1
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
2
|
Miyakita D, Kawanishi K, Katsuyama A, Yamamoto K, Yakushiji F, Ichikawa S. Solid-Phase Synthesis of Nannocystin Ax and Its Analogues. J Org Chem 2023. [PMID: 37466434 DOI: 10.1021/acs.joc.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Solid-phase total synthesis of nannocystin Ax (1) was disclosed. A coupling reaction between a peptide and a polyketide moiety was conducted on a solid support, and macrocyclization was achieved by Mitsunobu cyclization. The established synthetic route was efficient to prepare its analogues, which contain different types of peptide moieties.
Collapse
Affiliation(s)
- Daiki Miyakita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Kawanishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Petersen ME, Brant MG, Lasalle M, Fung VKC, Rojas AH, Wong J, Das S, Barnscher SD, Rich JR, Winters GC. Structure-Activity Relationships of Bis-Intercalating Peptides and Their Application as Antibody-Drug Conjugate Payloads. J Med Chem 2023. [PMID: 37307297 DOI: 10.1021/acs.jmedchem.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic analogs based on the DNA bis-intercalating natural product peptides sandramycin and quinaldopeptin were investigated as antibody drug conjugate (ADC) payloads. Synthesis, biophysical characterization, and in vitro potency of 34 new analogs are described. Conjugation of an initial drug-linker derived from a novel bis-intercalating peptide produced an ADC that was hydrophobic and prone to aggregation. Two strategies were employed to improve ADC physiochemical properties: addition of a solubilizing group in the linker and the use of an enzymatically cleavable hydrophilic mask on the payload itself. All ADCs showed potent in vitro cytotoxicity in high antigen expressing cells; however, masked ADCs were less potent than payload matched unmasked ADCs in lower antigen expressing cell lines. Two pilot in vivo studies were conducted using stochastically conjugated DAR4 anti-FRα ADCs, which showed toxicity even at low doses, and site-specific conjugated (THIOMAB) DAR2 anti-cMet ADCs that were well tolerated and highly efficacious.
Collapse
Affiliation(s)
- Mark E Petersen
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Michael G Brant
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Manuel Lasalle
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Vincent K C Fung
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | | | - Jodi Wong
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Samir Das
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Stuart D Barnscher
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Geoffrey C Winters
- Technical and Manufacturing Operations, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| |
Collapse
|
4
|
Komatani Y, Momosaki K, Katsuyama A, Yamamoto K, Kaguchi R, Ichikawa S. Solid-Phase Total Synthesis of Sandramycin and Its Analogues. Org Lett 2023; 25:543-548. [PMID: 36652724 DOI: 10.1021/acs.orglett.2c04327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Solid-phase total synthesis of sandramycin (1), which is a C2-symmetric cyclic decadepsipeptide natural product, and its analogues is described. On-resin ester formation and [5+5] peptide coupling allowed the preparation of a range of desymmetrized analogues. An amino acid residue that would not hamper the biological activity of 1 was successfully identified, and probe molecules and dimeric analogues were prepared on the basis of the result of the structure-activity relationship study.
Collapse
Affiliation(s)
- Yuya Komatani
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kyoka Momosaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Koike K, Nagano M, Ebihara M, Hirayama T, Tsuji M, Suga H, Nagasawa H. Design, Synthesis, and Conformation-Activity Study of Unnatural Bridged Bicyclic Depsipeptides as Highly Potent Hypoxia Inducible Factor-1 Inhibitors and Antitumor Agents. J Med Chem 2020; 63:4022-4046. [PMID: 32202785 DOI: 10.1021/acs.jmedchem.9b02039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By carrying out structural modifications based on the bicyclic peptide structure of echinomycin, we successfully synthesized various powerful antitumor derivatives. The ring conformation in the obtained compounds was restricted by cross-linking with an unnatural bond. The prepared derivatives were demonstrated to strongly suppress the hypoxia inducible factor (HIF)-1 transcriptional activation and hypoxia induction of HIF-1 protein expression. Particularly, alkene-bridged derivative 12 exhibited remarkably potent cytotoxicity (IC50 = 0.22 nM on the MCF-7 cell line) and HIF-1 inhibition (IC50 = 0.09 nM), which considerably exceeded those of echinomycin. Conformational analyses and molecular modeling studies revealed that the biological activities were enhanced following restriction of the conformation by cross-linking through a metabolically stable and rigid bridge bond. In addition, we proposed a new globular conformation stabilized by intramolecular π stacking that can contribute to the biological effects of bicyclic depsipeptides. The developments presented in the current study serve as a useful guide to expand the chemical space of peptides in drug discovery.
Collapse
Affiliation(s)
- Kota Koike
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Masanobu Nagano
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu-city, Gifu 501-1193, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Hiroaki Suga
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Pettit GR, Melody N, Chapuis JC. Antineoplastic Agents. 605. Isoquinstatins. JOURNAL OF NATURAL PRODUCTS 2018; 81:451-457. [PMID: 28926240 DOI: 10.1021/acs.jnatprod.7b00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to further explore quinoline-type structural modification of the powerful anticancer drug dolastatin 10, an Indian Ocean sea hare constituent and parent molecule of the very successful antibody drug conjugate (ADC) Adcetris, our recent quinstatin study has been extended by replacing the quinoline ring with an isoquinoline. The resulting isoquinstatins (4-6) were modified to N-terminal desmethylisoquinstatins (7-9) and, in turn, bonded to appropriate linker units to give linker-desmethylisoquinstatin conjugates 11-13 in preparation for eventual monoclonal antibody attachment. Comparison of the new isoquinstatins with their quinstatin counterparts against six human cancer cell lines indicated the isoquinstatins to have GI50 values that were comparable to or somewhat higher than those of the isomeric quinstatins. However, desmethylisoquinstatin 5 (7) was significantly more potent than its desmethylquinstatin 5 analogue. When evaluated against quinstatin 8, its isoquinstatin 8 (6) counterpart was somewhat less potent. In general, the isoquinstatins evaluated proved to be quite strong cancer cell growth inhibitors.
Collapse
Affiliation(s)
- George R Pettit
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | - Noeleen Melody
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | - Jean-Charles Chapuis
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
7
|
Ricci L, Sernissi L, Scarpi D, Bianchini F, Contini A, Occhiato EG. Synthesis and conformational analysis of peptides embodying 2,3-methanopipecolic acids. Org Biomol Chem 2017; 15:6826-6836. [DOI: 10.1039/c7ob01617d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
When 2,3-methanopipecolic acids replace a proline in peptides, a marked preference (42–92%) for thecisgeometry around the pipecolic amide bond is observed in both water and organic solvents.
Collapse
Affiliation(s)
- Luciano Ricci
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Lorenzo Sernissi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Dina Scarpi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Francesca Bianchini
- Department of Biomedical
- Experimental and Clinical Sciences “Mario Serio”
- University of Florence
- Florence
- Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences
- University of Milan
- I-20133 Milan
- Italy
| | - Ernesto G. Occhiato
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|
8
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
9
|
Murru S, McGough B, Srivastava RS. Synthesis of substituted quinolines via allylic amination and intramolecular Heck-coupling. Org Biomol Chem 2014; 12:9133-8. [PMID: 25247637 DOI: 10.1039/c4ob01614a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new catalytic approach for the synthesis of substituted quinolines via C-N and C-C bond formation using 2-haloaryl hydroxylamines and allylic C-H substrates is described. Fe-catalyzed allylic C-H amination followed by Pd-catalyzed intramolecular Heck-coupling and aerobic dehydrogenation deliver the valuable quinoline and naphthyridine heterocycles in good to excellent overall yields. In this process, Pd(OAc)2 plays a dual role in catalyzing Heck coupling as well as aerobic dehydrogenation of dihydroquinolines.
Collapse
Affiliation(s)
- Siva Murru
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | | | | |
Collapse
|
10
|
Sernissi L, Petrović M, Scarpi D, Guarna A, Trabocchi A, Bianchini F, Occhiato EG. Cyclopropane Pipecolic Acids as Templates for Linear and Cyclic Peptidomimetics: Application in the Synthesis of an Arg-Gly-Asp (RGD)-Containing Peptide as an αvβ3Integrin Ligand. Chemistry 2014; 20:11187-203. [DOI: 10.1002/chem.201403077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/26/2022]
|
11
|
Begliomini S, Sernissi L, Scarpi D, Occhiato EG. A Short, Chemo-Enzymatic Synthesis of Both Enantiomers oftrans-3-Hydroxypipecolic Acid. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Fernández J, Marín L, Alvarez-Alonso R, Redondo S, Carvajal J, Villamizar G, Villar CJ, Lombó F. Biosynthetic modularity rules in the bisintercalator family of antitumor compounds. Mar Drugs 2014; 12:2668-99. [PMID: 24821625 PMCID: PMC4052310 DOI: 10.3390/md12052668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/05/2022] Open
Abstract
Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.
Collapse
Affiliation(s)
- Javier Fernández
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Laura Marín
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Raquel Alvarez-Alonso
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Saúl Redondo
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Juan Carvajal
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Germán Villamizar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Claudio J Villar
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| | - Felipe Lombó
- Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
| |
Collapse
|
13
|
Katayama K, Okamura T, Sunadome T, Nakagawa K, Takeda H, Shiro M, Matsuda A, Ichikawa S. Synthesis and Biological Evaluation of Quinaldopeptin. J Org Chem 2014; 79:2580-90. [DOI: 10.1021/jo500039d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Katsushi Katayama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takuya Okamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takuya Sunadome
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Koji Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-0003, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|