1
|
Valmiki PA, Thippeswamy MS, Naik L, Maridevarmath CV, Malimath GH. Fluorescence Quenching and Electron Transfer Dynamics of a Thiophene-Substituted 1,3,4-Oxadiazole Derivative with Nitroaromatic Compounds. J Fluoresc 2025:10.1007/s10895-025-04333-8. [PMID: 40314891 DOI: 10.1007/s10895-025-04333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025]
Abstract
This study investigates the fluorescence quenching behavior of a newly synthesized thiophene-substituted 1,3,4-oxadiazole derivative, 2-(4-(4-vinyl phenyl)phenyl)-5-(5-(4-vinyl phenyl)thiophene-2-yl)-1,3,4-oxadiazole (TSO), in the presence of various nitroaromatic compounds (NACs), including 2-nitrotoluene, 4-nitrotoluene, nitrobenzene, and picric acid (2,4,6-trinitrophenol). The interactions were examined in an ethanol medium at room temperature using steady-state and time-resolved fluorescence spectroscopy. Steady-state fluorescence analysis revealed a non-linear Stern-Volmer (SV) plot exhibiting positive deviation, while time-resolved measurements displayed a linear relationship. To interpret these findings, ground-state complex formation and the sphere-of-action static quenching models were applied. The study determined key quenching parameters, including the Stern-Volmer constant, quenching rate constant, static quenching constant, and sphere-of-action radius. Notably, fluorescence quenching efficiency increased with the number of NO2 groups in the NACs.Electrochemical analysis, complemented by Density Functional Theory (DFT) calculations, confirmed that electron transfer was the primary quenching mechanism. Furthermore, binding site analysis demonstrated a 1:1 binding stoichiometry between TSO and NACs, with picric acid exhibiting the highest binding affinity. Given the growing interest in fluorescence-based sensing approaches, these findings contribute valuable insights into the development of advanced sensors for detecting nitroaromatic pollutants and explosive residues.
Collapse
Affiliation(s)
| | - M S Thippeswamy
- Department of Physics, Government Science College, Chitradurga, 577501, Karnataka, India
| | - Lohit Naik
- Department of Physics, RNS Institute of Technology, Bengaluru, 560098, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - C V Maridevarmath
- Department of Physics, Government First Grade College, Dharwad, 580008, Karnataka, India
| | - G H Malimath
- UG and PG Department of Physics, Karnatak Science College, Dharwad, 580001, Karnataka, India.
| |
Collapse
|
2
|
Mahto AK, Barik S, Sarkar M, Madda JP. A Fluorescent Covalent Organic Cage for Ultrafast Detection of Picric Acid and HCl Vapor Sensing. Chem Asian J 2025; 20:e202400912. [PMID: 39564990 DOI: 10.1002/asia.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Covalent organic cages (COCs) have recently gained massive attention owing to their solution processability and structural flexibility. Herein, we report an amine-linked fluorescent COC (COC2) synthesized by adopting dynamic covalent imine chemistry followed by imine bond reduction and characterized with different spectroscopic techniques. The COC2 was utilized for highly sensitive, selective, and ultrafast detection of picric acid at the nanomolar level. The fluorescence quenching efficiency of PA towards the COC2 is 98.6 %, with a detection limit of 2.7 nM. PA sensing with the COC2, coated on a TLC plate and paper strip, exhibited an outstanding fluorescence quenching property. Furthermore, the COC2 unveiled solid-state acidochromism upon exposure to HCl acid fumes and was transferred back to the original form on exposure to NH3 vapors.
Collapse
Affiliation(s)
- Amit Kumar Mahto
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, Odisha, 752050, India
| | - Jaya Prakash Madda
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
3
|
Kumar M, Dhiman A, Singh G, Kaur N, Singh N. Pyrene functionalized organic cation receptor-based "turn-on" fluorescence approach for monitoring of chlorpyrifos in food, soil, and water samples. Anal Chim Acta 2025; 1336:343488. [PMID: 39788659 DOI: 10.1016/j.aca.2024.343488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides. RESULTS Herein, we demonstrates the metal-free detection of CPF pesticide in aqueous medium, based on the organic nanoparticles of benzimidazole-based cationic receptor (R1-ONPs), and thoroughly analyzed using advanced techniques such as AFM, FESEM, and DLS etc. The photophysical investigations revealed that developed R1-ONPs exhibited high selectivity towards chlorpyrifos with an enhancement in fluorescence emission. Further, the observed pyrene excimer-based "turn-on" fluorescence mechanism, and the interaction between developed sensor and chlorpyrifos has been validated utilizing 1H, and 31P NMR spectroscopy. The developed sensor can effectively quantify chlorpyrifos up to a detection limit of 18.9 nM (3σ method) with a range of 0-120 μM as well as below the cutoff limit set by FAO. Moreover, the real-time application of developed sensor (R1-ONPs) was evaluated to monitor chlorpyrifos in spiked food, water, and soil samples with good (%) recovery. SIGNIFICANCE The development of metal-free, pyrene-excimer-based "Turn-On" fluorescent sensor offers a novel, eco-friendly strategy for the detection of chlorpyrifos in aqueous medium. Additionally, its ability to quantify the chlorpyrifos at levels as low as those set by FAO makes it more efficient tool for monitoring the environmental toxicity ensuring better protection for human, and animal health.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Aman Dhiman
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Gagandeep Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
4
|
Rani Y, Km MP, Tripathi P. Curcumin-Derived (3-Aminopropyl)trimethoxysilane-Functionalized Carbon Quantum Dots: A Fluorometric and Colorimetric Nanoprobe for Picric Acid Detection, Antioxidant Activity, and Liposome Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68936-68949. [PMID: 39635918 DOI: 10.1021/acsami.4c15636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Creating an analytical probe to track extremely mutagenic picric acid (PA) is essential for human health and the environment. Here, we developed a straightforward and quick fluorescence analytical method utilizing 3-aminopropyltrimethoxysilane (3-APTMS)-functionalized curcumin carbon quantum dots (CQDs) for the fast and selective detection of PA. Solvothermal carbonization and functionalization of curcumin with 3-APTMS were used to create multifunctional CQDs, which were then characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), ζ-potential, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Our CQDs, as synthesized with an average diameter of 3.4 nm, exhibited excitation-dependent emission behavior, demonstrating 63.85% yield, 1.59% quantum yield, and fluorescence lifetime decay broader than a single exponential. The addition of picric acid significantly reduced the fluorescence (FL) emission intensity of CQDs and caused a noticeable color shift in visible as well as UV light. Throughout the 0.1-2.5 μM range, the calibration curve of the suggested assay demonstrated favorable linearity between quenched FL emission intensity and PA concentration, with the lowest detection limit of 88.96 nM. The CQD shows antioxidant activity at low concentrations (<0.07 mg/mL), measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (colorimetry and electrochemically). Further, we encapsulated our CQDs in the liposome to make it biocompatible for cell imaging for future study. The results indicate the efficacy of CQDs as a nanoprobe for the selective detection of PA, retaining a few of the primary properties of natural curcumin-like antioxidant activity while having significantly higher bioavailability and water solubility; they can be used as a modifier in semiconductors for photocatalytic application and can also be a promising fluorescence probe in cell imaging.
Collapse
Affiliation(s)
- Yogita Rani
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Mamata Patel Km
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Prabhat Tripathi
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Corsato PCR, de Lima LF, Paschoarelli MV, de Araujo WR. Electrochemical sensing at the fingertips: Wearable glove-based sensors for detection of 4-nitrophenol, picric acid and diazepam. CHEMOSPHERE 2024; 363:142771. [PMID: 38969219 DOI: 10.1016/j.chemosphere.2024.142771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
A wearable glove-based sensor is a portable and practical approach for onsite detection/monitoring of a variety of chemical threats. Herein, we report a flexible and sensitive wearable sensor fabricated on the nitrile glove fingertips by stencil-printing technique. The working electrodes were modified with multiwalled carbon nanotubes (MWCNTs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) for sensitive and real-time analyses of hazardous or chemical treats, as picric acid (PA) explosive, diazepam (DZ) as drug-facilitated crimes and the emerging pollutant 4-nitrophenol (4-NP). The multi-sensing platform towards PA, 4-NP, and DZ offers the ability of in-situ qualitative and quantitative analyses of powder and liquid samples. A simple sampling by touching or swiping the fingertip sensor on the sample or surface under investigation using an ionic hydrogel combined with fast voltammetry measurement provides timely point-of-need analyses. The wearable glove-based sensor uses the square wave voltammetry (SWV) technique and exhibited excellent performance to detect PA, 4-NP, and DZ, resulting in limits of detection (LOD) of 0.24 μM, 0.35 μM, 0.06 μM, respectively, in a wide concentration range (from 0.5 μM to 100 μM). Also, we obtained excellent manufacturing reproducibility with relative standard deviations (RSD) in the range of 3.65%-4.61% using 7 different wearable devices (n = 7) and stability in the range of 4.86%-6.61% using different electrodes stored for 10 days at room temperature (n = 10), demonstrating the excellent sensor-to-sensor reproducibility and stability for reliable in-field measurements. The stretchable sensor presented great mechanical robustness, supporting up to 80 bending or stretching deformation cycles without significant voltammetric changes. Collectively, our wearable glove-based sensor may be employed for analyses of chemical contaminants of concern, such as explosives (PA), drugs (DZ), and emerging pollutants (4-NP), helping in environmental and public safety control.
Collapse
Affiliation(s)
- Paula C R Corsato
- Laboratório de Sensores Químicos Portáteis, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Lucas F de Lima
- Laboratório de Sensores Químicos Portáteis, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Mayra V Paschoarelli
- Laboratório de Sensores Químicos Portáteis, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil
| | - William R de Araujo
- Laboratório de Sensores Químicos Portáteis, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Tewary D, Behera KC, Turner DR, Ravikanth M. Synthesis of pyridyl functionalized 3-pyrrolyl BODIPY based fluoroprobes and application towards highly selective detection of picric acid. Phys Chem Chem Phys 2024; 26:22479-22490. [PMID: 39145604 DOI: 10.1039/d4cp02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A series of pyridyl-coupled 3-pyrrolyl BODIPY fluoroprobes were synthesized by varying the position of the pyridyl/N-methylated pyridyl group at the α-/meso-position of the 3-pyrrolyl BODIPY scaffold and thoroughly characterized by HRMS and 1D/2D NMR techniques. Our studies indicated that only the water-soluble N-methylated p-pyridyl 3-pyrrolyl BODIPY among various pyridyl-coupled 3-pyrrolyl BODIPYs synthesized here showed an effective and exclusive sensing for picric acid (HPA). The N-methylated p-pyridyl 3-pyrrolyl BODIPY rapidly detects HPA in an aqueous medium with exceptional selectivity, sensitivity (LOD = 7.90 pM), and high binding affinity (Ka = 4·94 × 108 M-1) through both chromogenic and fluorogenic signalling modes. Our studies support the formation of a charge transfer complex between cationic N-methylated p-pyridyl 3-pyrrolyl BODIPY and picrate as verified by absorption, fluorescence, electrochemical, and NMR techniques. DFT and TD-DFT studies further support the structural and experimental observations, including the sensing mechanism of HPA.
Collapse
Affiliation(s)
- Debendra Tewary
- Department of Chemistry, IIT Bombay, Powai-400076, Mumbai, India.
- IITB- Monash Research Academy, IIT Bombay, Powai-400076, Mumbai, India
| | | | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
7
|
Rai A, Jha NS, Sharma P, Tiwari S, Subramanian R. Curcumin-derivatives as fluorescence-electrochemical dual probe for ultrasensitive detections of picric acid in aqueous media. Talanta 2024; 275:126113. [PMID: 38669958 DOI: 10.1016/j.talanta.2024.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
We are reporting the two curcumin derivatives, ferrocenyl curcumin (Fc-cur) and 4-nitro-benzylidene curcumin (NBC), as a probe through dual modalities, i.e., fluorescence and electrochemical methods, for the detection of nitro-analytes, such as picric acid (PA). The probes exhibited aggregation-induced enhanced emission (AIEE), and the addition of picric acid (PA) demonstrated good and specific fluorimetric identification of PA in the aggregated state. By using density functional theory (DFT), the mechanism of picric acid's (PA) interactions with the probes was further investigated. DFT studies shows evidence of charge transfer from curcumin derivatives probe to picric acid resulting into the formation of an adduct. The reduction of trinitrophenol (PA) to 2, 4, 6-trinitrosophenol was investigated utilizing a probe-modified glassy carbon electrode (GCE) with a good detection limit of 9.63 ± 0.001 pM and 41.01 ± 0.002 pM, respectively, for Fc-cur@GCE and NBC@GCE, taking into account the redox behavior of the probe. The applicability of the designed sensor has been utilized for real-time application in the estimation of picric acid in several water samples collected from the different source.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India.
| | - Padma Sharma
- Department of Chemistry, National Institute of Technology, Ashok Rajpath, Patna, 800005, Bihar, India
| | - Suresh Tiwari
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, Bihar, India
| |
Collapse
|
8
|
Banerjee B, Ali A, Kumar S, Verma RK, Verma VK, Singh RC. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Chempluschem 2024; 89:e202400035. [PMID: 38552142 DOI: 10.1002/cplu.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Indexed: 04/28/2024]
Abstract
A novel tellurium (Te) containing fluorophore, 1 and its nickel (2) and copper (3) containing metal organic complex (MOC) have been synthesized to exploit their structural and optical properties and to deploy these molecules as fluorescent probes for the selective and sensitive detection of picric acid (PA) over other commonly available nitro-explosives. Furthermore, density functional theory (DFT) and single crystal X-ray diffraction (SCXRD) techniques revealed the inclusion of "soft" Tellurium (Te) and "hard" Nitrogen (N), Oxygen (O) atoms in the molecular frameworks. Owing to the presence of electron rich "N" and "O" atoms along with "Te" in the molecular framework, 1 could efficiently and selectively sense PA with more than 80 % fluorescence quenching efficiency in organic medium and having detection limit of 4.60 μM. The selective detection of PA compared to other nitro-explosives follows a multi-mechanism based "turn-off" sensing which includes photo-induced electron transfer (PET), electrostatic (π-π stacking and π-anion/cation) interaction, intermolecular hydrogen bonding and inner filter effect (IFE). The test strip study also establishes the sensitivity of 1 for detection of PA.
Collapse
Affiliation(s)
- Bhaskar Banerjee
- Department of Forensic Science, Sharda University, Greater Noida, 201306, India
| | - Afsar Ali
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | | | - Vinay Kumar Verma
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Ram Chandra Singh
- Department of Physics, Sharda University, Greater Noida, 201306, India
| |
Collapse
|
9
|
Qureashi A, Haq ZU, Bashir A, Nazir I, Ganaie FA, Fatima K, Malik LA, Sheikh FA, Pandith AH. Bifunctional Zirconium Phosphate with Greigite for Electrochemical Detection and Simultaneous Removal of Heavy Metal Ions and Nitro Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14486-14503. [PMID: 38970496 DOI: 10.1021/acs.langmuir.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Electrochemical sensing is emerging as a method of choice for the sensing and monitoring of contaminants in water. Various sensing platforms have been designed for sensing heavy metal ions and organic pollutants in water bodies. Herein, we report a new electrochemical platform that can be used for the detection of both heavy metal ions and nitro-based organic contaminants in water bodies. The electrochemical sensor uses a modified electrode based on Fe3S4-impregnated zirconium phosphate (ZrP) nanoparticles synthesized by a simple ultrasonication method. The ZrP@Fe3S4 nanoparticles were thoroughly characterized by power X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and ζ-potential studies. The material exhibits an excellent electrochemical performance for the detection of Pb2+, Hg2+, nitrophenol, nitroaniline, and picric acid with low limits of detection of ca. 0.93, 0.70, 0.98, 1.10, and 1.53 ppm, respectively. Since ZrP@Fe3S4 nanoparticles are magnetically recyclable, their adsorption capacity and recyclability have been thoroughly investigated for the uptake of Pb2+ and Hg2+ ions from contaminated water. We observed that the adsorption of Pb2+ and Hg2+ ions on ZrP@Fe3S4 is best described by the Langmuir isotherm and pseudo-second-order kinetic models, with adsorption capacities of 219.44 and 118.4 mg/g, respectively. Similarly, the removal efficiency of ZrP@Fe3S4 was found to be 91, 57.6, and 31.3% for nitrophenol, nitroaniline, and picric acid, respectively. Furthermore, the theoretical calculations using density functional theory (DFT) were carried out to find the adsorption energy, affinity, and point of adsorption, which are in line with the experimental results. DFT calculations further suggest that the incorporation of Fe3S4 on ZrP improves the surface charge density and promotes efficient electron transfer between the electrode and the analyte. We have shown the real-time analysis of Dal lake water as a proof of concept, and the synthesized composite exhibits good recovery and promising results for metal ion sensing. ZrP@Fe3S4 demonstrated an excellent cycling stability and long-term stability without noticeable degradation for 1 week.
Collapse
Affiliation(s)
- Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Zia Ul Haq
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Irfan Nazir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Firdous Ahmad Ganaie
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Kaniz Fatima
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| |
Collapse
|
10
|
More KS, Mirgane HA, Shaikh S, Perupogu V, Birajdar SS, Puyad AL, Bhosale SV, Bhosale SV. 2 H-Pyran-2-one-Functionalized Diketopyrrolopyrrole Dye: Design, Synthesis, and Explosives Sensor. J Org Chem 2024; 89:5917-5926. [PMID: 36534041 DOI: 10.1021/acs.joc.2c01439] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a 2H-pyran-2-one-functionalized diketopyrrolopyrrole (DPP) (coded as receptor 1) was designed, synthesized, and fully characterized by various spectroscopic methods. The physical properties of molecular architecture 1 were studied employing theoretical calculations. Receptor 1 was elegantly scrutinized for the sensing of explosive nitroaromatic compounds (NACs). Receptor 1 exhibited detection of nitro explosives, i.e., picric acid (PA), 2,4-dinitrophenol (DNP), and nitrophenol (NP), via the fluorescence quenching mechanism. The Stern-Volmer equation was employed to evaluate the effectiveness of the quenching process. It was found that 1 exhibited a detection limit of about 7.58 × 10-5, 8.35 × 10-5, and 9.05 × 10-5 M toward PA, DNP, and NP, respectively. The influence of interfering metal ions and anions on PA detection was investigated thoroughly. Furthermore, receptor 1-based low-cost fluorescent thin-layer chromatography (TLC) plates were developed for the recognition of PA.
Collapse
Affiliation(s)
- Kerba S More
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Salman Shaikh
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Vijayanand Perupogu
- Energy and Environmental Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Shailesh S Birajdar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Avinash L Puyad
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| |
Collapse
|
11
|
Bhakta V, Pramanik A, Guchhait N. Dual-Channel Imine-Amine Photoisomerization in a Benzoimidazole and Benzothiazole Coupled System: Photophysics and Applications. J Phys Chem A 2024; 128:3062-3077. [PMID: 38608179 DOI: 10.1021/acs.jpca.3c08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A molecule, namely 2-(1H-benzo[d]imidazol-2-yl)-6-(benzo[d]thiazol-2-yl)-4-bromophenol (BIBTB), having a two-way proton transfer unit of thiazole and imidazole moieties was synthesized and characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal diffraction studies. Steady state and time-resolved spectral studies of BIBTB support excited state intramolecular proton transfer (ESIPT), causing imine-amine tautomerization through a two-way 6-membered H-bonded ring, where the N atoms of benzothiazole and the benzoimidazole unit are involved as proton acceptor sites. Interestingly, in a nonpolar and moderately polar solvent, photoisomerization in BIBTB is found to be favored toward the thiazole ring, whereas in a highly polar solvent, it is favored toward the imidazole ring. A spectral comparison of BIBTB with judicially designed molecules 2-(benzo[d]thiazol-2-yl)-4-bromophenol (HBT) and 2-(1H-benzo[d]imidazol-2-yl)-4-bromophenol (BIB) supports these inferences. Theoretical calculation using the Density Functional Theory (DFT) at CAM-B3LYP/6-311+G(d,p) level supports the existence of two low-energy 6-membered hydrogen-bonded planar conformers in the ground state in the gas phase and in solvents of different dielectrics. The potential energy curves (PECs) calculated along the proton transfer (PT) coordinate are found to have a high energy barrier in the ground state and to be barrierless or have a low energy barrier in the excited state for both the forms. The calculated vertical excitation and the emission energy from the relaxed excited and PT states show good correlation with the experimental spectral data. Aggregation of BIBTB in water with red shifted emission was established from X-ray single-crystal structure analysis, solid state emission, and Dynamic Light Scattering (DLS) measurement. The molecule BIBTB also acts as a fluorescence probe for sensing the explosive picric acid in the subnano scale and can be used to determine the proportion of water in dimethyl sulfoxide (DMSO) solvent.
Collapse
Affiliation(s)
- Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
12
|
Maitra PK, Bhattacharyya S, Purba PC, Mukherjee PS. Coordination-Induced Emissive Poly-NHC-Derived Metallacage for Pesticide Detection. Inorg Chem 2024; 63:2569-2576. [PMID: 38241721 DOI: 10.1021/acs.inorgchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Developing sensitive, rapid, and convenient methods for the detection of residual toxic pesticides is immensely important to prevent irreversible damage to the human body. Luminescent metal-organic cages and macrocycles have shown great applications, and designing highly emissive supramolecular systems in dilute solution using metal-ligand coordination-driven self-assembly is demanded. In this study, we have demonstrated the development of a silver-carbene bond directed tetranuclear silver(I)-octacarbene metallacage [Ag4(L)2](PF6)4 (1) based on an aggregation-induced emissive (AIE) cored 1,1',1″,1‴-((1,4-phenylenebis(ethene-2,1,1-triyl))tetrakis(benzene-4,1-diyl))tetrakis(3-methyl-1H-imidazol-3-ium) salt (L). A 36-fold enhanced emission was observed after metallacage (1) formation when compared with the ligand (L) in dilute solution due to the restriction of intramolecular motions imparted by metal-ligand coordination. Such an increase in fluorescence made 1 a potential candidate for the detection of a broad-spectrum pesticide, 2,6-dichloro-nitroaniline (DCN). 1 was able to detect DCN efficiently by the fluorescence quenching method with a significant detection limit (1.64 ppm). A combination of static and dynamic quenching was applicable depending on the analyte concentration. The use of silver-carbene bond directed self-assembly to exploit coordination-induced emission as an alternative to AIE in dilute solution and then apply this approach to solve health and safety concerns is noteworthy and carries a lot of potential for future developments.
Collapse
Affiliation(s)
- Pranay Kumar Maitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Abstract
Quinoidal π-conjugated systems are sought-after materials for semiconducting applications because of their rich optical and electronic characteristics. However, the analogous fluorescent compounds are extremely rare, with just two reports in the literature. Here, we present the design and development of a third series of quinoidal fluorophores [(2,5-diarylidene)-3,6-bis(hexyloxy)-2,5-dihydropyrazine (Q1-Q5)] that incorporates p-azaquinodimethane. The fluorophores are synthesized in a two-step synthetic approach employing Knoevenagel condensation of N,N-diacetyl-piperazine-2,5-dione with different aromatic aldehydes followed by O-alkylation in high yields. Q1-Q5 are strongly emissive, and by altering the aryl-substituents, the emission colors can be modulated from blue to orange. The compounds possess emission maxima (λem) at 475-555 nm in the solution state and 510-610 nm in the solid state, with fluorescence quantum yields of up to 60%. To the best of our knowledge, the reported systems are the first quinoidal dual-state emissive (solution- and solid-state) compounds. In trifluoroacetic acid, Q5 exhibits halochromic behavior, with a dramatic color change from yellow to blue. Furthermore, the preliminary fluorescent sensing studies demonstrated that Q5 could act as a selective turn-off fluorescence probe for electron-deficient picric acid (PA), with an emission quenching of >90% in the solution state. The thin-layer chromatography (TLC) strip sensor of Q5 was also designed to detect PA in water.
Collapse
Affiliation(s)
- Aswani Raj K
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, 580011, India
| | - Rajeswara Rao M
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, 580011, India
| |
Collapse
|
14
|
Hanif S, Bhat ZUH, Abbasi A, Alam MJ, Ahmad M, Shakir M. Hydrolytically stabilized 5-hydroxyisophthalate appended Tb-MOF as a twofold chemosensor for discerning detection of 2,4,6-trinitrophenol and ferric ion: Structural, topological and mechanistic sensing exploration via experimental and computational studies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
15
|
Debsharma K, Dey S, Sinha C, Prasad E. A Gelation-Induced Enhanced Emission Active Stimuli Responsive and Superhydrophobic Organogelator: "Turn-On" Fluorogenic Detection of Cyanide and Dual-Channel Sensing of Nitroexplosives on Multiple Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4739-4755. [PMID: 36940390 DOI: 10.1021/acs.langmuir.3c00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A pyrene-based highly emissive low-molecular-weight organogelator, [2-(4-fluorophenyl)-3-(pyren-1-yl)acrylonitrile] (F1), is presented, which divulges thixotropic and thermochromic fluorescence switching via reversible gel-to-sol transition and tremendous superhydrophobicity (mean contact angles: 149-160°), devoid of any gelling and/or hydrophobic units. The rationale for the design strategy reveals that the restricted intramolecular rotation (RIR) in J-type self-assembly promotes F1 for the prolific effects of aggregation- and gelation-induced enhanced emission (AIEE and GIEE). Meanwhile, hindrance in charge transfer via the nucleophilic reaction of cyanide (CN-) on the C═C unit in F1 facilitates the selective fluorescence "turn-on" response in both solution [9:1 (v/v) DMSO/water] and solid state [paper kits] with significantly lower detection limits (DLs) of 37.23 nM and 13.4 pg/cm2, respectively. Subsequently, F1 discloses CN- modulated colorimetric and fluorescence "turn-off" dual-channel response for aqueous 2,4,6-trinitrophenol (PA) and 2,4-dinitrophenol (DNP) in both solution (DL = 49.98 and 44.1 nM) and solid state (DL = 114.5 and 92.05 fg/cm2). Furthermore, the fluorescent nanoaggregates of F1 in water and its xerogel films permit a rapid dual-channel "on-site" detection of PA and DNP, where the DLs ranged from nanomolar (nM) to sub-femtogram (fg) levels. Mechanistic insights reveal that the ground-state electron transfer from the fluorescent [F1-CN] ensemble to the analytes is responsible for anion driven sensory response, whereas the unusual inner filter effect (IFE) driven photoinduced electron transfer (PET) was responsible for self-assembled F1 response toward desired analytes. Additionally, the nanoaggregates and xerogel films also detect PA and DNP in their vapor phase with reasonable percentage of recovery from the soil and river water samples. Therefore, the elegant multifunctionality from a single luminogenic framework allows F1 to provide a smart pathway for achieving environmentally benign real-world applications on multiple platforms.
Collapse
Affiliation(s)
- Kingshuk Debsharma
- Department of Chemistry, Indian Institute of Technology Madras (IIT M), Chennai 600 036, India
| | - Sunanda Dey
- Department of Chemistry, Mrinalini Datta Mahavidyapith, Birati, Kolkata 700051, India
- Department of Chemistry, Jadavpur University (JU), Kolkata, 700032, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University (JU), Kolkata, 700032, India
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras (IIT M), Chennai 600 036, India
| |
Collapse
|
16
|
Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds. J Fluoresc 2023:10.1007/s10895-023-03155-w. [PMID: 36752930 DOI: 10.1007/s10895-023-03155-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Special attention is given to the development of rapid and sensitive detection of nitroaromatic explosives for homeland security and environmental concerns. As part of our contribution to the detection of nitroaromatic explosives, fluorescent materials (A), (B) and (C) were synthesized from the reaction of 1,2-diaminocyclohexane with pyrene-1-carbaldehyde, anthracene-9-carbaldehyde and 2-hydroxy-1-naphthaldehyde, respectively. The structures of the prepared fluorescent azomethine probes were confirmed using FTIR, 1H-NMR and 13C-NMR spectroscopies. The basis of the study is the use of the synthesized materials as fluorescent probes in the photophysical and fluorescence detection of some nitroaromatic explosives. Emission increases occurred due to aggregation caused by π-π stacking in synthesized azomethines. To measure the nitroaromatic detection capabilities of fluorescence probes, fluorescence titration experiments were performed using the photoluminescence spectroscopy. It was observed that compound A containing pyrene ring provided the best emission intensity-increasing effect due to aggregation with the lowest LOD value (14.96 μM) for the sensing of 4-nitrophenol. In compounds B and C, nitrobenzene with the lowest LOD (16.15 μM and 23.49 μM respectively) caused the most regular emission increase, followed by picric acid.
Collapse
|
17
|
More KS, Mirgane HA, Gosavi NM, Puyad AL, Bhosale SV. Tetraphenylethylene Based Fluorescent Chemosensor for the Selective Detection of Explosive Nitroaromatic Compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kerba S. More
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Harshad A. Mirgane
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Nilesh M. Gosavi
- D. P. Bhosale College Koregaon Dist.– Satara Maharashtra 415501 India
| | - Avinash L. Puyad
- School of Chemical Sciences Swami Ramanand Teerth Marathwada University Nanded 431606, Maharashtra India
| | | |
Collapse
|
18
|
Dey B, Pahari P, Sahoo SK, Kumar Atta A. Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
19
|
Tamilarasan R, Ganesan K, Subramani A, Benazir Ali L, Alam MM, Mohammed A. Synthesis, Characterization, Pharmacogenomics, and Molecular Simulation of Pyridinium Type of Ionic Liquids and Their Applications. ACS OMEGA 2023; 8:4146-4155. [PMID: 36743060 PMCID: PMC9893258 DOI: 10.1021/acsomega.2c07129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Substituted pyridinium bromides are prepared by conventional and solvent-free greener methods. The solvent-free solid-phase (greener) method is superior to the conventional method because of its nontoxic nature, simple reaction setup procedure, and twenty times less time consumption. Column chromatography and toxic organic solvents are avoided. Substituted pyridinium salts 1-2(a-c) show excellent catalytic response in the preparation of β-amino carbonyl derivatives using the conventional approach. Pharmacokinetics is very important in target validation and in shifting a lead compound into a drug. The physicochemical properties discussed here can be used effectively in the drug designing candidate, which is a cumbersome process in clinical research. In addition, molecular simulations are demonstrated, and compounds 1-2(a-c) possess the most potent VEGFR-2 kinase protein inhibitory activities, and most interestingly, compound 2a strongly binds and regulates the VEGFR-2 kinase activity in therapeutic approaches and cancer prevention.
Collapse
Affiliation(s)
- Ramalingam Tamilarasan
- PG
& Research Department of Chemistry, Presidency College (Autonomous), Chennai 600005, India
- Department
of Chemistry, Vel Tech Multi Tech Dr. Rangarajan
Dr. Sakunthala Engineering College (Autonomous), Avadi, Chennai 600062, India
| | - Kilivelu Ganesan
- PG
& Research Department of Chemistry, Presidency College (Autonomous), Chennai 600005, India
| | - Annadurai Subramani
- Department
of chemistry, Apollo Arts and Science College,
Poonamallee, Chennai, Tamil Nadu 60210, India
| | | | - Mohammed Mujahid Alam
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Kingdom of Saudi Arabia
| | - Amanullah Mohammed
- Department
of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61413, Kingdom
of Saudi Arabia
| |
Collapse
|
20
|
Fan Y, Chen Y, Bai Y, An B, Xu J. A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4034. [PMID: 36432321 PMCID: PMC9698798 DOI: 10.3390/nano12224034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Aggregation-induced quenching (ACQ) is a hard problem in fluorescence material, leading to a poor utilization rate of fluorophores. In this work, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) was synthesized and used as a precursor to build two kinds of fluorescence polymer. The TFFPy molecule with D2h symmetry can easily form polymers with C3 symmetry amines through the Schiff base reaction, making the resulting polymer a 3D amorphous material. Thus, ACQ of fluorophore can be reduced to minimum, making the most usage of the fluorescence of pyrene core. Fluorescence titration and DFT calculation can clearly prove this conclusion. The resulting CPs showed a highly sensitivity to picric acid, down to 3.43 ppm in solution, implying its potential in explosive detection.
Collapse
|
21
|
Fabrication and photophysical assessment of quinoxaline based chemosensor: Selective determination of picric acid in hydrogel and aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Thippeswamy M, Naik L, Maridevarmath C, Savanur HM, Malimath G. Studies on the characterisation of thiophene substituted 1,3,4-oxadiazole derivative for the highly selective and sensitive detection of picric acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Bondarchuk SV. Theoretical study of the Meisenheimer and charge-transfer complexes formed upon colorimetric determination of nitroaromatic explosives. FIREPHYSCHEM 2022. [DOI: 10.1016/j.fpc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
24
|
Christopher Leslee DB, Karuppannan S. Unique carbazole – N,N-dimethylanline linked chalcone a colorimetric and fluorescent probe for picric acid explosive and its test strip analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Mukherjee D, Das P, Kundu S, Mandal B. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid. CHEMOSPHERE 2022; 300:134432. [PMID: 35398072 DOI: 10.1016/j.chemosphere.2022.134432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The study examines the effect of different forms of graphene oxide (GO) on the synthesis of graphene quantum dots (GQD). GO synthesized at various temperatures i.e. 30, 50, 110 °C possessed different structural and functional properties and was used as a substrate for GQD preparation. Thorough characterization of the GQDs in terms of their structural, morphological, functional, and optical properties was performed. The GQDs exhibited variation in their size and fluorescence properties depending upon the type of GO used. Hydrothermal reduction of GO, prepared at an oxidation temperature of 50 °C (GO-50), minimized the particle size (3.6 nm) and maximized the photoluminescence (PL) intensity and quantum yield (64.8%) of the GQD (GQD-50). GQD-50 was found to detect picric acid (PA) in an aqueous solution via 'turn-off' fluorescence quenching, unlike the other GQDs where the initial precursor is synthesized at 30, 110 °C. Experimental studies summarize that interaction between the fluorophore-quencher resulted in static quenching. The limit of detection was estimated to be 1.2 μM with a detection range of 0-200 μM. The work concludes that optimization of the substrate i.e. GO can result in the development of a simple, non-toxic, cost-effective GQD based sensor for PA detection. The study eliminates the need for doping/functionalization of GQDs as reported previously, and hence finds a promising impact on the development of sensors.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pradip Das
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Sukanya Kundu
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Bishnupada Mandal
- Separation Science Laboratory, Department of Chemical Engineering, India Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
26
|
Charan Behera K, Mallick D, Narayan Patra B, Bag B. A Pyrene-Rhodamine FRET couple as a chemosensor for selective detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120934. [PMID: 35101722 DOI: 10.1016/j.saa.2022.120934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Selective detection of nitroaromatic compounds such as Picric acid (PA), those being explosive materials and hazardous pollutants of environmental and biological concern is highly desirable. With the operational advantages of the chemosensing approach, a pyrene-rhodamine-B couple (1) was explored in this investigation as a ratiometric molecular probe for selective and sensitive detection of picric acid. The bi-fluorophoric probe displayed absorption and fluorescence enhancements along with colourless to reddish-brown colour transition as signaling responses in the selective presence of PA among all the nitro aromatic analyte investigated. The signaling module relies on PA- mediated modulation of various operational photo-physical processes such as (a) inhibition of photo-induced electron transfer (PET) operative from amino-donor to excited pyrene (b) a conformational translation through spiro-ring opening of rhodamine-B segment, and (c) initiation of Fluorescence Resonance Energy Transfer (FRET) between excited pyrene donor and ring-opened rhodamine acceptor. The ratio of fluorescence from both fluorophores (pyrene and Rhodamine) as output channel displayed sensitive signaling performance (LOD = 13.8 nM) in the detection of PA. The investigation that inferred to the PA-induced selectivity in signalling, higher binding affinity (log Ka≈11), a faster response time, and reversibility in signalling with a counter analyte and an operational pH range established the probe's efficacy as a chemosensor for PA detection.
Collapse
Affiliation(s)
- Kanhu Charan Behera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India; Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Debajani Mallick
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India
| | - Braja Narayan Patra
- Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India.
| |
Collapse
|
27
|
Karuk Elmas SN, Karagoz A, Arslan FN, Yilmaz I. Propylimidazole Functionalized Coumarin Derivative as Dual Responsive Fluorescent Chemoprobe for Picric Acid and Fe3+ Recognition: DFT and Natural Spring Water Applications. J Fluoresc 2022; 32:1357-1367. [DOI: 10.1007/s10895-022-02936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
28
|
Kaur N, Tiwari P, Mate N, Sharma V, Mobin SM. Photoactivatable carbon dots as a label-free fluorescent probe for picric acid detection and light-induced bacterial inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112412. [PMID: 35227941 DOI: 10.1016/j.jphotobiol.2022.112412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The zero-dimensional carbon nanostructure known as carbon dots showed attractive attributes such as multicolour emission, very high quantum yield, up-conversion, very good aqueous solubility, eco-friendliness, and excellent biocompatibility. These outstanding features of the carbon dots have raised significant interest among the research community worldwide. In the current work, water-soluble nitrogen, silver, and gold co-doped bimetallic carbon dots (BCDs) were prepared using the one-pot hydrothermal method with citric acid as a sole carbon source. As prepared BCDs showed size in the range of 4-8 nm and excitation-independent emission behaviour with maximum emission observed at 427 nm. Additionally, these BCDs showed a very high quantum yield value of 50% and fluorescence lifetime value of 10.1 ns respectively. Interestingly, as prepared BCDs selectively sense picric acid (PA) by exhibiting "selective fluorescence turn-off" behaviour in the presence of PA with a limit of detection value (LOD) of 46 nM. Further, as prepared BCDs were explored for photodynamic therapy to inactivate bacterial growth in the presence of light (400-700 nm) by generating singlet oxygen. Thus as prepared BCDs offer lots of potentials to use a nanoprobe to detect picric acid in an aqueous medium and to design next-generation antibacterial materials.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Jammu 181221, Jammu & Kashmir, India
| | - Shaikh M Mobin
- Department of Biosciences and Bio-Medical Engineering, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India; Department of Chemistry, Indian Institute of Technology, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
29
|
Harathi J, Thenmozhi K. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. CHEMOSPHERE 2022; 286:131825. [PMID: 34375830 DOI: 10.1016/j.chemosphere.2021.131825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2-H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl- anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M-1 and 2.32 × 106 M-1 and shows a lower detection limit of 159 nM and 282 nM, respectively.
Collapse
Affiliation(s)
- Jonnagaddala Harathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
30
|
Self-assembled nanomaterials of naphthalene monoimide in aqueous medium for multimodal detection of picric acid. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Purba PC, Venkateswaralu M, Bhattacharyya S, Mukherjee PS. Silver(I)-Carbene Bond-Directed Rigidification-Induced Emissive Metallacage for Picric Acid Detection. Inorg Chem 2021; 61:713-722. [PMID: 34932355 DOI: 10.1021/acs.inorgchem.1c03527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new triphenylamine-based tetraimidazolium salt L was developed for silver(I)-carbene bond-directed synthesis of tetranuclear silver(I) octacarbene ([Ag4(L)2](PF6)4) metallacage 1. Interestingly, after assembly formation, metallacage 1 showed a nine-fold emission enhancement in dilute solution while ligand L was weakly fluorescent. This is attributed to the rigidity induced to the system by metal-carbene bond formation where the metal center acts as a rigidification unit. The enhanced emission intensity in dilute solution and the presence of the triphenylamine core made 1 a potential candidate for recognition of picric acid (PA). This recognition can be ascribed to the dual effect of ground-state charge-transfer complex formation and resonance energy transfer between the picrate and metallacage 1. For metallacage 1, a considerable detection limit toward PA was observed. The use of such metal-carbene bond-directed rigidification-induced enhanced emission for PA sensing is noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswaralu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
32
|
Ahmed HM, Ghali M, Zahra W, Ayad MM. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119967. [PMID: 34082352 DOI: 10.1016/j.saa.2021.119967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Carbon quantum dots/polyaniline (CQDs/PANI) nanocomposite was successfully prepared by in-situ polymerization of aniline. CQDs were synthesized hydrothermally from gelatin with a diameter size of 4.2 nm and a 17% quantum yield. FTIR, UV-vis absorption, fluorescence spectrophotometer, XRD, TEM, XPS and lifetime decay were used to characterize the obtained nanocomposite. The formation of PANI revealed a high quenching effect on CQDs where the TEM images showed that the formed CQDs were greatly embedded in PANI matrix. In this study, CQDs/PANI nanocomposite was used for the detection of picric acid (PA) in the range 0.37-1.42 μM with a low detection limit (LOD) of 0.056 μM. The prepared sensor showed good enhancement and sensitivity towards PA in comparison to pristine CQDs and other nanostructured materials. The mechanism of PA detection has been studied where it was observed that PA is electrostatically interacted to the nanocomposite through - OH group of PA and the protonated PANI salt formed in CQDs/PANI nanocomposite by fluorescence resonance energy transfer applications. The proposed CQDs/PANI sensor was then utilized in real water samples and successfully determined the different amounts of PA spiked into tap water.
Collapse
Affiliation(s)
- Heba M Ahmed
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Mohsen Ghali
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Waheed Zahra
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
| | - Mohamad M Ayad
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
33
|
Fluorescence quenching based detection of nitroaromatics using luminescent triphenylamine carboxylic acids. Sci Rep 2021; 11:19324. [PMID: 34588466 PMCID: PMC8481287 DOI: 10.1038/s41598-021-97832-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
Abstract
Detection of nitroaromatics employing greener techniques has been one of the most active research fields in chemistry. A series of triphenylamine (TPA) functionalized carboxylic acids were synthesized and characterized using various spectroscopic techniques including single-crystal X-ray diffraction analysis. The interaction of carboxylic acid-decorated TPAs with nitroaromatic compounds was photophysically explored using absorption and emission spectroscopy. Stern–Volmer plot accounts for the appreciable quenching constant of the TPA-acids. Density functional theory calculations were carried out to study the new compounds' frontier molecular orbital energy levels and the possible interactions with picrate anion and revealed an unusual charge transfer interaction between acids and picrate anion. The contact mode detection shows the TPA-acids can be used as dip-strip sensors for picric acid detection.
Collapse
|
34
|
Vicent C, Valls A, Escorihuela J, Altava B, Luis S. Unveiling anion-induced folding in tripodal imidazolium receptors by ion-mobility mass spectrometry. Chem Commun (Camb) 2021; 57:8616-8619. [PMID: 34369516 DOI: 10.1039/d1cc02818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anion-induced folding of tripodal imidazolium receptors has been investigated by NMR spectroscopy, electrospray ionization ion mobility mass spectrometry and DFT calculations. Such folding can be switched by anion release upon collision induced dissociation.
Collapse
Affiliation(s)
- Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain.
| | | | | | | | | |
Collapse
|
35
|
Lu LY, Tao XW, Chen FY, Cheng AL, Xue QS, Gao EQ. A series of new sulfone-functionalized coordination polymers: Fascinating architectures and efficient fluorescent sensing of nitrofuran antibiotics. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Kalita B, Dutta P, Sen Sarma N. Riboflavin based conjugated biomolecule for ultrasensitive detection of nitrophenols. RSC Adv 2021; 11:28313-28319. [PMID: 35480746 PMCID: PMC9038046 DOI: 10.1039/d1ra04403f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Real time detection of explosive compounds in today's time is of utmost necessity due to security and severe environmental safety issues. Herein, we have synthesized a biobased conjugated molecular system from riboflavin and l-cystine utilized it for detecting picric acid in trace amount using optical sensing technique. The bioconjugate probe showed high quenching efficiency towards picric acid, which is 92.2%. In depth mechanistic study showed that ground state electrostatic interaction and inner filter effect are the factors leading to the diminishing of the probe's fluorescence intensity on addition of trace amount of the nitrophenol, picric acid. The detection limit of the conjugate is 0.37 nM which is extremely low and highly desirable for clinical applications of this system.
Collapse
Affiliation(s)
- Bandita Kalita
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| | - Priyanka Dutta
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| | - Neelotpal Sen Sarma
- Advanced Materials Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India
| |
Collapse
|
37
|
Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02327-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Ghosh A, Seth SK, Ghosh A, Pattanayak P, Mallick A, Purkayastha P. A New Compound for Sequential Sensing of Picric Acid and Aliphatic Amines: Physicochemical Details and Construction of Molecular Logic Gates. Chem Asian J 2021; 16:1157-1164. [PMID: 33787004 DOI: 10.1002/asia.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Picric acid (PA) at low concentration is a serious water pollutant. Alongside, aliphatic amines (AAs) add to the queue to pollute surface water. Plenty of reports are available to sense PA with an ultralow limit of detection (LOD). However, only a handful of works are testified to detect AAs. A new fluorescent donor-acceptor compound has been synthesized with inherent intramolecular charge transfer (ICT) character that enables selective and sensitive colorimetric quantitative detection of PA and AAs with low LODs in non-aqueous as well as aqueous solutions. The synthesized compound is based on a hemicyanine skeleton containing two pyridenylmethylamino groups at the donor and a benzothiazole moiety at the acceptor ends. The detailed mechanisms and reaction dynamics are explained spectroscopically along with computational support. The fluorescence property of the detecting compound changes due to protonation of its pyridinyl centers by PA leading to quenching of fluorescence and subsequently de-protonation by AAs to revive the signal. We have further designed logic circuits from the acquired optical responses by sequential interactions.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arnab Ghosh
- Department of Materials Science, Indian Association for the Cultivation of Science, 700032, Jadavpur, Kolkata, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Kalla Bypass More, WB 713340, Burdwan, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| |
Collapse
|
39
|
Yang J, Hao H, Dai H, Xu C, Liu C, Chen X, Yi A, Xu B, Shi G, Chi Z. Recyclable electropolymerized films based on donor-acceptor type AIEE-active chromophore for detecting 2,4,6-trinitrophenol. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Wang Z, Si S, Luo Z, Qin T, Xu Z, Liu B. An AIE-based Fluorescent Probe for Detection of Picric Acid in Water. CHEM LETT 2021. [DOI: 10.1246/cl.200618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhonglin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shufan Si
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zijie Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
41
|
Pak GT, Kim H, Lee TS. Synthesis of
Melamine‐Formaldehyde
Microcapsules Containing Polyfluorene for Fluorescent Detection of Picric Acid in Aqueous Medium. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Geun Tae Pak
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering Chungnam National University Daejeon 34134 Korea
| | - Hyunchul Kim
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering Chungnam National University Daejeon 34134 Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering Chungnam National University Daejeon 34134 Korea
| |
Collapse
|
42
|
Lu S, Xue M, Tao A, Weng Y, Yao B, Weng W, Lin X. Facile Microwave-Assisted Synthesis of Functionalized Carbon Nitride Quantum Dots as Fluorescence Probe for Fast and Highly Selective Detection of 2,4,6-Trinitrophenol. J Fluoresc 2021; 31:1-9. [PMID: 33057853 DOI: 10.1007/s10895-020-02633-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022]
Abstract
Functionalized carbon nitride quantum dots (CNQDs) are fabricated by moderate carbonization of L-tartaric acid and urea in oil acid media by a facile microwave-assisted solvothermal method. The obtained CNQDs are monodispersed with a narrow size distribution (average size of 3.5 nm), and exhibit excellent selectivity and sensitivity of fluorescence quenching for 2,4,6-trinitrophenol (TNP) with a quenching efficiency coefficient Ksv of 4.75 × 104 M-1. This sensing system exhibits a fast response time within 1 min and a wide linear response range from 0.1 to 15 μM. The limit of detection is as low as 87 nM, which is comparable or lower than the other probes. The application of the developed probe to the detection of TNP in spiked water samples yields satisfactory results. The mechanism of fluorescence quenching is also discussed. Graphical Abstract An optical sensor based on functionalized carbon nitride quantum dots (CNQDs) were fabricated from L-tartaric acid and urea by a facile one-pot microwave-assisted solvothermal method, and were effectively utilized to the detection of 2,4,6-trinitrophenol (TNP) based on fluorescence (FL) quenching.
Collapse
Affiliation(s)
- Shikong Lu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Meihua Xue
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Aojia Tao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Yuhui Weng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Bixia Yao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Wen Weng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou, 363000, China.
| | - Xiuchun Lin
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| |
Collapse
|
43
|
Li W, Zhou H, Hayat Nawaz MA, Niu N, Yang N, Ren J, Yu C. A perylene monoimide probe based fluorescent micelle sensor for the selective and sensitive detection of picric acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5353-5359. [PMID: 33104151 DOI: 10.1039/d0ay01456g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hydroxyl functionalized perylene monoimide probe (PMI-OH) was prepared and self-assembled with the nonionic surfactant Triton X-100 (TX100) to fabricate a fluorescent micelle sensor for the selective and sensitive detection of picric acid (PA), a common explosive and environmental pollutant. The synthesized PMI-OH probe exhibited excimer fluorescence emission, and the intensity of the excimer fluorescence emission was significantly enhanced after the PMI-OH probe formed micelles with TX100. The obtained PMI-OH@TX100 micelles presented excellent photoluminescence properties and had a maximum fluorescence emission at 630 nm. The red fluorescence of the PMI-OH@TX100 micelles was quenched upon introduction of the nitro explosive PA due to electron transfer from the donor (PMI-OH) to the acceptor (PA). The fluorescence quenching of the fluorescent micelle sensor was proportional to the concentration of PA in the range of 2 to 10 μM. The limit of detection was 500 nM using 3σ/k. Thus, the developed PMI-OH@TX100 micelle sensor has great potential to detect PA in ordinary samples.
Collapse
Affiliation(s)
- Weiqing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pramanik B, Das S, Das D. Aggregation-directed High Fidelity Sensing of Picric Acid by a Perylenediimide-based Luminogen. Chem Asian J 2020; 15:4291-4296. [PMID: 33137228 DOI: 10.1002/asia.202001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/09/2022]
Abstract
Widespread use of picric acid (PA) in chemical industries and deadly explosives poses dreadful impact on all living creatures as well as the natural environment and has raised global concerns that necessitate the development of fast and efficient sensing platforms. To address this issue, herein, we report a perylenediimide-peptide conjugate, PDI-1, for detection of PA in methanol. The probe displays typical aggregation caused quenching (ACQ) behaviour and exhibits a fluorescence "turn-off" sensory response towards PA which is unaffected by the presence of other interfering nitroaromatic compounds. The sensing mechanism involves PA induced aggregation of the probe into higher order tape like structures which leads to quenching of emission. The probe possesses a low detection limit of 5.6 nM or 1.28 ppb and a significantly high Stern-Volmer constant of 6.87×104 M-1 . It also exhibits conducting properties in the presence of PA vapours and thus represents a prospective candidate for vapour phase detection of PA. This is, to the best of our knowledge, the first example of a perylenediimide based probe that demonstrates extremely specific, selective and sensitive detection of PA and thus grasps the potential for application in practical scenarios.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India.,Present address: Department of Chemistry, Ben-Gurion University of Negev, Beer Sheva, 84105, Israel
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
45
|
Hu Y, Long S, Fu H, She Y, Xu Z, Yoon J. Revisiting imidazolium receptors for the recognition of anions: highlighted research during 2010-2019. Chem Soc Rev 2020; 50:589-618. [PMID: 33174897 DOI: 10.1039/d0cs00642d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazolium based receptors selectively recognize anions, and have received more and more attention. In 2006 and 2010, we reviewed the mechanism and progress of imidazolium salt recognition of anions, respectively. In the past ten years, new developments have emerged in this area, including some new imidazolium motifs and the identification of a wider variety of biological anions. In this review, we discuss the progress of imidazolium receptors for the recognition of anions in the period of 2010-2019 and highlight the trends in this area. We first classify receptors based on motifs, including some newly emerging receptors, as well as new advances in existing receptor types at this stage. Then we discuss separately according to the types of anions, including ATP, GTP, DNA and RNA.
Collapse
Affiliation(s)
- Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | | | | | | | | | | |
Collapse
|
46
|
Delente JM, Umadevi D, Byrne K, Schmitt W, Watson GW, Gunnlaugsson T, Shanmugaraju S. Hyper-crosslinked 4-amino-1,8-naphthalimide Tröger’s base containing pyridinium covalent organic polymer (COP) for discriminative fluorescent sensing of chemical explosives. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1825715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jason M. Delente
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Wolfgang Schmitt
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Graeme W. Watson
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, The University of Dublin, Ireland
| | | |
Collapse
|
47
|
Parvathy P, Dheepika R, Abhijnakrishna R, Imran P, Nagarajan S. Fluorescence quenching of triarylamine functionalized phenanthroline-based probe for detection of picric acid. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Sathiyamoorthi S, Almansour AI, Raju SK, Natarajan A, Kumar RR. Imidazolium ylide mediated tandem Knoevenagel–Michael–O-cyclization sequence for the synthesis of multi-substituted 4,5-dihydrofurans. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1821226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sivakumar Sathiyamoorthi
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | | | - Suresh Kumar Raju
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arumugam Natarajan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
49
|
A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Anal Chim Acta 2020; 1129:12-23. [DOI: 10.1016/j.aca.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
|
50
|
Advances in luminescent metal-organic framework sensors based on post-synthetic modification. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115939] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|