polymer as an Efficient Catalyst for Dehydrogenation‐Cyclization and Oxidative Coupling Reactions. Chempluschem 2020. [DOI: 10.1002/cplu.201900349] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Xinyu Hu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Rong Tao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia 26506-6045 United States
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province China
| |
Collapse
|
27
|
Lu G, Luo N, Hu F, Ban Z, Zhan Z, Huang G. Transition‐Metal‐Free Synthesis of 1,2‐diphenyl‐1
H
‐benzo[
d
] Imidazole Derivatives from
N
‐phenylbenzimidamides and Cyclohexanones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zihui Ban
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Guo‐Sheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
28
|
Zhang C, Hu B, Chen D, Xia H. Manganese(I)-Catalyzed Transfer Hydrogenation and Acceptorless Dehydrogenative Condensation: Promotional Influence of the Uncoordinated N-Heterocycle. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00475] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chong Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
29
|
Bal A, Maiti S, Mal P. Steric and Electronic Effect on C
2
‐H Arylation of Sulfonamides. ChemistrySelect 2019. [DOI: 10.1002/slct.201900944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Bal
- School of Chemical SciencesNational Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050, India
| | - Saikat Maiti
- School of Chemical SciencesNational Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical SciencesNational Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050, India
| |
Collapse
|
30
|
Taherian E, Khodarahmi G, Khajouei MR, Hassanzadeh F, Dana N. Synthesis and cytotoxic evaluation of novel quinozalinone derivatives with substituted benzimidazole in position 3. Res Pharm Sci 2019; 14:247-254. [PMID: 31160902 PMCID: PMC6540925 DOI: 10.4103/1735-5362.258493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Quinazolinone and benzimidazole are both fused heterocyclic compounds which have shown valuable biological properties including cytotoxic, antibacterial, and antifungal activities. In this study, a series of novel quinazolinone derivatives substituted with benzimidazole were synthesized in two parts. In the first part 2 - phenyl - 1H - benzimidazol - 6 - amine (4) was synthesized from the reaction of 4-nitro-o-phenylenediamine and benzoic acid. In the second part, new 3-(2-phenyl-1H benzoimidazol-5-yl)- 3H-quinazolin-4-one derivatives (8a-8f) were also prepared. Finally compound 4 was reacted with the different benzoxazinone derivatives (8a-8f) to give the target compounds. The structures of the synthesized compounds were confirmed by IR and 1HNMR. Cytotoxic activities of the final compounds were assessed at 100, 200, 300, 400, and 500 μM against MCF-7 and HeLa cell lines using the MTT colorimetric assay. Almost all compounds exhibited good cytotoxic activity against both cell lines. Compound 9d demonstrated the highest cytotoxic activity against MCF7 and Hela cell lines with IC50 70 μM and 50 μM, respectively.
Collapse
Affiliation(s)
- Elham Taherian
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Marzieh Rahmani Khajouei
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nasim Dana
- Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
31
|
Nagi Reddy KS, Reddy KP, Sabitha G. Green Approach for the Domino Reduction/Reductive Amination of Nitroarenes and Chemoselective Reduction of Aldehydes Using Fe/aq. Citric Acid/Montmorillonite K10. ChemistrySelect 2018. [DOI: 10.1002/slct.201801705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Koti Siva Nagi Reddy
- Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
| | - Karra Purushotham Reddy
- Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
| | - Gowravaram Sabitha
- Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
| |
Collapse
|
32
|
Chakraborty A, Debnath S, Ghosh T, Maiti DK, Majumdar S. An efficient strategy for N-alkylation of benzimidazoles/imidazoles in SDS-aqueous basic medium and N-alkylation induced ring opening of benzimidazoles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Choudhuri K, Pramanik M, Mandal A, Mal P. S−H⋅⋅⋅π Driven Anti-Markovnikov Thiol-Yne Click Reaction. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Khokan Choudhuri
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); HBNI; Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| | - Milan Pramanik
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); HBNI; Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| | - Arkalekha Mandal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); HBNI; Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); HBNI; Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
34
|
Alam MT, Maiti S, Mal P. An Intramolecular C(sp2
)-H Amidation Using N
-Iodosuccinimide. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Md Toufique Alam
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Homi Bhabha National Institute (HBNI); 752050 Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni Khurda District Odisha India
| | - Saikat Maiti
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Homi Bhabha National Institute (HBNI); 752050 Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni Khurda District Odisha India
| | - Prasenjit Mal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Homi Bhabha National Institute (HBNI); 752050 Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni Khurda District Odisha India
| |
Collapse
|
35
|
Samanta PK, Banerjee R, Richards RM, Biswas P. Mesoporous silica supported ytterbium as catalyst for synthesis of 1,2-disubstituted benzimidazoles and 2-substituted benzimidazoles. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Partha Kumar Samanta
- Department of Chemistry; Indian Institute of Engineering Science and Technology, Shibpur; Howrah 711 103 West Bengal India
| | - Rumeli Banerjee
- Department of Chemistry; Indian Institute of Engineering Science and Technology, Shibpur; Howrah 711 103 West Bengal India
| | - Ryan M. Richards
- Department of Chemistry; Colorado School of Mines; Golden CO 80401 USA
| | - Papu Biswas
- Department of Chemistry; Indian Institute of Engineering Science and Technology, Shibpur; Howrah 711 103 West Bengal India
| |
Collapse
|
36
|
Das K, Mondal A, Srimani D. Selective Synthesis of 2-Substituted and 1,2-Disubstituted Benzimidazoles Directly from Aromatic Diamines and Alcohols Catalyzed by Molecularly Defined Nonphosphine Manganese(I) Complex. J Org Chem 2018; 83:9553-9560. [DOI: 10.1021/acs.joc.8b01316] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kalicharan Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
37
|
Guchhait SK, Sisodiya S, Saini M, Shah YV, Kumar G, Daniel DP, Hura N, Chaudhary V. Synthesis of Polyfunctionalized Pyrroles via a Tandem Reaction of Michael Addition and Intramolecular Cyanide-Mediated Nitrile-to-Nitrile Condensation. J Org Chem 2018; 83:5807-5815. [DOI: 10.1021/acs.joc.8b00465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sankar K. Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Shailendra Sisodiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Meenu Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Yesha V. Shah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Gulshan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Divine P Daniel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Neha Hura
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Vikas Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
38
|
Sharma AK, Joshi H, Bhaskar R, Singh AK. Complexes of (η 5-Cp*)Ir(iii) with 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone: catalyst for oxidation and 1,2-substituted benzimidazole synthesis. Dalton Trans 2018; 46:2228-2237. [PMID: 28128378 DOI: 10.1039/c6dt04271f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The treatment of 1-benzyl-3-phenylthio/selenomethyl-1,3-dihydrobenzoimidazole-2-thione/selenone [L1-L4] with [(η5-Cp*)IrCl(μ-Cl)]2 at 25 °C followed by NH4PF6 results in [(η5-Cp*)Ir(L)Cl][PF6] (1-4 for L = L1 to L4), authenticated with high-resolution mass spectrometry (HR-MS) and multi-nuclei nuclear magnetic resonance (NMR) imaging (1H, 13C{1H} and 77Se{1H}). The structures of 1-4, established with single-crystal X-ray diffraction, reveal a "piano-stool" geometry around the Ir. The Ir-thio/selenoether (Ir-S/Ir-Se) bond distances (Å) are 2.347(18)-2.355(4)/2.4663(12)-2.4663(13) and Ir-thione/selenone (Ir-S/Ir-Se) distances are 2.4146(19)-2.417(2)/2.5141(16)-2.5159(12). The reaction of 1,2-phenylenediamine with benzylic alcohols and furfuryl alcohol under mild and ambient conditions, catalyzed efficiently with complexes 1-4, generates bisimine in situ. Cyclization and rearrangement via 1,3-hydride shift triggered by its electrophilic activation with Ir(iii) species finally results in 1,2-disubstituted benzimidazole. The yield of the heterocycles in this one-pot synthesis is excellent to good. The aldehydes generated in situ by aerial oxidation of alcohols in the presence of 1-4 as catalysts are precursors to the bisimine as the protocols of this heterocycle synthesis carried out in the absence of 1,2-phenylenediamine give them in excellent-to-good yield. The oxidation of alcohols by hydrogen transfer to acetone was catalyzed efficiently with complexes 1-4 and resulted in aldehyde/ketone in excellent-to-good yield. Each catalytic process is marginally more efficient with 1 than its counterparts.
Collapse
Affiliation(s)
- Alpesh K Sharma
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Hemant Joshi
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Renu Bhaskar
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Ajai K Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
39
|
Milani JL, Oliveira IS, Santos PAD, Valdo AK, Martins FT, Cangussu D, Chagas RPD. Chemical fixation of carbon dioxide to cyclic carbonates catalyzed by zinc(II) complex bearing 1,2-disubstituted benzimidazole ligand. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62992-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Hikawa H, Ichinose R, Kikkawa S, Azumaya I. Palladium-Catalyzed Dehydrogenation of Benzyl Alcohols for Construction of 2-Arylbenzimidazoles “On Water”. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Risa Ichinose
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| |
Collapse
|
41
|
Fjellaksel R, Boomgaren M, Sundset R, Haraldsen IH, Hansen JH, Riss PJ. Small molecule piperazinyl-benzimidazole antagonists of the gonadotropin-releasing hormone (GnRH) receptor. MEDCHEMCOMM 2017; 8:1965-1969. [PMID: 30108717 PMCID: PMC6072469 DOI: 10.1039/c7md00320j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
Abstract
In this communication, we report the synthesis and characterization of a library of small molecule antagonists of the human gonadotropin releasing hormone receptor based upon the 2-(4-tert-butylphenyl)-4-piperazinyl-benzimidazole scaffold via Cu-catalysed azide alkyne cycloaddition. Our main purpose was to find a more soluble compound based on the WAY207024 lead with nanomolar potency to inhibit the GnRH receptor. A late stage diversification by the use of click chemistry was, furthermore developed to allow for expansion of the library in future optimisations. All compounds were tested in a functional assay to determine the individual potency of inhibiting stimulation of the receptor by the endogenous agonist GnRH. In conclusion, we found that compound 8a showed improved solubility compared to WAY207024 and nanomolar affinity to GnRH receptor.
Collapse
Affiliation(s)
- Richard Fjellaksel
- Medical Imaging Group , Department of Clinical Medicine , UiT The Arctic University of Norway , 9037 Tromsø , Norway . .,Drug Transport and Delivery Group , Department of Pharmacy , UiT The Arctic University of Norway , 9037 Tromsø , Norway.,Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Marc Boomgaren
- Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Rune Sundset
- Medical Imaging Group , Department of Clinical Medicine , UiT The Arctic University of Norway , 9037 Tromsø , Norway . .,PET imaging center, division of diagnostics , UNN - University Hospital of North-Norway , 9038 Tromsø , Norway
| | - Ira H Haraldsen
- Department of neuropsychiatry and psychosomatic medicine , Oslo University Hospital , Oslo , Norway
| | - Jørn H Hansen
- Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Patrick J Riss
- Department of neuropsychiatry and psychosomatic medicine , Oslo University Hospital , Oslo , Norway.,Realomics SFI, Department of Chemistry , University of Oslo , PO BOX 1033 , Oslo 0371 , Norway.,Norsk Medisinsk Syklotronsenter AS , Postboks 4950 Nydalen , 0424 Oslo , Norway
| |
Collapse
|
42
|
Pogula J, Laha S, Likhar PR. Nano Copper(0)-Stabilized on Alumina: Efficient and Recyclable Heterogeneous Catalyst for Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles and Quinoxalines in Aqueous Medium. Catal Letters 2017. [DOI: 10.1007/s10562-017-2166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Xu Z, Wang DS, Yu X, Yang Y, Wang D. Tunable Triazole-Phosphine-Copper Catalysts for the Synthesis of 2-Aryl-1H
-benzo[d]imidazoles from Benzyl Alcohols and Diamines by Acceptorless Dehydrogenation and Borrowing Hydrogen Reactions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700179] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaojun Xu
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Duo-Sheng Wang
- Department of Chemistry; University of Chicago; 5735 S. Ellis Avenue Chicago, IL 60637 USA
| | - Xiaoli Yu
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Yongchun Yang
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| |
Collapse
|
44
|
Kumar A, Ahmed QN. A Benzoquinone Imine Assisted Ring-Opening/Ring-Closing Strategy of the RCOCHN1
N2
System: Dinitrogen Extrusion Reaction to Benzimidazoles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| |
Collapse
|
45
|
Martins GM, Puccinelli T, Gariani RA, Xavier FR, Silveira CC, Mendes SR. Facile and efficient aerobic one-pot synthesis of benzimidazoles using Ce(NO3)3·6H2O as promoter. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Geiger HC, Zick PL, Roberts WR, Geiger DK. Synthesis and characterization of a novel long-alkyl-chain ester-substituted benzimidazole gelator and its octan-1-ol solvate. Acta Crystallogr C Struct Chem 2017; 73:350-356. [PMID: 28378720 DOI: 10.1107/s2053229617004314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 11/10/2022] Open
Abstract
The synthesis of a novel benzimidazole derivative with a long-chain-ester substituent, namely methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan-1-ol solvate, methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate octan-1-ol monosolvate, C22H26N2O3·C8H18O, (4), exhibits a four-molecule hydrogen-bonded motif in the solid state, with N-H...O hydrogen bonds between benzimidazole molecules and O-H...N hydrogen bonds between the octan-1-ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan-1-ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H...C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C-H...π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.
Collapse
Affiliation(s)
- H Cristina Geiger
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| | - Patricia L Zick
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| | - William R Roberts
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| | - David K Geiger
- Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
| |
Collapse
|
47
|
Herrera Cano N, Uranga JG, Nardi M, Procopio A, Wunderlin DA, Santiago AN. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf) 3 catalyst in the reaction selectivity. Beilstein J Org Chem 2016; 12:2410-2419. [PMID: 28144309 PMCID: PMC5238590 DOI: 10.3762/bjoc.12.235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
An improved and greener protocol for the synthesis of benzimidazole derivatives, starting from o-phenylenediamine, with different aldehydes is reported. Double-condensation products were selectively obtained when Er(OTf)3 was used as the catalyst in the presence of electron-rich aldehydes. Conversely, the formation of mono-condensation products was the preferred path in absence of this catalyst. One of the major advantages of these reactions was the formation of a single product, avoiding extensive isolation and purification of products, which is frequently associated with these reactions. Theoretical calculations helped to understand the different reactivity established for these reactions. Thus, we found that the charge density on the oxygen of the carbonyl group has a significant impact on the reaction pathway. For instance, electron-rich aldehydes better coordinate to the catalyst, which favours the addition of the amine group to the carbonyl group, therefore facilitating the formation of double-condensation products. Reactions with aliphatic or aromatic aldehydes were possible, without using organic solvents and in a one-pot procedure with short reaction time (2–5 min), affording single products in excellent yields (75–99%). This convenient and eco-friendly methodology offers numerous benefits with respect to other protocols reported for similar compounds.
Collapse
Affiliation(s)
- Natividad Herrera Cano
- INFIQC-CONICET and Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000 Argentina
| | - Jorge G Uranga
- INFIQC-CONICET and Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000 Argentina
| | - Mónica Nardi
- Dipartimento di Chimica, Università della Calabria Cubo 12C, 87036-Arcavacata di Rende (CS), Italia
| | - Antonio Procopio
- Dipartimento di Scienze della Salute, Università Magna Graecia, Viale Europa, 88100-Germaneto (CZ), Italia
| | - Daniel A Wunderlin
- ICYTAC-CONICET and Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000 Argentina
| | - Ana N Santiago
- INFIQC-CONICET and Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000 Argentina
| |
Collapse
|
48
|
Kovvuri J, Nagaraju B, Kamal A, Srivastava AK. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes. ACS COMBINATORIAL SCIENCE 2016; 18:644-650. [PMID: 27631587 DOI: 10.1021/acscombsci.6b00107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.
Collapse
Affiliation(s)
- Jeshma Kovvuri
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Burri Nagaraju
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Ahmed Kamal
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Catalytic
Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajay K. Srivastava
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
- Medicinal
Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| |
Collapse
|
49
|
Thimmaraju N, Shamshuddin SZM, Pratap SR, Raja K, Shyamsundar M, Mohankumar TE. Simple but efficient synthesis of novel substituted benzimidazoles over ZrO2-Al2O3. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1215468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N. Thimmaraju
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
- Research and Development Center, Bharathiar University, Coimbatore, India
| | - S. Z. Mohamed Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
- Research and Development Center, Bharathiar University, Coimbatore, India
| | - S. R. Pratap
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
- Research and Development Center, Bharathiar University, Coimbatore, India
| | - K. Raja
- Department of Chemistry, Bangalore University, Bangalore, India
| | - M. Shyamsundar
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
- Research and Development Center, Bharathiar University, Coimbatore, India
| | - T. E. Mohankumar
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
- Research and Development Center, Bharathiar University, Coimbatore, India
| |
Collapse
|
50
|
Liu J, Wang C, Ma X, Shi X, Wang X, Li H, Xu Q. Simple Synthesis of Benzazoles by Substrate-Promoted CuI-Catalyzed Aerobic Oxidative Cyclocondensation of o-Thio/Amino/Hydroxyanilines and Amines under Air. Catal Letters 2016. [DOI: 10.1007/s10562-016-1818-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|