1
|
Berrino E, Michelet B, Vitse K, Nocentini A, Bartolucci G, Martin-Mingot A, Gratteri P, Carta F, Supuran CT, Thibaudeau S. Superacid-Synthesized Fluorinated Diamines Act as Selective hCA IV Inhibitors. J Med Chem 2024. [PMID: 39447020 DOI: 10.1021/acs.jmedchem.4c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Carbonic anhydrase (CA) IV is a membrane-bound enzyme involved in important physio-pathological processes, such as excitation-contraction coupling in heart muscle, central nervous system (CNS) extracellular buffering, and mediation of inflammatory response after stroke. Known since the mid-1980s, this isoform is still largely unexplored when compared to other isoforms, mostly for the current lack of inhibitors targeting selectively this isoform. The discovery of selective CA IV inhibitors is thus largely awaited. In this work, we report β-(di) fluoropropyl diamines as effective CA IV inhibitors, opening real perspectives for a new mode of selective inhibition of this isoform. Inhibition data reveal that the essential structure core to ensure a potent and selective inhibition of CA IV is the N-propyldiamine. Molecular modeling studies were employed to understand the binding mode of the synthesized amines. Conformational searches within the active site space carried out in an implicit solvent (water) model were also conducted.
Collapse
Affiliation(s)
- Emanuela Berrino
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Kassandra Vitse
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Alessio Nocentini
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Gianluca Bartolucci
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Paola Gratteri
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| |
Collapse
|
2
|
Egbaria N, Agbaria M, Borin VA, Hoffman RE, Bogoslavsky B, Schapiro I, Nairoukh Z. The Conformational Behaviour of Fluorinated Tetrahydrothiopyran. Chemistry 2024; 30:e202402260. [PMID: 38989892 DOI: 10.1002/chem.202402260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
We present a comprehensive study on the conformational behavior of diversely substituted 4-fluorotetrahydrothiopyran derivatives. Through quantum chemical simulations including DFT as well as NBO and NPA analysis, we elucidate the pivotal role of electrostatic interactions, occasionally complemented by hyperconjugative interactions, in stabilizing axial fluorine conformers. Less polar conformers were occasionally obtained, attributed to the interplay of electrostatic and hyperconjugative interactions. Experimental validation through NMR spectroscopy aligns with the computational analysis, thus providing a coherent understanding of the structural dynamics of these compounds.
Collapse
Affiliation(s)
- Nwar Egbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of, Jerusalem, 9190401, Jerusalem, Israel
| | - Roy E Hoffman
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of, Jerusalem, 9190401, Jerusalem, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| |
Collapse
|
3
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Lu XY, Huang R, Wang ZZ, Zhang X, Jiang F, Yang GX, Shui FY, Su MX, Sun YX, Sun HL. Photoinduced Decarboxylative Difluoroalkylation and Perfluoroalkylation of α-Fluoroacrylic Acids. J Org Chem 2024; 89:6494-6505. [PMID: 38634729 DOI: 10.1021/acs.joc.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herein, a novel and practical methodology for the photoinduced decarboxylative difluoroalkylation and perfluoroalkylation of α-fluoroacrylic acids is reported. A wide range of α-fluoroacrylic acids can be used as applicable feedstocks, allowing for rapid access to structurally important difluoroalkylated and polyfluoroalkylated monofluoroalkenes with high Z-stereoselectivity under mild conditions. The protocol demonstrates excellent functional group compatibility and provides a platform for modifying complex biologically active molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Rui Huang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Xiang Zhang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Gui-Xian Yang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fu-Yi Shui
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| |
Collapse
|
5
|
Myronova V, Cahard D, Marek I. Stereoselective Nucleophilic Halogenation at CF 3-Substituted Nonclassical Carbocation. Org Lett 2024; 26:3657-3660. [PMID: 38657180 DOI: 10.1021/acs.orglett.4c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
CF3-substituted cyclopropyl carbinol derivatives undergo regioselective and diastereoselective nucleophilic halogenation at the quaternary carbon center to provide acyclic products as a single diastereomer. The selectivity of the substitution is rationalized by the formation of a nonclassical cyclopropylcarbinyl cation intermediate, reacting at the most-substituted carbon center. Tertiary alkyl chlorides, bromides, and fluorides adjacent to a stereogenic C-CF3-motif are diastereomerically pure and can be obtained in few catalytic steps from commercially available alkynes.
Collapse
Affiliation(s)
- Veronika Myronova
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis. Technion-Israel Institute of Technology, Haifa 3200009, Israel
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000 Rouen, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000 Rouen, France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis. Technion-Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
6
|
Zhang H, Wu J, Zhang X, Fan M. LiBF 4-Promoted Aromatic Fluorodetriazenation under Mild Conditions. J Org Chem 2023; 88:12826-12834. [PMID: 37594375 DOI: 10.1021/acs.joc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An efficient and mild fluorination method through LiBF4-promoted aromatic fluorodetriazenation of 3,3-dimethyl-1-aryltriazenes is developed. The reaction proceeds smoothly and tends to complete within 2 h in the absence of a protic acid or strong Lewis acid. This method tolerates a wide range of functional groups and affords the aryl fluoride products in moderate to excellent yields.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Jianbo Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
7
|
Crousse B. Recent Advances in the Syntheses of N-CF 3 Scaffolds up to Their Valorization. CHEM REC 2023; 23:e202300011. [PMID: 36922747 DOI: 10.1002/tcr.202300011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Indexed: 03/18/2023]
Abstract
This review provides a recent overview of the different synthetic routes of the N-CF3 group. This scaffold can be prepared from the desulfurization of thiocabamoyl fluorides or isothiocyanates with fluoride ions. Electrophilic and radical trifluoromethylations are also a great way to generate this motif. This report also focuses on the valorization of some N-CF3 compounds, which leads to new unknown N-trifluoromethyl derivatives. Finally, the first metabolic stability studies will be given for certain structures.
Collapse
Affiliation(s)
- Benoît Crousse
- BioCIS UMR 8076 CNRS, Building Henri Moissan, Université Paris-Saclay, 17 avenue des sciences, 91400, Orsay, France
| |
Collapse
|
8
|
Chowdhary S, Pelzer T, Saathoff M, Quaas E, Pendl J, Fulde M, Koksch B. Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Tim Pelzer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Mareike Saathoff
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Core Facility SupraFAB Freie Universität Berlin Berlin Germany
| | - Johanna Pendl
- Institute of Veterinary Anatomy Freie Universität Berlin Berlin Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
- Veterinary Centre for Resistance Research (TZR) Freie Universität Berlin Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| |
Collapse
|
9
|
Liu HY, Yu LK, Qin SN, Yang HZ, Wang DW, Xi Z. Design, Synthesis, and Metabolism Studies of N-1,4-Diketophenyltriazinones as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3225-3238. [PMID: 36780578 DOI: 10.1021/acs.jafc.2c09082] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is an established site for green herbicide discovery. In this work, based on structural analysis, we develop an active fragment exchange and link (AFEL) approach to designing a new class of N-1,4-diketophenyltriazinones I-III as potent Nicotiana tabacum PPO (PPO) inhibitors. After systematic structure-activity relationship optimizations, a series of new compounds with Ki values in the single-digit nanomolar range toward NtPPO and promising herbicidal activity were discovered. Among them, Ii (Ki = 0.11 nM) displays 284- and 90-fold improvement in NtPPO inhibitory activity over trifludimoxazin (Ki = 31 nM) and saflufenacil (Ki = 10 nM), respectively. In addition, Ip (Ki = 2.14 nM) not only exhibited good herbicidal activity at 9.375-37.5 g ai/ha but also showed high crop safety to rice at 75 g ai/ha by the postemergence application, indicating that Ip could be developed as a potential herbicide for weed control in rice fields. Additionally, our molecular dynamic simulation clarified the molecular basis for the interactions of these molecules with NtPPO. The metabolism studies in planta showed that IIIc could be converted to Ic, which displayed higher herbicidal activity than IIIc. The density functional theory analysis showed that due to the effect of two sulfur atoms at the triazinone moiety, IIIc is more reactive than Ic, making it more easily degraded in planta. Our work indicates that the AFEL strategy could be used to design new molecules with improved bioactivity.
Collapse
Affiliation(s)
- Hong-Yun Liu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liang-Kun Yu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Nan Qin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Khodov IA, Belov KV, Krestyaninov MA, Dyshin AA, Kiselev MG. Investigation of the Spatial Structure of Flufenamic Acid in Supercritical Carbon Dioxide Media via 2D NOESY. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041524. [PMID: 36837153 PMCID: PMC9961892 DOI: 10.3390/ma16041524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023]
Abstract
The search for new forms of already known drug compounds is an urgent problem of high relevance as more potent drugs with fewer side effects are needed. The trifluoromethyl group in flufenamic acid renders its chemical structure differently from other fenamates. This modification is responsible for a large number of conformational polymorphs. Therefore, flufenamic acid is a promising structural modification of well-known drug molecules. An effective approach in this field is micronization, employing "green" supercritical fluid technologies. This research raises some key questions to be answered on how to control polymorphic forms during the micronization of drug compounds. The results presented in this work demonstrate the ability of two-dimensional nuclear Overhauser effect spectroscopy to determine conformational preferences of small molecular weight drug compounds in solutions and fluids, which can be used to predict the polymorphic form during the micronization. Quantitative analysis was carried out to identify the conformational preferences of flufenamic acid molecules in dimethyl sulfoxide-d6 medium at 25 °C and 0.1 MPa, and in mixed solvent medium containing supercritical carbon dioxide at 45 °C and 9 MPa. The data presented allows predictions of the flufenamic acid conformational preferences of poorly soluble drug compounds to obtain new micronized forms.
Collapse
|
11
|
Hohmann T, Chowdhary S, Ataka K, Er J, Dreyhsig GH, Heberle J, Koksch B. Introducing Aliphatic Fluoropeptides: Perspectives on Folding Properties, Membrane Partition and Proteolytic Stability. Chemistry 2023; 29:e202203860. [PMID: 36722398 DOI: 10.1002/chem.202203860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on β-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.
Collapse
Affiliation(s)
- Thomas Hohmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Suvrat Chowdhary
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jasmin Er
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Gesa Heather Dreyhsig
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
12
|
Myronova V, Cahard D, Marek I. Stereoselective Preparation of CF 3-Containing Cyclopropanes. Org Lett 2022; 24:9076-9080. [DOI: 10.1021/acs.orglett.2c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Veronika Myronova
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
13
|
Synthesis of Functionalized Azepines via Cu(I)-Catalyzed Tandem Amination/Cyclization Reaction of Fluorinated Allenynes. Molecules 2022; 27:molecules27165195. [PMID: 36014436 PMCID: PMC9416787 DOI: 10.3390/molecules27165195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023] Open
Abstract
An efficient method for the selective preparation of trifluoromethyl-substituted azepin-2-carboxylates and their phosphorous analogues has been developed via Cu(I)-catalyzed tandem amination/cyclization reaction of functionalized allenynes with primary and secondary amines.
Collapse
|
14
|
Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022; 55:722-733. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytosolic delivery of biomolecules such as genes, proteins, and peptides is of great importance for biotherapy but usually limited by multiple barriers during the process. Cell membrane with high hydrophobic character is one of the representative biological barriers for cytosolic delivery. The introduction of hydrophobic ligands such as aliphatic lipids onto materials or biomolecules could improve their membrane permeability. However, these ligands are lipophilic and tend to interact with the phospholipids in the membrane as well as serum proteins, which may hinder efficient intracellular delivery. To solve this issue, our research group proposed the use of fluorous ligands with both hydrophobicity and lipophobicity as ideal alternatives to aliphatic lipids to promote cytosolic delivery.In our first attempt, fluorous ligands were conjugated onto cationic polymers to increase their gene delivery efficacy. The fluorination dramatically increased the gene delivery performance at low polymer doses. In addition, the strategy greatly improved the serum tolerance of cationic polymers, which is critical for efficient gene delivery in vivo. Besides serum tolerance, mechanism studies revealed that fluorination increases multiple steps such as cellular uptake and endosomal escape. Fluorination also allowed the assembly of low-molecular-weight polymers and achieved highly efficient gene delivery with minimal material toxicity. The method showed robust efficiency for polymers, including linear polymers, branched polymers, dendrimers, bola amphiphilies, and dendronized polymers.Besides gene delivery, fluorinated polymers were also used for intracellular protein delivery via a coassembly strategy. For this purpose, two lead fluoropolymers were screened from a library of amphiphilic materials. The fluoropolymers are greatly superior to their nonfluorinated analogues conjugated with aliphatic lipids. The fluorous lipids are beneficial for polymer assembly and protein encapsulation, reduced protein denaturation, facilitated endocytosis, and decreased polymer toxicity compared to nonfluorinated lipids. The materials exhibited potent efficacy in therapeutic protein and peptide delivery to achieve cancer therapy and were able to fabricate a personalized nanovaccine for cancer immunotherapy. Finally, the fluorous lipids were directly conjugated to peptides via a disulfide bond for cytosolic peptide delivery. Fluorous lipids drive the assembly of cargo peptides into uniform nanoparticles with much improved proteolytic stability and promote their delivery into various types of cells. The delivery efficacy of this strategy is greatly superior to traditional techniques such as cell-penetrating peptides both in vitro and in vivo. Overall, the fluorination techniques provide efficient and promising strategies for the cytosolic delivery of biomolecules.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
15
|
TBAF-initiated vinylation of aldehydes with trimethyl[(Z)-2-(phenylsulfanyl)-1-(trifluoromethyl)vinyl]silane. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Crousse B, CAO T. Direct access to fluorinated sulfonylhydrazides and study of their reactivity in thiolation reaction on indoles. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benoit Crousse
- CNRS UPSUD Chemistry Faculty of PharmacyStreet J.B. Clement 92296 Chatenay-Malabry FRANCE
| | - Tingting CAO
- Université Paris-Saclay: Universite Paris-Saclay chemistry Faculte de pharmacie 5, rue Jean Baptiste Clementmolecule fluorees, tour D3, 5eme etage 92296 chatenay-malabry FRANCE
| |
Collapse
|
17
|
Li T, Luo Y, Wu Z, Xiao T, Jiang Y, Qin G. Dual Fe/Pd‐Catalyzed Reductive Cross‐Coupling: Constructing
gem
‐Difluoroallylenes with Alkenyl Bromides and Bromodifluoromethanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tao Li
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yuhang Luo
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Zefeng Wu
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road Chenggong District, Kunming 650500 P. R. of China
| |
Collapse
|
18
|
Shashi R, Begum NS, Foro S. Synthesis and Crystal Structure Analysis of Acridine Derivatives. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s106377452106033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang DW, Zhang H, Yu SY, Zhang RB, Liang L, Wang X, Yang HZ, Xi Z. Discovery of a Potent Thieno[2,3- d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In Silico Structure-Guided Optimization Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14115-14125. [PMID: 34797973 DOI: 10.1021/acs.jafc.1c05665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key objective for herbicide research is to develop new compounds with improved bioactivity. Protoporphyrinogen IX oxidase (PPO) is an essential target for herbicide discovery. Here, we report using an in silico structure-guided optimization approach of our previous lead compound 1 and designed and synthesized a new series of compounds 2-6. Systematic bioassays led to the discovery of a highly potent compound 6g, 1-methyl-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione, which exhibited an excellent and wide spectrum of weed control at the rates of 30-75 g ai/ha by the postemergence application and is relatively safe on maize at 75 g ai/ha. Additionally, the Ki value of 6g to Nicotiana tabacum PPO (NtPPO) was found to be 2.5 nM, showing 3-, 12-, and 18-fold higher potency relative to compound 1 (Ki = 7.4 nM), trifludimoxazin (Ki = 31 nM), and flumioxazin (Ki = 46 nM), respectively. Furthermore, molecular simulations further suggested that the thieno[2,3-d]pyrimidine-2,4-dione moiety of 6g could form a more favorable π-π stacking interaction with the Phe392 of NtPPO than the heterocyclic moiety of compound 1. This study provides an effective strategy to obtain enzyme inhibitors with improved performance through molecular simulation and structure-guided optimization.
Collapse
Affiliation(s)
- Da-Wei Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hang Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Bo Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
20
|
Taily IM, Saha D, Banerjee P. Arylcyclopropane yet in its infancy: the challenges and recent advances in its functionalization. Org Biomol Chem 2021; 19:8627-8645. [PMID: 34549770 DOI: 10.1039/d1ob01432c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electronically unbiased arylcyclopropane functionalization has always been a challenge to organic chemists, and the emergence of donor-acceptor cyclopropanes (DACs) has not only vehemently overshadowed them but still dominates the cyclopropane chemistry. Unlike DACs, the absence of pre-installed functional groups makes it harder for them to activate and participate in a reaction. The field has witnessed considerably slow progress since its inception due to the inherent challenges. There are only a few strategies available to open arylcyclopropanes. Therefore, this work is still in its infancy stage in spite of these materials being one of the earliest known type of cyclopropanes. This review manifests the history, endeavors, and achievements alongside the associated challenges, opportunities, and the need for concerted efforts to accomplish the long-awaited golden age of arylcyclopropanes.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology, Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
21
|
Berrino E, Michelet B, Martin‐Mingot A, Carta F, Supuran CT, Thibaudeau S. Modulating the Efficacy of Carbonic Anhydrase Inhibitors through Fluorine Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emanuela Berrino
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Bastien Michelet
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Agnès Martin‐Mingot
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Fabrizio Carta
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Sébastien Thibaudeau
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| |
Collapse
|
22
|
Mkrtchyan S, Jakubczyk M, Lanka S, Yar M, Ayub K, Shkoor M, Pittelkow M, Iaroshenko VO. Mechanochemical Transformation of CF
3
Group: Synthesis of Amides and Schiff Bases. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 PL-90-363 Łodź Poland
| | - Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 PL-90-363 Łodź Poland
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Suneel Lanka
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 PL-90-363 Łodź Poland
- Lodz University of Technology Żeromskiego str. 116 90-924 Lodz Poland
| | - Muhammad Yar
- COMSATS University Department of Chemistry Abbottabad Campus Abbottabad, KPK 22060 Pakistan
| | - Khurshid Ayub
- COMSATS University Department of Chemistry Abbottabad Campus Abbottabad, KPK 22060 Pakistan
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences Qatar University P.O. Box 2713 Doha Qatar
| | - Michael Pittelkow
- University of Copenhagen Department of Chemistry Universitetsparken 5 2100 Copenhagen Denmark
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 PL-90-363 Łodź Poland
- Department of Chemistry University of Helsinki A.I. Virtasen aukio 1 00014 Helsinki Finland
- Department of Chemistry, Faculty of Natural Sciences Matej Bel University Tajovkého 40 97401 Banska Bystrica Slovakia
| |
Collapse
|
23
|
Cao T, Retailleau P, Milcent T, Crousse B. Synthesis of N-CF 3 hydrazines through radical trifluoromethylation of azodicarboxylates. Chem Commun (Camb) 2021; 57:10351-10354. [PMID: 34533141 DOI: 10.1039/d1cc04538e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the synthesis of a novel family of N-CF3 hydrazines from a direct way involving the available and cheap Langlois reagent (CF3SO2Na). These derivatives have shown very high stability whatever the conditions used and are excellent precursors for building previously inaccessible N-CF3 functionalized compounds, such as substituted hydrazides, hydrazine-amino-acids, hydrazones, N-aziridines and pyrazoles.
Collapse
Affiliation(s)
- Tingting Cao
- UMR 8076, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France.
| | - Thierry Milcent
- UMR 8076, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| | - Benoît Crousse
- UMR 8076, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
24
|
Jaffery SMF, Khan MA, Ullah S, Atia‐tul‐Wahab, Choudhary MI, Basha FZ. Synthesis of New Valinol‐Derived Sultam Triazoles as
α
‐Glucosidase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Syeda Mehak Fatima Jaffery
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Maria Aqeel Khan
- Third World Center for Science and Technology (TWC) H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Saeed Ullah
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| | - Atia‐tul‐Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD) International Center for Chemical and Biological Sciences University of Karachi-75270 Karachi Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD) International Center for Chemical and Biological Sciences University of Karachi-75270 Karachi Pakistan
| | - Fatima Zehra Basha
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
25
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Vorobyeva DV, Philippova AN, Gribanov PS, Nefedov SE, Novikov VV, Osipov SN. Ruthenium-catalyzed dimerization of CF3-containing functional allenes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Ikeda G, Kawasaki M, Hanamoto T. Sonogashira cross-coupling of (Z)-2‑bromo-2-CF3-vinyl benzyl sulfide and access to 4-CF3-3-iodo-2-substituted thiophenes. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Berrino E, Michelet B, Martin-Mingot A, Carta F, Supuran CT, Thibaudeau S. Modulating the Efficacy of Carbonic Anhydrase Inhibitors through Fluorine Substitution. Angew Chem Int Ed Engl 2021; 60:23068-23082. [PMID: 34028153 DOI: 10.1002/anie.202103211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Indexed: 12/19/2022]
Abstract
The insertion of fluorine atoms and/or fluoroalkyl groups can lead to many beneficial effects in biologically active molecules, such as enhanced metabolic stability, bioavailability, lipophilicity, and membrane permeability, as well as a strengthening of protein-ligand binding interactions. However, this "magic effect" of fluorine atom(s) insertion can often be meaningless. Taking advantage of the wide range of data coming from the quest for carbonic anhydrase (CA) fluorinated inhibitors, this Minireview attempts to give "general guidelines" on how to wisely insert fluorine atom(s) within an inhibitor moiety to precisely enhance or disrupt ligand-protein interactions, depending on the target location of the fluorine substitution in the ligand. Multiple approaches such as ITC, kinetic and inhibition studies, X-ray crystallography, and NMR spectroscopy are useful in dissecting single binding contributions to the overall observed effect. The exploitation of innovative directions made in the field of protein and ligand-based fluorine NMR screening is also discussed to avoid misconduct and finely tune the exploitation of selective fluorine atom insertion in the future.
Collapse
Affiliation(s)
- Emanuela Berrino
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| |
Collapse
|
29
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
30
|
Sak ZHA, Süzergöz F, Kasumov VT, Gürol AO. Anticancer Properties of Fluorinated Aminophenylhydrazines on A549 Lung Carcinoma Cell Line. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:550-556. [PMID: 34178802 PMCID: PMC8214597 DOI: 10.18502/ijph.v50i3.5596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background: Non-small cell lung cancer (NSCLC) is responsible for up to 85% of deaths associated with lung cancer. Chemotherapy is still an important treatment method on the treatment of inoperable cases. In this study, the anticancer properties of a series of Schiff bases were tested on the A549 cell line representing NSCLC. Methods: Fluorinated Schiff bases (compounds 1–6) were synthesized based on 2-amino phenylhydrazines and benzaldehydes containing fluorine were used. The cytotoxic effects of the compounds on the A549 cell line were determined by colorimetric MTT assay and the antiproliferative effects of the compounds on the A549 cell line by the CFSE method. To demonstrate the development of apoptosis, cleaved caspase-3 expression in cells was tested using the immunofluorescence method. Morphological changes indicating apoptosis in cells were determined by histopathological staining methods (H & E, giemza, PAP). Results: The strongest cytotoxic effect on A549 lung cancer cells was obtained with compound 6 (IC50: 0.64 μM) containing 5 fluorine atoms. The strongest antiproliferative effect on A549 cells was achieved with compound 5 (PI: 4.95) carrying 2 fluorine atoms. Apoptosis induction was effective in cell death. In addition to cleaved caspase-3 expression, chromatin condensation, marginalization, and apoptotic bodies were observed in the cells. Conclusion: Some of the compounds tested showed high cytotoxic and antiproliferative effects, indicating that these compounds could be potential chemotherapeutic agent candidates for lung cancer. The result of immunofluorescence and immunohistochemical analysis showing that the cytotoxic effects have been induced by apoptosis is an important advantage.
Collapse
Affiliation(s)
- Zafer Hasan Ali Sak
- Department of Chest Disease, Medical Faculty, Harran University, Sanliurfa, Turkey
| | - Faruk Süzergöz
- Department of Biology, Science Art Faculty, Harran University, Sanliurfa, Turkey
| | - Veli Tarık Kasumov
- Department of Chemistry, Science Art Faculty, Harran University, Sanliurfa, Turkey
| | - Ali Osman Gürol
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Pharmacology, Istanbul Medicine Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Fujiwara Y, Sato K, Yamada Y, Hanamoto T. Synthesis and reactions of (E)-β-(bromotetrafluoroethyl)vinyl diphenyl sulfonium triflate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Herasymchuk M, Melnykov KP, Yarmoliuk DV, Serhiichuk D, Rotar V, Pukhovoi T, Kuchkovska YO, Holovach S, Volochnyuk DM, Ryabukhin SV, Grygorenko OO. Last of the
gem
‐Difluorocycloalkanes 2: Synthesis of Fluorinated Cycloheptane Building Blocks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Maksym Herasymchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Kostiantyn P. Melnykov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | | | - Valeriia Rotar
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute' Prospect Peremogy 37 Kyiv 03056 Ukraine
| | - Timur Pukhovoi
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute' Prospect Peremogy 37 Kyiv 03056 Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Sergey Holovach
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 020941 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
33
|
Fernandes AJ, Panossian A, Michelet B, Martin-Mingot A, Leroux FR, Thibaudeau S. CF 3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry. Beilstein J Org Chem 2021; 17:343-378. [PMID: 33828616 PMCID: PMC7871035 DOI: 10.3762/bjoc.17.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
"The extraordinary instability of such an "ion" accounts for many of the peculiarities of organic reactions" - Franck C. Whitmore (1932). This statement from Whitmore came in a period where carbocations began to be considered as intermediates in reactions. Ninety years later, pointing at the strong knowledge acquired from the contributions of famous organic chemists, carbocations are very well known reaction intermediates. Among them, destabilized carbocations - carbocations substituted with electron-withdrawing groups - are, however, still predestined to be transient species and sometimes considered as exotic ones. Among them, the CF3-substituted carbocations, frequently suggested to be involved in synthetic transformations but rarely considered as affordable intermediates for synthetic purposes, have long been investigated. This review highlights recent and past reports focusing on their study and potential in modern synthetic transformations.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Bastien Michelet
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| |
Collapse
|
34
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
35
|
Kosikowska U, Wujec M, Trotsko N, Płonka W, Paneth P, Paneth A. Antibacterial Activity of Fluorobenzoylthiosemicarbazides and Their Cyclic Analogues with 1,2,4-Triazole Scaffold. Molecules 2020; 26:E170. [PMID: 33396536 PMCID: PMC7796209 DOI: 10.3390/molecules26010170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant bacteria is currently one of the major challenges in medicine. Therefore, the discovery of novel lead structures for the design of antibacterial drugs is urgently needed. In this structure-activity relationship study, a library of ortho-, meta-, and para-fluorobenzoylthiosemicarbazides, and their cyclic analogues with 1,2,4-triazole scaffold, was created and tested for antibacterial activity against Gram-positive bacteria strains. While all tested 1,2,4-triazoles were devoid of potent activity, the antibacterial response of the thiosemicarbazides was highly dependent on substitution pattern at the N4 aryl position. The optimum activity for these compounds was found for trifluoromethyl derivatives such as 15a, 15b, and 16b, which were active against both the reference strains panel, and pathogenic methicillin-sensitive and methicillin-resistant Staphylococcus aureus clinical isolates at minimal inhibitory concentrations (MICs) ranging from 7.82 to 31.25 μg/mL. Based on the binding affinities obtained from docking, the conclusion can be reached that fluorobenzoylthiosemicarbazides can be considered as potential allosteric d-alanyl-d-alanine ligase inhibitors.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (N.T.)
| |
Collapse
|
36
|
Hu T, Xu Y, Zhang S, Xiong HY, Zhang G. Synthesis of β-CF3 β-Amino Esters with an Indane Backbone by Rhenium-Catalyzed [3+2] Annulation. Org Lett 2020; 22:8866-8871. [DOI: 10.1021/acs.orglett.0c03239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tingjun Hu
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Saisai Zhang
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Heng-Ying Xiong
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Guangwu Zhang
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
37
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
38
|
Chen X, Zheng Y, Song S, Liu Y, Wang Y, Huang Y, Zhang X, Zhang M, Zhao M, Wang Y, Li L. Design and Synthesis of Biotinylated Bivalent Carboline Derivatives as Potent Antitumor Agents. J Org Chem 2020; 85:11618-11625. [PMID: 32808519 DOI: 10.1021/acs.joc.0c01067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compound 6, a novel β-carboline comprising two 1-methyl-9H-β-carboline-3-carboxylic acids and a biotin moiety conjugated together using tris(2-aminoethyl)amine, was synthesized and tested for its cytotoxicity toward MCF-7 and HepG2 cell lines and antitumor potency in an S180 tumor-bearing mouse model. Compound 6 was delivered via biotin receptor-mediated endocytosis and exerted its therapeutic effects by intercalation binding with DNA. In vivo antitumor evaluations of 6 revealed that it is efficacious and exhibits low systemic toxicity.
Collapse
Affiliation(s)
- Xueyuan Chen
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yi Zheng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Songlin Song
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ying Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yi Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yong Huang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Meng Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Li Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
39
|
Elangovan ND, Dhanabalan AK, Gunasekaran K, Kandimalla R, Sankarganesh D. Screening of potential drug for Alzheimer's disease: a computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:7065-7079. [PMID: 32779973 DOI: 10.1080/07391102.2020.1805362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The global impact of Alzheimer's disease (AD) necessitates intensive research to find appropriate and effective drugs. Many studies in AD suggested beta-amyloid plaques and neurofibrillary tangles-associated tau protein as the key targets for drug development. On the other hand, it is proved that triggering of Glycogen Synthase Kinase-3β (GSK-3β) also cause AD, therefore, GSK-3β is a potential drug target to combat AD. We, in this study, investigated the ability of small molecules to inhibit GSK-3β through virtual screening, Absorption, Distribution, Metabolism, and Excretion (ADME), induced-fit docking (IFD), molecular dynamics simulation, and binding free energy calculation. Besides, molecular docking was performed to reveal the binding and interaction of the ligand at the active site of GSK-3β. We found two compounds such as 6961 and 6966, which exhibited steady-state interaction with GSK-3β for 30 ns in molecular dynamics simulation. The compounds (6961 and 6966) also achieved a docking score of -9.05 kcal/mol and -8.11 kcal/mol, respectively, which is relatively higher than the GSK-3β II inhibitor (-6.73 kcal/mol). The molecular dynamics simulation revealed that the compounds have a stable state during overall simulation time, and lesser root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) values compared with co-crystal. In conclusion, we suggest the two compounds (6966 and 6961) as potential leads that could be utilized as effective inhibitors of GSK-3β to combat AD.
Collapse
Affiliation(s)
| | | | - Krishnasamy Gunasekaran
- Center of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India.,Bioinformatics Infrastructure Facility, University of Madras, Chennai, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biochemistry, Kakatiya Medical College, Warangal, India
| | - Devaraj Sankarganesh
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India.,Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
40
|
Biswas B, Singh PC. The role of fluorocarbon group in the hydrogen bond network, photophysical and solvation dynamics of fluorinated molecules. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2019.109414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Zhang C, Ye F, Wang J, He P, Lei M, Huang L, Huang A, Tang P, Lin H, Liao Y, Liang Y, Ni J, Yan P. Design, Synthesis, and Evaluation of a Series of Novel Super Long-Acting DPP-4 Inhibitors for the Treatment of Type 2 Diabetes. J Med Chem 2020; 63:7108-7126. [PMID: 32452679 DOI: 10.1021/acs.jmedchem.0c00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present work, a novel series of trifluoromethyl-substituted tetrahydropyran derivatives were rationally designed and synthesized as potent DPP-4 inhibitors with significantly improved duration time of action over current commercially available DPP-4 inhibitors. The incorporation of the trifluoromethyl group on the 6-position of the tetrahydropyran ring of omarigliptin with the configuration of (2R,3S,5R,6S) not only significantly improves the overall pharmacokinetic profiles in mice but also maintains comparable DPP-4 inhibition activities. Further preclinical development of compound 2 exhibited its extraordinary efficacy in vivo and good safety profile. Clinical studies of compound 2 (Haisco HSK7653) are now ongoing in China, which revealed that inhibitor 2 could serve as an efficient candidate with a once-biweekly therapeutic regimen.
Collapse
Affiliation(s)
- Chen Zhang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Fei Ye
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Jianmin Wang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Ping He
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Ming Lei
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Longbin Huang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Anbang Huang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Pingming Tang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Hongjun Lin
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Yuting Liao
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Yong Liang
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Jia Ni
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| | - Pangke Yan
- Haisco Pharmaceutical Group Company Ltd., 136 Baili Road, Wenjiang district, Chengdu 611130, China
| |
Collapse
|
42
|
Artault M, Mokhtari N, Cantin T, Martin-Mingot A, Thibaudeau S. Superelectrophilic Csp 3-H bond fluorination of aliphatic amines in superacid: the striking role of ammonium-carbenium dications. Chem Commun (Camb) 2020; 56:5905-5908. [PMID: 32342071 DOI: 10.1039/d0cc02081h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The superacid-promoted electrophilic Csp3-H bond activation of aliphatic amines generates superelectrophilic species that can be subsequently fluorinated. Demonstrated by low-temperature in situ NMR experiments, the ammonium-carbenium dications, crucial for this reaction, can also react with C-H bonds opening future synthesis perspectives for this mode of activation.
Collapse
Affiliation(s)
- M Artault
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - N Mokhtari
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - T Cantin
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - A Martin-Mingot
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - S Thibaudeau
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| |
Collapse
|
43
|
Fluorinated CRA13 analogues: Synthesis, in vitro evaluation, radiosynthesis, in silico and in vivo PET study. Bioorg Chem 2020; 99:103834. [PMID: 32334193 DOI: 10.1016/j.bioorg.2020.103834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Fluorine is a unique atom that imparts distinct properties to bioactive molecules upon incorporation. Herein, we prepare and study fluorinated derivatives of the nanomolar affine peripherally restricted dual CB1R/CB2R agonist; CRA13 and its analogs. Binding affinity evaluation relative to CRA13 proved the stronger binding affinity of compound 7c to CB1R and CB2R by 6.95 and 5.64 folds. Physicochemical properties evaluation proved compound 7c improved lipophilicity profile suggesting some enhanced BBB penetration relative to CRA13. Radiosynthesis of 18F-labeled compound 7c was conducted conveniently affording pure hot ligand. In vivo PET study investigation demonstrated efficient distribution of 18F-labeled compound 7c in peripheral tissues visualizing peripheral CB1R/CB2R generating time-activity-curves showing good standard uptake values. Despite enhanced BBB penetration and increased cannabinoid receptors binding affinity, low brain uptake of 7c was observed. In silico docking study explained the measured binding affinities of compounds 7a-d to CB1R. While most of previous efforts aimed to develop central cannabinoid PET imaging agents, 18F-labeled compound 7c might be a promising agent serving as a universal CB1R/CB2R PET imaging agents for diagnosis and therapy of various diseases correlated with peripheral cannabinoid system. It might also serve as a lead compound for development of PET imaging of peripheral and central cannabinoid systems.
Collapse
|
44
|
Song GT, Qu CH, Chen JH, Xu ZG, Zhou CH, Chen ZZ. Synthesis of monofluorooxazoles with quaternary C-F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Org Biomol Chem 2020; 18:2223-2226. [PMID: 32162639 DOI: 10.1039/d0ob00267d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed radical addition of methylene-2-oxazolines has been developed under visible light irradiation to synthesize monofluorooxazoles with a quaternary carbon center using 2-bromo-2-fluoro-3-oxo-3-phenylpropionates as radical source. This method with a simple protocol, scalability and high yield offers a facile path to get diverse monofluorinated oxazoles with quaternary C-F centers, which are a class of highly valuable motifs and synthons.
Collapse
Affiliation(s)
- Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. and Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Jin-Hong Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| |
Collapse
|
45
|
Rong R, Zhang RZ, Wang X, Dan YH, Zhao YL, Yu ZG. Synthesis, pharmacological evaluation and molecular docking of novel R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid as dual anti-inflammatory anti-platelet aggregation agents. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:967-978. [PMID: 31802171 DOI: 10.1007/s00210-019-01753-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
R-/S-2-(2-hydroxypropanamido) benzoic acid (R-/S-HPABA), marine-derived anti-inflammatory antiplatelet drugs, were initially synthesised in our group. However, preliminary research showed that R-/S-HPABA were eliminated rapidly because of extensive hydroxylation metabolism of phenyl ring in vivo. In order to reduce significant hydroxylation metabolism to improve pharmacological activity and bioavailability, trifluoromethyl group was incorporated into R-/S-HPABA to synthesise R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA), respectively. The purposes of this study were to report the synthesis of R-/S-HFBA and compare the anti-inflammatory antiplatelet effect and pharmacokinetic properties of R-/S-HFBA with those of R-/S-HPABA. Carrageenan-induced rat paw edema assay was used for the evaluation of the anti-inflammatory activity. R-/S-HFBA showed better results in inhibiting edema and were able to prolong the anti-inflammatory effect after carrageenan injection. The antiplatelet aggregation activity of R-/S-HFBA and R-/S-HPABA was studied on arachidonic acid-induced platelet aggregation of rabbit platelet-rich plasma. The aggregation inhibition rate of R-/S-HFBA was significantly (p < 0.05) higher than that of R-/S-HPABA, respectively. Molecular docking study revealed that R-/S-HFBA possess more potent binding affinity with COX-1/COX-2 than R-/S-HPABA, respectively, and that the presence of trifluoromethyl group leads to increase in activity of R-/S-HFBA. R-/S-HFBA also afford more favorable pharmacokinetic properties than R-/S-HPABA, respectively, such as higher Cmax, larger AUC0-∞, and longer t1/2, which, as expected, are more metabolically stable.
Collapse
Affiliation(s)
- Rong Rong
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui-Zhen Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Han Dan
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Li Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhi-Guo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
46
|
Yuan X, Wu L, Xu C, Pan Z, Shi L, Yang G, Wang C, Fan S. A consecutive one-pot two-step approach to novel trifluoromethyl-substituted bis(indolyl)methane derivatives promoted by Sc(OTf)3 and p-TSA. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Wang M, Du Y, Liu C, Yang X, Qin P, Qi Z, Ji M, Li X. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Bioorg Chem 2019; 87:56-69. [DOI: 10.1016/j.bioorg.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
|
48
|
Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AY, Nenajdenko VG, Moskalik MY, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NY, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VY, Obydennov DL, Usachev SA. Organofluorine chemistry: promising growth areas and challenges. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4871] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Izquierdo J, Jain AD, Abdulkadir SA, Schiltz GE. Palladium-catalyzed coupling reactions on functionalized 2-trifluoromethyl-4-chromenone scaffolds. Synthesis of highly functionalized trifluoromethyl-heterocycles. SYNTHESIS-STUTTGART 2019; 51:1342-1352. [PMID: 31274934 PMCID: PMC6605783 DOI: 10.1055/s-0037-1610669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chromenone core is a ubiquitous group in biologically-active natural products and has been extensively used in organic synthesis. Fluorine derived compounds, including those with a trifluoromethyl group (-CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogs. We have found that 2-trifluoromethyl chromenones can be readily functionalized in the 8- and 7-positions, providing chromenones cores of high structural complexity which are excellent precursors for numerous trifluoromethyl-heterocycles.
Collapse
Affiliation(s)
- Javier Izquierdo
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
50
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|