1
|
Jiang M, Yu L, Zou C, Yuan H, Xu M, Chen B, Hu P, Wang BQ, Cao P. Nickel-Catalyzed Enantioselective Carbonyl Addition of Aryl Chlorides and Bromides to Aldehydes. Chemistry 2024; 30:e202401591. [PMID: 38844428 DOI: 10.1002/chem.202401591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/31/2024]
Abstract
The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99 % yields with 53-92 % ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 °C in generally high yields with moderate enantioselectivities.
Collapse
Affiliation(s)
- Mingjie Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Limei Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chenhui Zou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Hao Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
2
|
Dutta S, Kim JH, Bhatt K, Rickertsen DRL, Abboud KA, Ghiviriga I, Seidel D. Alicyclic-Amine-Derived Imine-BF 3 Complexes: Easy-to-Make Building Blocks for the Synthesis of Valuable α-Functionalized Azacycles. Angew Chem Int Ed Engl 2024; 63:e202313247. [PMID: 37909921 PMCID: PMC10835740 DOI: 10.1002/anie.202313247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
A new strategy to access α-functionalized alicyclic amines via their corresponding imine-BF3 complexes is reported. Isolable imine-BF3 complexes, readily prepared via dehydrohalogenation of N-bromoamines in a base-promoted/18-crown-6 catalyzed process followed by addition of boron trifluoride etherate, undergo reactions with a wide range of organometallic nucleophiles to afford α-functionalized azacycles. Organozinc and organomagnesium nucleophiles add at ambient temperatures, obviating the need for cryogenic conditions. In situ preparation of imine-BF3 complexes provides access to α-functionalized morpholines and piperazines directly from their parent amines in a single operation. α-Functionalized morpholines can be elaborated further, for instance by installing a second substituent in the α'-position.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Lin M, Wu YF, Liu ZQ, Liang C, Li QH, Liu TL. Rhodium(III)-catalyzed three-component C(sp 2)-H activation for the synthesis of amines. Chem Commun (Camb) 2023; 59:14431-14434. [PMID: 37982153 DOI: 10.1039/d3cc04665f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Rhodium-catalyzed three-component C-H bond activation of aromatics with amides and aldehydes to synthesize amines was established. The addition of copper was found to be essential to ensure the high reactivity. The mechanistic studies indicated that key intermediates formed by the transmetallization between rhodium and copper could further promote the addition between 2-(pyridin-2-yl)-phenyl-metal species and imines. A series of densely substituted amines could be conveniently prepared by this one-step, three-component procedure from commercially available substrates via C-H bond activation with water as the only by-product.
Collapse
Affiliation(s)
- Min Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yu-Fei Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Meirelles MA, de Toledo I, Thurow S, Barreiro G, Couñago RM, Pilli RA. Functionalization of 2,4-Dichloropyrimidines by 2,2,6,6-Tetramethylpiperidyl Zinc Base Enables Modular Synthesis of Antimalarial Diaminopyrimidine P218 and Analogues. J Org Chem 2023; 88:9475-9487. [PMID: 37290116 DOI: 10.1021/acs.joc.3c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two routes to the antimalarial diaminopyrimidine P218 were developed based on the C-6 metalation of suitable 2,4-dichloro-5-alkoxy pyrimidines using (TMP)2Zn·2MgCl2·2LiCl base. One approach involves a late-stage modification of the C-6 position, while the other allows for tail fragment modification of P218. Both routes have proven reliable in synthesizing P218, as well as eight analogues. These innovative strategies have the potential to contribute to the search for new antimalarial drugs.
Collapse
Affiliation(s)
- Matheus A Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Samuel Thurow
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
- Eurofarma Laboratórios S/A, 06696-000-Itapevi, SP, Brazil
| | | | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| |
Collapse
|
5
|
Feng Y, Yukioka T, Matsuyama M, Mori A, Okano K. Deprotonative Generation and Trapping of Haloaryllithium in a Batch Reactor. Org Lett 2023; 25:3013-3017. [PMID: 37083303 DOI: 10.1021/acs.orglett.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A method for the regioselective functionalization of haloarenes through deprotonative lithiation is disclosed. The generated haloaryllithiums were trapped in a batch reactor with a zinc chloride diamine complex to provide organozinc species without aryne formation, which reacted with electrophiles to afford the corresponding products in 38-98% yields. This method was applied to the five-step total synthesis of carbazomycin A on a gram scale in 33% overall yield.
Collapse
Affiliation(s)
- Yuxuan Feng
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Taro Yukioka
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mei Matsuyama
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Hsu IT, Herzon SB. Fragment Coupling Approach to Diaporthein B. J Org Chem 2023; 88:2221-2244. [PMID: 36737056 DOI: 10.1021/acs.joc.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pimarane diterpenes are produced by a diverse array of plants, fungi, and bacteria. Many members of this family possess antimicrobial and antiproliferative activities. The pimarane diterpenes are characterized by a tricyclic carbon scaffold comprising three fused six-membered rings and at least three quaternary centers. Here, we describe two convergent, fragment-based strategies toward the synthesis of diaporthein B (3), one of the most highly oxidized pimarane diterpenes. The first approach provided access to the tricyclic carbon scaffold of the target and featured a highly diastereoselective fragment coupling, a novel carbonylative Stille cross-coupling to directly access an α-hydroxyketone from a vinyl iodide, and a tandem aldol cyclization-deprotection cascade. The second route utilized a diastereoselective 1,4-addition of a silyloxyfuran to an unsaturated ketone, followed by an epoxidation-ring opening sequence, to access a highly oxidized intermediate containing two elaborated cyclohexane rings. The chemistry developed herein may ultimately be useful in an eventual synthesis of this class of natural products.
Collapse
Affiliation(s)
- Ian Tingyung Hsu
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut06520, United States
| |
Collapse
|
7
|
Chai Z, Zhang WX. Dicarbanion Compounds: The Bridge between Organometallic Reagents and Mononuclear Heterocycles. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People’s Republic of China
| |
Collapse
|
8
|
Sengupta S, Schüler P, Görls H, Liebing P, Krieck S, Westerhausen M. In Situ Grignard Metalation Method for the Synthesis of Hauser Bases. Chemistry 2022; 28:e202201359. [PMID: 35686618 PMCID: PMC9546396 DOI: 10.1002/chem.202201359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/03/2022]
Abstract
The in situ Grignard Metalation Method (iGMM) is a straightforward one-pot procedure to quickly produce multigram amounts of Hauser bases R2 N-MgBr which are valuable and vastly used metalation reagents and novel electrolytes for magnesium batteries. During addition of bromoethane to a suspension of Mg metal and secondary amine at room temperature in an ethereal solvent, a smooth reaction yields R2 N-MgBr under evolution of ethane within a few hours. A Schlenk equilibrium is operative, interconverting the Hauser bases into their solvated homoleptic congeners Mg(NR2 )2 and MgBr2 depending on the solvent. Scope and preconditions are studied, and side reactions limiting the yield have been investigated. DOSY NMR experiments and X-ray crystal structures of characteristic examples clarify aggregation in solution and the solid state.
Collapse
Affiliation(s)
- Simon Sengupta
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Philipp Schüler
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Phil Liebing
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Sven Krieck
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| |
Collapse
|
9
|
Pierret A, Denhez C, Gros PC, Vasseur A. Zincate‐Mediated Remote Functionalisation of
p
‐Iodobenzyl Derivatives Through Metallotropy in 2‐Methyltetrahydrofuran as Key Solvent. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Clément Denhez
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312 51097 Reims France
| | | | | |
Collapse
|
10
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel-Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202201370. [PMID: 35147282 DOI: 10.1002/anie.202201370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/03/2023]
Abstract
Enantioenriched alcohols comprise much of the framework of organic molecules. Here, we first report that chiral nickel complexes can catalyze the intermolecular enantioselective addition of aryl iodides across aldehydes to provide diverse optically active secondary alcohols using zinc metal as the reducing agent. This method shows a broad substrate scope under mild reaction conditions and precludes the traditional strategy through the pre-generation of organometallic reagents. Mechanistic studies indicate that an in situ formed arylnickel, instead of an arylzinc, adds efficiently to aldehydes, forming a new C-C bond and a chiral nickel alkoxide that may be turned over by zinc powder.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel‐Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziqi Zhu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jieshuai Xiao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mingjie Li
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zhuangzhi Shi
- Nanjing University 南京大学 School of Chemistry & Chemical Engineering 163 Xianlin Avenue栖霞区仙林大道163号南京大学化学化工学院 210046 Nanjing CHINA
| |
Collapse
|
12
|
Watanabe K, Pang JH, Takita R, Chiba S. Generation of organo-alkaline earth metal complexes from non-polar unsaturated molecules and their synthetic applications. Chem Sci 2021; 13:27-38. [PMID: 35059147 PMCID: PMC8694335 DOI: 10.1039/d1sc05724c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Organomagnesium compounds, represented by the Grignard reagents, are one of the most classical yet versatile carbanion species which have widely been utilized in synthetic chemistry. These reagents are typically prepared via oxidative addition of organic halides to magnesium metals, via halogen-magnesium exchange between halo(hetero)arenes and organomagnesium reagents or via deprotonative magnesiation of prefunctionalized (hetero)arenes. On the other hand, recent studies have demonstrated that the organo-alkaline earth metal complexes including those based on heavier alkaline earth metals such as calcium, strontium and barium could be generated from readily available non-polar unsaturated molecules such as alkenes, alkynes, 1,3-enynes and arenes through unique metallation processes. Nonetheless, the resulting organo-alkaline earth metal complexes could be further functionalized with a variety of electrophiles in various reaction modes. In particular, organocalcium, strontium and barium species have shown unprecedented reactivity in the downstream functionalization, which could not be observed in the reactivity of organomagnesium complexes. This perspective will focus on the newly emerging protocols for the generation of organo-alkaline earth metal complexes from non-polar unsaturated molecules and their applications in chemical synthesis and catalysis.
Collapse
Affiliation(s)
- Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jia Hao Pang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
13
|
Corio A, Gravier-Pelletier C, Busca P. Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules 2021; 26:5467. [PMID: 34576936 PMCID: PMC8466797 DOI: 10.3390/molecules26185467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Quinoline is a versatile heterocycle that is part of numerous natural products and countless drugs. During the last decades, this scaffold also became widely used as ligand in organometallic catalysis. Therefore, access to functionalized quinolines is of great importance and continuous efforts have been made to develop efficient and regioselective synthetic methods. In this regard, C-H functionalization through transition metal catalysis, which is nowadays the Graal of organic green chemistry, represents the most attractive strategy. We aim herein at providing a comprehensive review of methods that allow site-selective metal-catalyzed C-H functionalization of quinolines, or their quinoline N-oxides counterparts, with a specific focus on their scope and limitations, as well as mechanistic aspects if that accounts for the selectivity.
Collapse
Affiliation(s)
| | | | - Patricia Busca
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (A.C.); (C.G.-P.)
| |
Collapse
|
14
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Chheda PR, Kummer DA, Nishimura RT, McClure KJ, Venkatesan H. One-Pot Reductive Alkylation of 2,4-Dihydroxy Quinolines and Pyridines. J Org Chem 2021; 86:7148-7162. [PMID: 33913727 DOI: 10.1021/acs.joc.1c00496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-pot, Hantzsch ester-mediated Knoevenagel condensation-reduction reaction has been developed for alkylation of a wide range of substituted 2,4-quinoline diols and 2,4-pyridine diols with aldehydes. The process is operationally simple to perform, scalable, and provides highly useful C-3 alkylated quinoline and pyridine diols in yields of 58-92%. The alkylation products can be converted to 2,4-dihaloquinoline and pyridine substrates for further functionalization.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - David A Kummer
- Lundbeck La Jolla Research Center, Inc., 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Rachel T Nishimura
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Kelly J McClure
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Hariharan Venkatesan
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
16
|
Li G, Szostak M. Synthesis of biaryl ketones by arylation of Weinreb amides with functionalized Grignard reagents under thermodynamic control vs. kinetic control of N,N-Boc 2-amides. Org Biomol Chem 2021; 18:3827-3831. [PMID: 32396595 DOI: 10.1039/d0ob00813c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly efficient method for chemoselective synthesis of biaryl ketones by arylation of Weinreb amides (N-methoxy-N-methylamides) with functionalized Grignard reagents is reported. This protocol offers rapid entry to functionalized biaryl ketones after Mg/halide exchange with i-PrMgCl·LiCl under operationally-simple and practical reaction conditions. The scope of the method is highlighted in >40 examples, including bioactive compounds and pharmaceutical derivatives. Collectively, this transition-metal-free approach offers a major advantage over the recently established cross-coupling of amides by oxidative addition of N-C(O) bonds. Considering the utility of amide acylation reactions in modern synthesis, we expect that this method will be of broad interest.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
17
|
Dayaker G, Erb W, Hedidi M, Chevallier F, Blot M, Gros PC, Hilmersson G, Roisnel T, Dorcet V, Bentabed-Ababsa G, Mongin F. Enantioselective deprotometalation of alkyl ferrocenecarboxylates using bimetallic bases. NEW J CHEM 2021. [DOI: 10.1039/d1nj04526a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our attempts to deprotometalate alkyl ferrocenecarboxylates enantioselectively by using chiral lithium–zinc or lithium–cadmium bases are reported.
Collapse
Affiliation(s)
- Gandrath Dayaker
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | - William Erb
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | - Madani Hedidi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Floris Chevallier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | - Marielle Blot
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | | | - Göran Hilmersson
- Department of Chemistry and Molecular Biology, Göteborg University, Göteborg 41296, Sweden
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| | - Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Florence Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes F-35000, France
| |
Collapse
|
18
|
Tang M, Han S, Huang S, Huang S, Xie LG. Carbosulfenylation of Alkenes with Organozinc Reagents and Dimethyl(methylthio)sulfonium Trifluoromethanesulfonate. Org Lett 2020; 22:9729-9734. [PMID: 33253584 DOI: 10.1021/acs.orglett.0c03810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrophilic alkylthiolation of alkenes, initiated by dimethyl(methylthio)sulfonium salts and the subsequent addition of various heteronucleophilies has been well-established. Regarding the use of carbon nucleophiles, however, only carefully designed sp-type carbon sources have been successfully applied. We herein present our findings on the methylthiolation of alkenes with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by carbon-carbon bond formation in the presence of organozinc reagents, thus achieving a catalyst-free protocol toward to the carbosulfenylation of alkenes.
Collapse
Affiliation(s)
- Meizhong Tang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shuxiong Han
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shenglan Huang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lan-Gui Xie
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
19
|
Casotti G, Rositano V, Iuliano A. Enantioselective Conjugate Addition of Stabilized Arylzinc Iodide to Enones: an Improved Protocol of the Hayashi Reaction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gianluca Casotti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy Phone
| | - Vincenzo Rositano
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy Phone
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy Phone
| |
Collapse
|
20
|
One-Pot Synthesis of B-Aryl Carboranes with Sensitive Functional Groups Using Sequential Cobalt- and Palladium-Catalyzed Reactions. Catalysts 2020. [DOI: 10.3390/catal10111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The simple and efficient method was developed for the one-pot synthesis of B-substituted aryl derivatives of ortho-carborane with functional groups sensitive to organolithium and organomagnesium reagents using 9-iodo-ortho-carborane and generated in situ organozinc compounds. The method proposed was used to prepare a series of 9-aryl-ortho-carboranes, including those containing nitrile and ester groups, 9-RC6H4-1,2-C2B10H11 (R = p-Me, p-NMe2, p-OCH2OMe, o-OMe, p-OMe, o-CN, p-CN, o-COOEt, m-COOEt, and p-COOEt). It was demonstrated that the same approach can be used for synthesis of diaryl derivatives of ortho-carborane 9,12-(RC6H4)2-1,2-C2B10H10 (R = H, p-Me). The solid-state structures of 9-RC6H4-1,2-C2B10H11 (R = p-NMe2, p-OCH2OMe, o-OMe, o-CN, p-CN, m-COOEt, and p-COOEt) and 9,12-(p-MeC6H4)2-1,2-C2B10H10 were determined by single crystal X-ray diffraction.
Collapse
|
21
|
Balkenhohl M, Jangra H, Makarov IS, Yang S, Zipse H, Knochel P. A Predictive Model Towards Site-Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnCl⋅LiCl. Angew Chem Int Ed Engl 2020; 59:14992-14999. [PMID: 32400069 PMCID: PMC7497272 DOI: 10.1002/anie.202005372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/02/2023]
Abstract
The development of a predictive model towards site-selective deprotometalation reactions using TMPZnCl⋅LiCl is reported (TMP=2,2,6,6-tetramethylpiperidinyl). The pKa values of functionalized N-, S-, and O-heterocycles, arenes, alkenes, or alkanes were calculated and compared to the experimental deprotonation sites. Large overlap (>80 %) between the calculated and empirical deprotonation sites was observed, showing that thermodynamic factors strongly govern the metalation regioselectivity. In the case of olefins, calculated frozen state energies of the deprotonated substrates allowed a more accurate prediction. Additionally, various new N-heterocycles were analyzed and the metalation regioselectivities rationalized using the predictive model.
Collapse
Affiliation(s)
- Moritz Balkenhohl
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Harish Jangra
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Ilya S. Makarov
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Shu‐Mei Yang
- Department of ChemistryNational (Taiwan) Normal University88, Sec. 4, Tingchow RoadTaipei11677Taiwan, Republic of China
| | - Hendrik Zipse
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Paul Knochel
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
22
|
Balkenhohl M, Jangra H, Makarov IS, Yang S, Zipse H, Knochel P. A Predictive Model Towards Site‐Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnCl⋅LiCl. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz Balkenhohl
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Harish Jangra
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Ilya S. Makarov
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Shu‐Mei Yang
- Department of Chemistry National (Taiwan) Normal University 88, Sec. 4, Tingchow Road Taipei 11677 Taiwan, Republic of China
| | - Hendrik Zipse
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| | - Paul Knochel
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| |
Collapse
|
23
|
Kani R, Inuzuka T, Kubota Y, Funabiki K. One-Pot Successive Turbo Grignard Reactions for the Facile Synthesis of α-Aryl-α-Trifluoromethyl Alcohols. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryunosuke Kani
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis; Life Science Research Center; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido 501-1193 Gifu Japan
| |
Collapse
|
24
|
Tomanik M, Economou C, Frischling MC, Xue M, Marks VA, Mercado BQ, Herzon SB. Development of a Convergent Enantioselective Synthetic Route to (-)-Myrocin G. J Org Chem 2020; 85:8952-8989. [PMID: 32615040 DOI: 10.1021/acs.joc.0c00891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myrocins are a family of antiproliferative antibiotic fungal metabolites possessing a masked electrophilic cyclopropane. Preliminary chemical reactivity studies imputed the bioactivity of these natural products to a DNA cross-linking mechanism, but this hypothesis was not confirmed by studies with native DNA. We recently reported a total synthesis of (-)-myrocin G (4), the putative active form of the metabolite myrocin C (1), that featured a carefully orchestrated tandem fragment coupling-annulation cascade. Herein, we describe the evolution of our synthetic strategy toward 4 and report the series of discoveries that prompted the design of this cascade coupling. Efforts to convert the diosphenol (-)-myrocin G (4) to the corresponding 5-hydroxy-γ-lactone isomer myrocin C (1) are also detailed. We present a preliminary evaluation of the antiproliferative activities of (-)-myrocin G (4) and related structures, as well as DNA cross-linking studies. These studies indicate that myrocins do not cross-link DNA, suggesting an alternative mode of action potentially involving a protein target.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christos Economou
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Madeline C Frischling
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victoria A Marks
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Berton M, Sheehan K, Adamo A, McQuade DT. Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel-Hauser amides, and magnesium alkoxides. Beilstein J Org Chem 2020; 16:1343-1356. [PMID: 32595782 PMCID: PMC7308606 DOI: 10.3762/bjoc.16.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Magnesium organometallic reagents occupy a central position in organic synthesis. The freshness of these compounds is the key for achieving a high conversion and reproducible results. Common methods for the synthesis of Grignard reagents from metallic magnesium present safety issues and exhibit a batch-to-batch variability. Tubular reactors of solid reagents combined with solution-phase reagents enable the continuous-flow preparation of organomagnesium reagents. The use of stratified packed-bed columns of magnesium metal and lithium chloride for the synthesis of highly concentrated turbo Grignards is reported. A low-cost pod-style synthesizer prototype, which incorporates single-use prepacked perfluorinated cartridges and bags of reagents for the automated on-demand lab-scale synthesis of carbon, nitrogen, and oxygen turbo magnesium bases is presented. This concept will provide access to fresh organomagnesium reagents on a discovery scale and will do so independent from the operator’s experience in flow and/or organometallic chemistry.
Collapse
Affiliation(s)
- Mateo Berton
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St., Box 980100, Richmond, VA 23219, USA
| | - Kevin Sheehan
- Zaiput Flow Technologies, 300 2nd Avenue, Waltham, MA 02451, USA
| | - Andrea Adamo
- Zaiput Flow Technologies, 300 2nd Avenue, Waltham, MA 02451, USA
| | - D Tyler McQuade
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St., Box 980100, Richmond, VA 23219, USA
| |
Collapse
|
26
|
Kang K, Huang L, Weix DJ. Sulfonate Versus Sulfonate: Nickel and Palladium Multimetallic Cross-Electrophile Coupling of Aryl Triflates with Aryl Tosylates. J Am Chem Soc 2020; 142:10634-10640. [PMID: 32486635 PMCID: PMC7373434 DOI: 10.1021/jacs.0c04670] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While phenols are frequent and convenient aryl sources in cross-coupling, typically as sulfonate esters, the direct cross-Ullmann coupling of two different sulfonate esters is unknown. We report here a general solution to this challenge catalyzed by a combination of Ni and Pd with Zn reductant and LiBr as an additive. The reaction has broad scope, as demonstrated in 33 examples (65% ± 11% average yield). Mechanistic studies show that Pd strongly prefers the aryl triflate, the Ni catalyst has a small preference for the aryl tosylate, aryl transfer between catalysts is mediated by Zn, and Pd improves yields by consuming arylzinc intermediates.
Collapse
Affiliation(s)
- Kai Kang
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
27
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Site-Selective, Modular Diversification of Polyhalogenated Aryl Fluorosulfates (ArOSO 2 F) Enabled by an Air-Stable Pd I Dimer. Angew Chem Int Ed Engl 2020; 59:2115-2119. [PMID: 31733009 PMCID: PMC7003813 DOI: 10.1002/anie.201911465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Indexed: 01/14/2023]
Abstract
Since 2014, the interest in aryl fluorosulfates (ArOSO2 F) as well as their implementation in powerful applications has continuously grown. In this context, the enabling capability of ArOSO2 F will strongly depend on the substitution pattern of the arene, which ultimately dictates its overall function as drug candidate, material, or bio-linker. This report showcases the modular, substrate-independent, and fully predictable, selective functionalization of polysubstituted arenes bearing C-OSO2 F, C-Br, and C-Cl sites, which makes it possible to diversify the arene in the presence of OSO2 F or utilize OSO2 F as a triflate surrogate. Sequential and triply selective arylations and alkylations were realized within minutes at room temperature, using a single and air-stable PdI dimer.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Indrek Kalvet
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Daniel Hupperich
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Guillaume Magnin
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
28
|
Das R, Khot NP, Deshpande AS, Kapur M. Catalyst Control in Switching the Site Selectivity of C-H Olefinations of 1,2-Dihydroquinolines: An Approach to Positional-Selective Functionalization of Quinolines. Chemistry 2019; 26:927-938. [PMID: 31625636 DOI: 10.1002/chem.201904512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/19/2022]
Abstract
A unique approach to achieve site-selective C-H olefinations exclusively at the C-3- or C-8-positions in the quinoline framework has been developed by catalyst control. Distal C(3)-H functionalization is achieved by using palladium catalysis, whereas proximal C(8)-H functionalization is obtained by employing ruthenium catalysis. Switching the site selectivity within a single substrate directly indicates two diverse pathways, which are operating under the palladium- and ruthenium-catalyzed reaction conditions.
Collapse
Affiliation(s)
- Riki Das
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Present address: Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455-0431, USA
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Akanksha Santosh Deshpande
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
29
|
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Chemoselektive, modulare Diversifikation polyhalogenierter Arylfluorosulfate (ArOSO
2
F), ermöglicht durch ein luftstabiles Pd
I
‐Dimer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911465] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marvin Mendel
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Indrek Kalvet
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Daniel Hupperich
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | - Guillaume Magnin
- Institut für Organische ChemieRWTH Aachen Landoltweg 1 52074 Aachen Deutschland
| | | |
Collapse
|
30
|
Li G, Szostak M. Kinetically Controlled, Highly Chemoselective Acylation of Functionalized Grignard Reagents with Amides by N−C Cleavage. Chemistry 2019; 26:611-615. [DOI: 10.1002/chem.201904678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guangchen Li
- Department of ChemistryRutgers University 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of ChemistryRutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
31
|
Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Nickel Catalyzed Intermolecular Carbonyl Addition of Aryl Halide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Seima Ishida
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Hiroyuki Suzuki
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Seiichiro Uchida
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry; Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi 501-1196 Gifu Japan
| |
Collapse
|
32
|
Xu L, Liu K, Duan X. Iron‐Catalyzed Room Temperature Cross‐Couplings of Bromophenols with Aryl Grignard Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li‐Chen Xu
- College of ChemistryBeijing Normal University Beijing 100875 People's Republic of China
| | - Kun‐Ming Liu
- College of ChemistryBeijing Normal University Beijing 100875 People's Republic of China
| | - Xin‐Fang Duan
- College of ChemistryBeijing Normal University Beijing 100875 People's Republic of China
| |
Collapse
|
33
|
Balkenhohl M, Ziegler DS, Desaintjean A, Bole LJ, Kennedy AR, Hevia E, Knochel P. Preparation of Polyfunctional Arylzinc Organometallics in Toluene by Halogen/Zinc Exchange Reactions. Angew Chem Int Ed Engl 2019; 58:12898-12902. [PMID: 31243862 DOI: 10.1002/anie.201906898] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/09/2022]
Abstract
A wide range of polyfunctional diaryl- and diheteroarylzinc species were prepared in toluene within 10 min to 5 h through an I/Zn or Br/Zn exchange reaction using bimetallic reagents of the general formula R'2 Zn⋅2 LiOR (R'=sBu, tBu, pTol). Highly sensitive functional groups, such as a triazine, a ketone, an aldehyde, or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of a plethora of functionalized (hetero)arenes after quenching with various electrophiles. Insight into the constitution and reactivity of these bimetallic mixtures revealed the formation of highly active lithium diorganodialkoxyzincates of type [R'2 Zn(OR)2 Li2 ].
Collapse
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Dorothée S Ziegler
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Alexandre Desaintjean
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Leonie J Bole
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, 3012, Bern, Switzerland
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
34
|
Wei YM, Wang MF, Duan XF. Is Fe-catalyzed ortho C–H Arylation of Benzamides Sensitive to Steric Hindrance and Directing Group? Org Lett 2019; 21:6471-6475. [DOI: 10.1021/acs.orglett.9b02359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Balkenhohl M, Ziegler DS, Desaintjean A, Bole LJ, Kennedy AR, Hevia E, Knochel P. Herstellung von polyfunktionellen Arylzinkreagenzien in Toluol mittels Halogen/Zink‐Austauschreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Dorothée S. Ziegler
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexandre Desaintjean
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Leonie J. Bole
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Alan R. Kennedy
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Eva Hevia
- Department für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Paul Knochel
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
36
|
Huang L, Ackerman LKG, Kang K, Parsons AM, Weix DJ. LiCl-Accelerated Multimetallic Cross-Coupling of Aryl Chlorides with Aryl Triflates. J Am Chem Soc 2019; 141:10978-10983. [PMID: 31257881 PMCID: PMC6685420 DOI: 10.1021/jacs.9b05461] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/12/2022]
Abstract
While the synthesis of biaryls has advanced rapidly in the past decades, cross-Ullman couplings of aryl chlorides, the most abundant aryl electrophiles, have remained elusive. Reported here is the first general cross-Ullman coupling of aryl chlorides with aryl triflates. The selectivity challenge associated with coupling an inert electrophile with a reactive one is overcome using a multimetallic strategy with the appropriate choice of additive. Studies demonstrate that LiCl is essential for effective cross-coupling by accelerating the reduction of Ni(II) to Ni(0) and counteracting autoinhibition of reduction at Zn(0) by Zn(II) salts. The modified conditions tolerate a variety of functional groups on either coupling partner (42 examples), and examples include a three-step synthesis of flurbiprofen.
Collapse
Affiliation(s)
- Liangbin Huang
- University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | - Kai Kang
- University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | | - Daniel J. Weix
- University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Balkenhohl M, Jangra H, Lenz T, Ebeling M, Zipse H, Karaghiosoff K, Knochel P. Lewis‐Säure‐dirigierte regioselektive Metallierungen an Pyridazin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Harish Jangra
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Tobias Lenz
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Marian Ebeling
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
38
|
Balkenhohl M, Jangra H, Lenz T, Ebeling M, Zipse H, Karaghiosoff K, Knochel P. Lewis Acid Directed Regioselective Metalations of Pyridazine. Angew Chem Int Ed Engl 2019; 58:9244-9247. [DOI: 10.1002/anie.201903839] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Harish Jangra
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Tobias Lenz
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Marian Ebeling
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| |
Collapse
|
39
|
Fairley M, Davin L, Hernán-Gómez A, García-Álvarez J, O'Hara CT, Hevia E. s-Block cooperative catalysis: alkali metal magnesiate-catalysed cyclisation of alkynols. Chem Sci 2019; 10:5821-5831. [PMID: 31293771 PMCID: PMC6568277 DOI: 10.1039/c9sc01598a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Through mixed metal cooperativity, alkali metal magnesiates efficiently catalyse the cyclisation of alkynols.
Mixed s-block metal organometallic reagents have been successfully utilised in the catalytic intramolecular hydroalkoxylation of alkynols. This success has been attributed to the unique manner in which these reagents can overcome the challenges of the reaction: namely OH activation and coordination to and then addition across a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond. In order to optimise the reaction conditions and to garner vital catalytic system requirements, a series of alkali metal magnesiates were enlisted for the catalytic intramolecular hydroalkoxylation of 4-pentynol. In a prelude to the main investigation, the homometallic magnesium dialkyl reagent MgR2 (where R = CH2SiMe3) was utilised. This reagent was unsuccessful in cyclising the alcohol into 2-methylenetetrahydrofuran 2a or 5-methyl-2,3-dihydrofuran 2b, even in the presence of multidentate Lewis donor molecules such as N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA). Alkali metal magnesiates MIMgR3 (when MI = Li, Na or K) performed the cyclisation unsatisfactorily both in the absence/presence of N,N,N′,N′-tetramethylethylenediamine (TMEDA) or PMDETA. When higher-order magnesiates (i.e., MI2MgR4) were employed, in general a marked increase in yield was observed for MI = Na or K; however, the reactions were still sluggish with long reaction times (22–36 h). A major improvement in the catalytic activity of the magnesiates was observed when the crown ether molecule 15-crown-5 was combined with sodium magnesiate Na2MgR4(TMEDA)2 furnishing yields of 87% with 2a : 2b ratios of 95 : 5 after 5 h. Similar high yields of 88% with 2a : 2b ratios of 90 : 10 after 3 h were obtained combining 18-crown-6 with potassium magnesiate K2MgR4(PMDETA)2. Having optimised these systems, substrate scope was examined to probe the range and robustness of 18-crown-6/K2MgR4(PMDETA)2 as a catalyst. A wide series of alkynols, including terminal and internal alkynes which contain a variety of potentially reactive functional groups, were cyclised. In comparison to previously reported monometallic systems, bimetallic 18-crown-6/K2MgR4(PMDETA)2 displays enhanced reactivity towards internal alkynol-cyclisation. Kinetic studies revealed an inhibition effect of substrate on the catalysts via adduct formation and requiring dissociation prior to the rate limiting cyclisation step.
Collapse
Affiliation(s)
- Michael Fairley
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Laia Davin
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Alberto Hernán-Gómez
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica , Facultad de Química , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Charles T O'Hara
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Eva Hevia
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| |
Collapse
|
40
|
Wang L, Wei YM, Zhao Y, Duan XF. Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents. J Org Chem 2019; 84:5176-5186. [DOI: 10.1021/acs.joc.9b00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
41
|
Presset M, Paul J, Cherif GN, Ratnam N, Laloi N, Léonel E, Gosmini C, Le Gall E. Co I -Catalyzed Barbier Reactions of Aromatic Halides with Aromatic Aldehydes and Imines. Chemistry 2019; 25:4491-4495. [PMID: 30793810 DOI: 10.1002/chem.201806239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Indexed: 11/11/2022]
Abstract
The reductive Barbier coupling of aromatic halides and electrophiles has been achieved using a CoBr2 /1,10-phenanthroline catalytic system and over stoichiometric amounts of zinc. The reaction displayed a broad scope of substrates, including (hetero)aryl chlorides as pro-nucleophiles and aldehydes or imines as electrophiles, leading to diarylmethanols and diarylmethylamines in moderate to excellent yields, respectively.
Collapse
Affiliation(s)
- Marc Presset
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Jérôme Paul
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Ghania Nait Cherif
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Nisanthan Ratnam
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Nicolas Laloi
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Eric Léonel
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| | - Corinne Gosmini
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Erwan Le Gall
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, F-94320, Thiais, France
| |
Collapse
|
42
|
Lutter FH, Graßl S, Grokenberger L, Hofmayer MS, Chen Y, Knochel P. Cobalt‐Catalyzed Cross‐Couplings and Electrophilic Aminations using Organozinc Pivalates. ChemCatChem 2019. [DOI: 10.1002/cctc.201900070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ferdinand H. Lutter
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Simon Graßl
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Lucie Grokenberger
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Maximilian S. Hofmayer
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Yi‐Hung Chen
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. of China
| | - Paul Knochel
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| |
Collapse
|
43
|
Sirois LE, Zhao MM, Lim NK, Bednarz MS, Harrison BA, Wu W. Process Development for a Locally Acting SGLT1 Inhibitor, LX2761, Utilizing sp3–sp2 Suzuki Coupling of a Benzyl Carbonate. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lauren E. Sirois
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Matthew M. Zhao
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Ngiap-Kie Lim
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Mark S. Bednarz
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Bryce A. Harrison
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| | - Wenxue Wu
- Chemical Development, Lexicon Pharmaceuticals, Inc., 110 Allen Road, Basking Ridge, New Jersey 07920, United States
| |
Collapse
|
44
|
Zhang R, Zhao Y, Liu KM, Duan XF. Phenolate Enabled General and Selective Fe/Ti Cocatalyzed Biaryl Cross-Couplings between Aryl Halides and Aryl Grignard Reagents. Org Lett 2018; 20:7942-7946. [DOI: 10.1021/acs.orglett.8b03513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kun-Ming Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
45
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
46
|
Economou C, Tomanik M, Herzon SB. Synthesis of Myrocin G, the Putative Active Form of the Myrocin Antitumor Antibiotics. J Am Chem Soc 2018; 140:16058-16061. [PMID: 30415540 DOI: 10.1021/jacs.8b10891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The antiproliferative antimicrobial fungal metabolites known as the myrocins have been proposed to cross-link DNA by double nucleotide addition. However, the nature of the DNA-reactive species is ambiguous, as myrocins have been isolated as functionally distinct 5-hydroxy-γ-lactone and diosphenol isomers. Based on literature precedent, we hypothesized that the diosphenol 7 (assigned here the trivial name myrocin G) is the biologically active form of the representative isolate (+)-myrocin C (1). To probe this, we developed a short enantioselective route to 7. A powerful fragment-coupling reaction that forms the central ring of the target in 38% yield and in a single step was developed. In support of our hypothesis, 7 was efficiently transformed to the bis(sulfide) 6, a product previously isolated from reactions of 1 with excess benzenethiol. This work provides the first direct access to the diosphenol 7, sets the stage for elucidating the mode of interaction of the myrocins with DNA, and provides a foundation for the synthesis of other pimarane diterpenes.
Collapse
Affiliation(s)
- Christos Economou
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Martin Tomanik
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Seth B Herzon
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Pharmacology , Yale School of Medicine , New Haven , Connecticut 06520 , United States
| |
Collapse
|
47
|
Mg-Catalyzed OPPenauer Oxidation—Application to the Flow Synthesis of a Natural Pheromone. Catalysts 2018. [DOI: 10.3390/catal8110529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The so-called OPPenauer oxidation is well known for its ability to oxidize valuable alcohols into their corresponding aldehydes or ketones. In particular, it has proven to be extremely successful in the oxidation of sterols. On the other hand, its application—in the original formulation—to the obtainment of ketones outside the field of steroids met a more limited success because of less favorable thermodynamics and side reactions. To circumvent these issues, the first example of magnesium-catalyzed OPPenauer oxidation is described. The oxidation of primary and secondary alcohol was performed using pivaldehyde or bromaldehyde as the oxidant and cheap magnesium tert-butoxide as catalyst. Decent to excellent yields were obtained using reasonable catalytic charge. The synthesis of a pheromone stemming from the Rhynchophorus ferrugineus was obtained by tandem addition-oxidation of 2-methylpentanal and the process was successfully applied to continuous flow on a multigram scale.
Collapse
|
48
|
Akimoto G, Otsuka M, Takita R, Uchiyama M, Hedidi M, Bentabed-Ababsa G, Lassagne F, Erb W, Mongin F. Deprotonative Metalation of Methoxy-Substituted Arenes Using Lithium 2,2,6,6-Tetramethylpiperidide: Experimental and Computational Study. J Org Chem 2018; 83:13498-13506. [PMID: 30345758 DOI: 10.1021/acs.joc.8b02397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reaction pathways of lithium 2,2,6,6-tetramethylpiperidide (LiTMP)-mediated deprotonative metalation of methoxy-substituted arenes were investigated. Importantly, it was experimentally observed that, whereas TMEDA has no effect on the course of the reactions, the presence of more than the stoichiometric amount of LiCl is deleterious, in particular without an in situ trap. These effects were corroborated by the DFT calculations. The reaction mechanisms, such as the structure of the active species in the deprotonation event, the reaction pathways by each postulated LiTMP complex, the stabilization effects by in situ trapping using zinc species, and some kinetic interpretation, are discussed herein.
Collapse
Affiliation(s)
- Gaku Akimoto
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako-shi, Saitama 351-0198 , Japan
| | - Mai Otsuka
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako-shi, Saitama 351-0198 , Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako-shi, Saitama 351-0198 , Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory , RIKEN , 2-1 Hirosawa , Wako-shi, Saitama 351-0198 , Japan
| | - Madani Hedidi
- Univ Rennes, CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes , France.,Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées , Université Oran 1 Ahmed Ben Bella , BP 1524 El M'Naouer, 31000 Oran , Algeria
| | - Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées , Université Oran 1 Ahmed Ben Bella , BP 1524 El M'Naouer, 31000 Oran , Algeria
| | - Frédéric Lassagne
- Univ Rennes, CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes , France
| | - William Erb
- Univ Rennes, CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes , France
| | - Florence Mongin
- Univ Rennes, CNRS , ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes , France
| |
Collapse
|
49
|
Wu Q, Han S, Ren X, Lu H, Li J, Zou D, Wu Y, Wu Y. Pd-Catalyzed Alkylation of (Iso)quinolines and Arenes: 2-Acylpyridine Compounds as Alkylation Reagents. Org Lett 2018; 20:6345-6348. [PMID: 30284838 DOI: 10.1021/acs.orglett.8b02498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first Pd-catalyzed alkylation of (iso)quinolines and arenes is reported. The readily available and bench-stable 2-acylpyridine compounds were used as an alkylation reagent to form the structurally versatile alkylated (iso)quinolines and arenes. The method affords a convenient pathway for the introduction of alkyl groups into organic molecules.
Collapse
Affiliation(s)
- Qingsong Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Shuaijun Han
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Xiaoxiao Ren
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Hongtao Lu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou , 450052 , People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China.,Tetranov Biopharm, LLC, and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou , 450052 , People's Republic of China.,Tetranov International, Inc.. 100 Jersey Avenue, Suite A340 , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
50
|
Fusini G, Barsanti D, Angelici G, Casotti G, Canale A, Benelli G, Lucchi A, Carpita A. Identification and synthesis of new sex-specific components of olive fruit fly (Bactrocera oleae) female rectal gland, through original Negishi reactions on supported catalysts. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|