1
|
Xu H, Lian Z, Hao X, Li F, Yu RC. Ultrasensitive fluorescence detection of gonyautoxins in seawater using a novel molecularly imprinted nanoprobe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169056. [PMID: 38056639 DOI: 10.1016/j.scitotenv.2023.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Gonyautoxins (GTXs), a group of potent neurotoxins belonging to paralytic shellfish toxins (PSTs), are often associated with harmful algal blooms of toxic dinoflagellates in the sea and represent serious health and ecological concerns worldwide. In the study, a highly selective and sensitive fluorescence nanoprobe was constructed based on photoinduced electron transfer recognition mechanism to rapidly detect GTXs in seawater, using specific entrapment of molecularly imprinted polymers (MIPs) combined with fluorescence analyses. The green emissive fluorescein isothiocyanate was grafted in a silicate matrix as a signal transducer and fluorescence intensity of the nanoprobe with a core-shell structure exhibited a strong enhancement due to efficient analyte blockage in a short response time. Under optimal conditions, the developed MIPs nanoprobe presented an excellent analytical performance for spiked seawater samples including a recovery from 94.44 % to 98.23 %, a linear range between 0.018 nmol L-1 and 0.36 nmol L-1, as well as good accuracy. Furthermore, the method had extremely high sensitivity, with limit of detection obtained as 0.005 nmol L-1 for GTXs and GTX2/3. Finally, the nanoprobe was applied for the determination of GTXs in seven natural seawater samples with GTXs mixture (0.035-0.058 nmol L-1) or single GTX2/3 (0.033-0.050 nmol L-1), and the results agreed well with those of a UPLC-MS/MS method. The findings of our study suggest that the constructed MIPs-based fluorescence enhancement nanoprobe was suitable for rapid, selective and ultrasensitive detection of GTXs, particular GTX2/3, in natural seawater samples.
Collapse
Affiliation(s)
- Huan Xu
- Marine College, Shandong University, Weihai 264209, P.R. China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, P.R. China.
| | - Xiaochen Hao
- Marine College, Shandong University, Weihai 264209, P.R. China
| | - Fang Li
- Marine College, Shandong University, Weihai 264209, P.R. China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
2
|
Gutiérrez-Ortiz AL, Vida V, Peterka M, Tušar J, Berti F, Navarini L, Forzato C. Fluorescent Imprinted Nanoparticles for Sensing of Chlorogenic Acid in Coffee Extracts. SENSORS (BASEL, SWITZERLAND) 2022; 22:9874. [PMID: 36560241 PMCID: PMC9785805 DOI: 10.3390/s22249874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Green coffee beans are particularly rich in chlorogenic acids (CGAs), and their identification and quantification are usually performed by HPLC, coupled with mass spectrometry (LC-MS). Although there are a few examples of molecularly imprinted polymers (MIPs) for chlorogenic acid (5-CQA) recognition present in the literature, none of them are based on optical fluorescence, which is very interesting given its great sensitivity. In the present manuscript, fluorescent polymeric imprinted nanoparticles were synthetized following the non-covalent approach using hydrogenated 5-O-caffeoylquinic acid (H-5-CQA) as the template. The capability of the polymer to bind 5-CQA was evaluated by HPLC and fluorescence. A real sample of coffee extract was also analyzed to verify the selectivity of the polymer. Polymer fMIP01, containing 4-vinylpyridine and a naphtalimide derivative as monomers, showed a good response to the fluorescence quenching in the range 39 μM-80 mM. In the real sample, fMIP01 was able to selectively bind 5-CQA, while caffeine was not recognized. To demonstrate this, there is a promising system that can be exploited in the design of an optical sensor for 5-CQA detection. Polymer fMIP01 was immobilized by physical entrapment on a functionalized glass surface, showing a quenching of fluorescence with an increase of the CGA concentration between 156 μM and 40 mM.
Collapse
Affiliation(s)
- Anggy Lusanna Gutiérrez-Ortiz
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Veronica Vida
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | | | | | - Federico Berti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | | | - Cristina Forzato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
3
|
|
4
|
Yao X. Acid- and Anion-targeted Fluorescent Molecularly Imprinted Polymers: Recent Advances, Challenges and Perspectives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique-A Review. BIOSENSORS 2022; 12:bios12070441. [PMID: 35884244 PMCID: PMC9312920 DOI: 10.3390/bios12070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Antibiotics constitute one of the emerging categories of persistent organic pollutants, characterised by their expansion of resistant pathogens. Antibiotic pollutants create a major public health challenge, with already identifiable detrimental effects on human and animal health. A fundamental aspect of controlling and preventing the spread of pollutants is the continuous screening and monitoring of environmental samples. Molecular imprinting is a state-of-the-art technique for designing robust biomimetic receptors called molecularly imprinted polymers (MIPs), which mimic natural biomolecules in target-selective recognition. When integrated with an appropriate sensor transducer, MIP demonstrates a potential for the needed environmental monitoring, thus justifying the observed rise in interest in this field of research. This review examines scientific interventions within the last decade on the determination of antibiotic water pollutants using MIP receptors interfaced with label-free sensing platforms, with an expanded focus on optical, piezoelectric, and electrochemical systems. Following these, the review evaluates the analytical performance of outstanding MIP-based sensors for environmentally significant antibiotics, while highlighting the importance of computational chemistry in functional monomer selection and the strategies for signal amplification and performance improvement. Lastly, the review points out the future trends in antibiotic MIP research, as it transits from a proof of concept to the much demanded commercially available entity.
Collapse
|
6
|
Hu X, Cao Y, Tian Y, Qi Y, Fang G, Wang S. A molecularly imprinted fluorescence nanosensor based on upconversion metal–organic frameworks for alpha-cypermethrin specific recognition. Mikrochim Acta 2020; 187:632. [DOI: 10.1007/s00604-020-04610-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
|
7
|
Tommasini M, Pellizzoni E, Iacuzzi V, Marangon E, Posocco P, Forzato C, Bertoncin P, Toffoli G, Resmini M, Berti F. Fluorescent Imprinted Nanoparticles for the Effective Monitoring of Irinotecan in Human Plasma. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10091707. [PMID: 32872512 PMCID: PMC7558923 DOI: 10.3390/nano10091707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 05/12/2023]
Abstract
Fluorescent, imprinted nanosized polymers for the detection of irinotecan have been synthesised using a napthalimide polymerisable derivative (2-allyl-6-[2-(aminoethyl)-amino] napthalimide) as functional monomer. The imprinted polymers contain ethylene glycol dimethacrylate (EGDMA) as a cross-linker and were prepared by high dilution radical polymerisation in dimethylsulphoxide (DMSO). The material was able to rebind irinotecan up to 18 nmol/mg with good specificity. Fluorescence emission at 525 nm (excitation at 448 nm) was quenched by increasing concentrations of irinotecan via a static mechanism and also in analytically useful environments as mixtures of human plasma and organic solvents. This allowed the direct detection of irinotecan (in the 10 nM-30 µM range) in human plasma treated with acetonitrile; the limit of detection (LOD) was 9.4 nM, with within-run variability of 10% and day-to-day variability of 13%.
Collapse
Affiliation(s)
- Martina Tommasini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (M.T.); (E.P.); (C.F.)
| | - Elena Pellizzoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (M.T.); (E.P.); (C.F.)
- PhD School in Nanotechnology, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Valentina Iacuzzi
- PhD School in Nanotechnology, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy;
| | - Elena Marangon
- CRO–National Cancer Institute, SOC–Experimental and Clinical Pharmacology, Via Gallini 2, 33081 Aviano (PN), Italy;
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/1, 34127 Trieste, Italy;
| | - Cristina Forzato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (M.T.); (E.P.); (C.F.)
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- CRO–National Cancer Institute, SOC–Experimental and Clinical Pharmacology, Via Gallini 2, 33081 Aviano (PN), Italy;
- Correspondence: (G.T.); (M.R.); (F.B.); Tel.: +39-040-558-3921 (F.B.)
| | - Marina Resmini
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E14NS, UK
- Correspondence: (G.T.); (M.R.); (F.B.); Tel.: +39-040-558-3921 (F.B.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (M.T.); (E.P.); (C.F.)
- Correspondence: (G.T.); (M.R.); (F.B.); Tel.: +39-040-558-3921 (F.B.)
| |
Collapse
|
8
|
Selective Recognition of Herbicides in Water Using a Fluorescent Molecularly Imprinted Polymer Sensor. J Fluoresc 2020; 30:375-387. [PMID: 32086710 DOI: 10.1007/s10895-020-02508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/11/2020] [Indexed: 11/26/2022]
Abstract
Fluorescent molecularly imprinted polymer (FMIP) optosensor was utilized for the selective identification of 2,4-dichlorophenoxacetic acid (2,4-D) due to worldwide pollution caused by using herbicides in agricultural industry. In this regards, two derivatives of polymerizable 1,8-naphthalimide namely, 1,8-naphthalimide containing thiourea (NI) and diethyl amine tagged 1,8-naphthalimide (NII) were used as the receptors and 2,4-D was applied as a template. Also, precipitation polymerization was applied to prepare the fluorescent molecularly imprinted polymer (FMIP). The morphological, structural and thermal analysis was carried out using SEM, TEM, EDS, BET, FTIR, DSC and TGA for characterizing the fluorescent optosensor. The adsorption efficiency of FMIP and FNIP was studied using Langmuir, Freundlich, BET and Redlich Peterson isotherms. The results represented that the adsorption of 2,4-D on FMIP and FNIP agreed the Freundlich adsorption isotherm with correlation coefficient of 0.9935 and 0.9801, respectively. The prepared sensor was able for the selective determination of 2,4-D salt in the linear range of 5 × 10-7-1 × 10-3 M with a limit of detection of 16.8 nM. The present study revealed that the FMIP prepared by 1,8-naphthalimide derivative (NI) could potentially recognize the trace concentration of 2,4-D. Graphical Abstract Graphical abstract of flourescene switching mechanism in a fluorescent molecularly imprinted polymer sensor.
Collapse
|
9
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Limaee NY, Rouhani S, Olya ME, Najafi F. Selective 2,4-dichlorophenoxyacetic acid optosensor employing a polyethersulfone nanofiber-coated fluorescent molecularly imprinted polymer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Wang L, Lin Q, Zhang Y, Liu Y, Yasin A, Zhang L. Design and synthesis of supramolecular functional monomers bearing urea and norbornene motifs. RSC Adv 2019; 9:20058-20064. [PMID: 35514692 PMCID: PMC9065584 DOI: 10.1039/c9ra01852b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Three sets of functional monomers namely urea-based, 2-ureido-4[1H]-primidone (UPy)-based and norbornene based functional monomers were designed and synthesized. These functional monomers (FM) were obtained in decent yields using amine and isocyanate/norbornene as starting materials. Methacrylate and styrene isocyanate with 1,4-diaminobutane/tris(2-aminoethyl)amine were chosen for the synthesis of symmetrical, asymmetrical and three-branched urea-functional monomers, respectively. UPy-based FMs were synthesized with isocyanate and 2-amino-4-hydroxy-6-methylpyrimidine. The synthesis of these monomers feature short reaction times, mild reaction conditions and no need for column chromatographic purification. Furthermore, the norbornene based FM was used for preparing molecularly imprinted polymers (MIPs) by Ring-Opening Metathesis Polymerization (ROMP). Results showed that these synthetic routes represent a convenient and useful approach for synthesis of novel functional monomers.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qifeng Lin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi Xinjiang 830011 China
| | - Yagang Zhang
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanxia Liu
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China +86-991-3838957 +86-18129307169.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi 830011 China
| |
Collapse
|
12
|
Zhao QY, Zhao HT, Yang X, Zhang H, Dong AJ, Wang J, Li B. Selective recognition and fast enrichment of anthocyanins by dummy molecularly imprinted magnetic nanoparticles. J Chromatogr A 2018; 1572:9-19. [DOI: 10.1016/j.chroma.2018.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/04/2023]
|
13
|
Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 2018; 112:54-71. [DOI: 10.1016/j.bios.2018.04.028] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
|
14
|
Wagner S, Zapata C, Wan W, Gawlitza K, Weber M, Rurack K. Role of Counterions in Molecularly Imprinted Polymers for Anionic Species. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6963-6975. [PMID: 29792030 DOI: 10.1021/acs.langmuir.8b00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-l/d-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme-substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-x-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development.
Collapse
Affiliation(s)
- Sabine Wagner
- Chemical and Optical Sensing Division (1.9) , Bundesanstalt für Materialforschung und-prüfung (BAM) , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Carlos Zapata
- Chemical and Optical Sensing Division (1.9) , Bundesanstalt für Materialforschung und-prüfung (BAM) , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
- Computational Molecular Design Group, Department of Numerical Mathematics , Zuse Institute Berlin , Takustrasse 7 , D-14195 Berlin , Germany
- School of Analytical Sciences Adlershof (SALSA) , Humboldt-Universität zu Berlin , Unter den Linden 6 , D-10099 Berlin , Germany
| | - Wei Wan
- Chemical and Optical Sensing Division (1.9) , Bundesanstalt für Materialforschung und-prüfung (BAM) , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing Division (1.9) , Bundesanstalt für Materialforschung und-prüfung (BAM) , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Marcus Weber
- Computational Molecular Design Group, Department of Numerical Mathematics , Zuse Institute Berlin , Takustrasse 7 , D-14195 Berlin , Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division (1.9) , Bundesanstalt für Materialforschung und-prüfung (BAM) , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| |
Collapse
|
15
|
Wei W, Jin Y, Han T, Du B, Zhi X, Wei C, Yuan S. A Fluorescent Chemosensor for Zn2+ Based on a C3-Symmetrical and Pre-Organized 2,2′,2″-Nitrilotribenzoic Acid Material. Aust J Chem 2018. [DOI: 10.1071/ch18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A C3-symmetrical 4,4″,4⁗-nitrilotris(2′-methyl-[1,1′-biphenyl]-3-carboxylic acid) (4) derived from nitrilotriacetic acid (NTA) was found to selectively bind Zinc(ii) ions both in DMSO or MeOH. A synergistic effect of the anionic counter ion SO42− on the sensing behaviour of 4 to metal ions was clearly observed in DMSO. Interestingly, 4 showed a rapid hypochromatic shift in emission ascribed to the deprotonation and the concomitant formation of a 4–metal complex upon the addition of Zn2+ ions, instead of the bathochromic shift and emission enhancement attributed to the SO42−-involved hydrogen-bonding interaction for Ni2+, Li+, Mg2+, and Na+ ions at ratios below 1:1 in DMSO. The observed sensing process of sulfate salts associated with the SO42−-involved hydrogen-bonding interaction, deprotonation, and the concomitant complexation can also be clearly monitored by titration methods utilising UV-vis, fluorescence, and NMR spectroscopy in solution. In comparison with 4, compound 1 showed an obvious difference in the binding interaction with zinc sulfate in MeOH, probably owing to the decreased acidity. Anion-induced hydrogen-bonding interactions and deprotonation of the COOH protons in the excited state also endowed 4 versatile spectroscopic properties. The addition of F− and SO42− anions resulted in a remarkable enhancement probably related with a rigidifying effect. 2,2′,2″-Nitrilotribenzoic acid can be utilised as a potential scaffold to build a series of conjugated fluorescent sensors by its chelation effect owing to the rigid cavity pre-organised by the triphenylamine moiety and the carboxylic groups and the conjugation extension in the 4,4′,4″ positions.
Collapse
|
16
|
Wan W, Descalzo AB, Shinde S, Weißhoff H, Orellana G, Sellergren B, Rurack K. Ratiometric Fluorescence Detection of Phosphorylated Amino Acids Through Excited-State Proton Transfer by Using Molecularly Imprinted Polymer (MIP) Recognition Nanolayers. Chemistry 2017; 23:15974-15983. [PMID: 28869685 DOI: 10.1002/chem.201703041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 12/12/2022]
Abstract
A 2,3-diaminophenazine bis-urea fluorescent probe monomer (1) was developed. It responds to phenylphosphate and phosphorylated amino acids in a ratiometric fashion with enhanced fluorescence accompanied by the development of a redshifted emission band arising from an excited-state proton transfer (ESPT) process in the hydrogen-bonded probe/analyte complex. The two urea groups of 1 form a cleft-like binding pocket (Kb >1010 L2 mol-2 for 1:2 complex). Imprinting of 1 in presence of ethyl ester- and fluorenylmethyloxycarbonyl (Fmoc)-protected phosphorylated tyrosine (Fmoc-pTyr-OEt) as the template, methacrylamide as co-monomer, and ethyleneglycol dimethacrylate as cross-linker gave few-nanometer-thick molecularly imprinted polymer (MIP) shells on silica core microparticles with excellent selectivity for the template in a buffered biphasic assay. The supramolecular recognition features were established by spectroscopic and NMR studies. Rational screening of co-monomers and cross-linkers allowed to single out the best performing MIP components, giving significant imprinting factors (IF>3.5) while retaining ESPT emission and the ratiometric response in the thin polymer shell. Combination of the bead-based detection scheme with the phase-transfer assay dramatically improved the IF to 15.9, allowing sensitive determination of the analyte directly in aqueous media.
Collapse
Affiliation(s)
- Wei Wan
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Ana B Descalzo
- Department of Organic Chemistry, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Sudhirkumar Shinde
- Department of Biomedical Science, Malmö University, 20506, Malmö, Sweden
| | - Hardy Weißhoff
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Guillermo Orellana
- Department of Organic Chemistry, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Börje Sellergren
- Department of Biomedical Science, Malmö University, 20506, Malmö, Sweden
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| |
Collapse
|
17
|
Shen W, Ge J, He S, Zhang R, Zhao C, Fan Y, Yu S, Liu B, Zhu Q. A Self-Quenching System Based on Bis-Naphthalimide: A Dual Two-Photon-Channel GSH Fluorescent Probe. Chem Asian J 2017; 12:1532-1537. [DOI: 10.1002/asia.201700340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Wei Shen
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Siyang He
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Chengyan Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| | - Yong Fan
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Shian Yu
- Department of General Surgery; Jinhua Central Hospital; Jinhua 321000 China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province; Zhejiang University of Technology; Chaowang Road 18 Hangzhou China
| |
Collapse
|
18
|
Li M, Liu H, Ren X. Ratiometric fluorescence and mesoporous structured imprinting nanoparticles for rapid and sensitive detection 2,4,6-trinitrophenol. Biosens Bioelectron 2017; 89:899-905. [DOI: 10.1016/j.bios.2016.09.101] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022]
|
19
|
Hollauf M, Cajlakovič M, Tscherner M, Köstler S, Knall AC, Trimmel G. Synthesis and characterization of naphthalimide-functionalized polynorbornenes. MONATSHEFTE FUR CHEMIE 2016; 148:121-129. [PMID: 28127098 PMCID: PMC5225232 DOI: 10.1007/s00706-016-1887-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
ABSTRACT Highly fluorescent and photostable (2-alkyl)-1H-benzo[de]isoquinoline-1,3(2H)-diones with a polymerizable norbornene scaffold have been synthesized and polymerized using ring-opening metathesis polymerization. The monomers presented herein could be polymerized in a living fashion, using different comonomers and different monomer ratios. All obtained materials showed good film-forming properties and bright fluorescence caused by the incorporated push-pull chromophores. Additionally, one of the monomers containing a methylpiperazine functionality showed protonation-dependent photoinduced electron transfer which opens up interesting applications for logic gates and sensing. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Manuel Hollauf
- ICTM-Institute for Chemistry and Technology of Materials, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Merima Cajlakovič
- Materials, Institute for Surface Technologies and Photonics, Joanneum Research, Franz-Pichler-Straße 30, 8160 Weiz, Austria
| | - Martin Tscherner
- Materials, Institute for Surface Technologies and Photonics, Joanneum Research, Franz-Pichler-Straße 30, 8160 Weiz, Austria
| | - Stefan Köstler
- Materials, Institute for Surface Technologies and Photonics, Joanneum Research, Franz-Pichler-Straße 30, 8160 Weiz, Austria
| | - Astrid-Caroline Knall
- ICTM-Institute for Chemistry and Technology of Materials, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Gregor Trimmel
- ICTM-Institute for Chemistry and Technology of Materials, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
20
|
Wang J, Qiu H, Shen H, Pan J, Dai X, Yan Y, Pan G, Sellergren B. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water. Biosens Bioelectron 2016; 85:387-394. [DOI: 10.1016/j.bios.2016.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 11/27/2022]
|
21
|
Xu S, Lu H. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosens Bioelectron 2016; 85:950-956. [DOI: 10.1016/j.bios.2016.06.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
|
22
|
Gomez LPC, Spangenberg A, Ton XA, Fuchs Y, Bokeloh F, Malval JP, Tse Sum Bui B, Thuau D, Ayela C, Haupt K, Soppera O. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5931-5937. [PMID: 27145145 DOI: 10.1002/adma.201600218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.
Collapse
Affiliation(s)
- Laura Piedad Chia Gomez
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, 68057, France
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, 68057, France
| | - Xuan-Anh Ton
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Rue Roger Couttolenc, CS 60319, 60203, Compiègne, France
| | - Yannick Fuchs
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Rue Roger Couttolenc, CS 60319, 60203, Compiègne, France
| | - Frank Bokeloh
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Rue Roger Couttolenc, CS 60319, 60203, Compiègne, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, 68057, France
| | - Bernadette Tse Sum Bui
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Rue Roger Couttolenc, CS 60319, 60203, Compiègne, France
| | - Damien Thuau
- Laboratoire de L'Intégration du Matériau au Système, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence cedex, France
| | - Cédric Ayela
- Laboratoire de L'Intégration du Matériau au Système, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence cedex, France
| | - Karsten Haupt
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Rue Roger Couttolenc, CS 60319, 60203, Compiègne, France
| | - Olivier Soppera
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS - UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse, 68057, France
| |
Collapse
|
23
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
24
|
Li M, Shen F, Zhang Z, Ren X. A Novel 2-Acrylamide-6-Methoxybenzothiazole Fabricated Molecularly Imprinted Polymers for Direct Fluorescent Sensing of Alachlor. Chromatographia 2015. [DOI: 10.1007/s10337-015-2998-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Fluorescent monomers: “bricks” that make a molecularly imprinted polymer “bright”. Anal Bioanal Chem 2015; 408:1753-71. [DOI: 10.1007/s00216-015-9174-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 11/27/2022]
|
26
|
Xu S, Lu H. One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Biosens Bioelectron 2015; 73:160-166. [DOI: 10.1016/j.bios.2015.05.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 12/01/2022]
|
27
|
Ye L. Molecularly imprinted polymers with multi-functionality. Anal Bioanal Chem 2015; 408:1727-33. [DOI: 10.1007/s00216-015-8929-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
|
28
|
Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B. A Fluorescence Nanosensor for Glycoproteins with Activity Based on the Molecularly Imprinted Spatial Structure of the Target and Boronate Affinity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B. A Fluorescence Nanosensor for Glycoproteins with Activity Based on the Molecularly Imprinted Spatial Structure of the Target and Boronate Affinity. Angew Chem Int Ed Engl 2014; 53:12489-93. [DOI: 10.1002/anie.201405634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/09/2014] [Indexed: 11/09/2022]
|
30
|
Ton XA, Acha V, Bonomi P, Tse Sum Bui B, Haupt K. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens Bioelectron 2014; 64:359-66. [PMID: 25259879 DOI: 10.1016/j.bios.2014.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
We have developed a disposable evanescent wave fiber optic sensor by coating a molecularly imprinted polymer (MIP) containing a fluorescent signaling group on a 4-cm long polystyrene optical waveguide. The MIP is composed of a naphthalimide-based fluorescent monomer, which shows fluorescence enhancement upon binding with carboxyl-containing molecules. The herbicide 2,4-dichlorophenoxyacetic acid and the mycotoxin citrinin were used as model analytes. The coating of the MIP was either performed ex-situ, by dip-coating the fiber with MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization on the fiber. The sensing element was interrogated with a fiber-coupled spectrofluorimeter. The fiber optic sensor detects targets in the low nM range and exhibits specific and selective recognition over structural analogs and non-related carboxyl-containing molecules. This technology can be extended to other carboxyl-containing analytes, and to a broader spectrum of targets using different fluorescent monomers.
Collapse
Affiliation(s)
- Xuan-Anh Ton
- CNRS Enzyme and Cell Engineering Laboratory, Compiègne University of Technology, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Victor Acha
- HydrISE Unit, Institut Polytechnique LaSalle Beauvais, BP 30313, 60026 Beauvais, France
| | - Paolo Bonomi
- CNRS Enzyme and Cell Engineering Laboratory, Compiègne University of Technology, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Bernadette Tse Sum Bui
- CNRS Enzyme and Cell Engineering Laboratory, Compiègne University of Technology, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory, Compiègne University of Technology, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
31
|
Yakhkind MI, Tarantseva KR, Marynova MA, Storozhenko PA, Rasulov MM. Molecularly imprinted polymers: possible use for isolation of biosynthetic antibiotics. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Zhang H. Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.064] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Ton XA, Tse Sum Bui B, Resmini M, Bonomi P, Dika I, Soppera O, Haupt K. A Versatile Fiber-Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Ton XA, Tse Sum Bui B, Resmini M, Bonomi P, Dika I, Soppera O, Haupt K. A Versatile Fiber-Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ. Angew Chem Int Ed Engl 2013; 52:8317-21. [DOI: 10.1002/anie.201301045] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/04/2013] [Indexed: 11/10/2022]
|
35
|
Wan W, Biyikal M, Wagner R, Sellergren B, Rurack K. Sensorische Mikropartikel aus einem Silicatkern und einem molekular geprägten Polymer als Schale mit aufleuchtender Fluoreszenz. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Wan W, Biyikal M, Wagner R, Sellergren B, Rurack K. Fluorescent Sensory Microparticles that “Light-up” Consisting of a Silica Core and a Molecularly Imprinted Polymer (MIP) Shell. Angew Chem Int Ed Engl 2013; 52:7023-7. [DOI: 10.1002/anie.201300322] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/18/2013] [Indexed: 11/12/2022]
|