1
|
Bai CB, Zhang LY, Wang NX, Yan Z, Wu YH, Xu BC, Liu N, Wang BZ, Tomasic V. Chiral NADH Model: Design, Synthesis, Asymmetric Reduction Reaction and Fluorescence Characteristics. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220127122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A new type of NADH model compound, which has six asymmetric carbon centers, has been synthesized by an efficient and convenient method. We preliminarily attempted that NADH models combined with enzyme were used in the asymmetric reduction. It is the first time that dehydrogenase with NADH models instead of inorganic catalysts such as MgCl2 were used in the asymmetric reduction. Furthermore, the experimental results showed that the new NADH model has the strongest fluorescence emission properties compared with previous reported models.
Collapse
Affiliation(s)
- Cui-Bing Bai
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bao-Cai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Ning Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an, 710065, China
| | - Bo-Zhou Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an, 710065, China
| | - Vesna Tomasic
- University of Zagreb, Faculty of Chemical Engineering and Technology Zagreb, Croatia
| |
Collapse
|
2
|
Kishimoto Y, Fujii A, Nakagawa O, Nagata T, Yokota T, Hari Y, Obika S. Synthesis and thermal stabilities of oligonucleotides containing 2'-O,4'-C-methylene bridged nucleic acid with a phenoxazine base. Org Biomol Chem 2018; 15:8145-8152. [PMID: 28920119 DOI: 10.1039/c7ob01874f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We designed and synthesized a novel artificial 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA/LNA) with a phenoxazine nucleobase and named this compound BNAP. Oligodeoxynucleotide (ODN) containing BNAP showed higher binding affinities toward complementary DNA and RNA as compared to ODNs bearing 2',4'-BNA/LNA with 5-methylcytosine or 2'-deoxyribonucleoside with phenoxazine. Thermodynamic analysis revealed that BNAP exhibits properties associated with the phenoxazine moiety in DNA/DNA duplexes and characteristics associated with the 2',4'-BNA/LNA moiety in DNA/RNA duplexes.
Collapse
Affiliation(s)
- Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
3
|
Li Z, Zhu J, He J. Conformational studies of 10-23 DNAzyme in solution through pyrenyl-labeled 2'-deoxyadenosine derivatives. Org Biomol Chem 2018; 14:9846-9858. [PMID: 27714317 DOI: 10.1039/c6ob01702a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
10-23 DNAzyme is a small catalytic DNA molecule. Studies on its conformation in solution are critical for understanding its catalytic mechanism and functional optimization. Based on our previous research, two fluorescent nucleoside analogues 1 and 2 were designed for the introduction of a pyrenyl group at one of the five dA residues in the catalytic core and the unpaired adenosine residue in its full-DNA substrate, respectively. Ten pyrenyl-pyrenyl pairs are formed in the DNAzyme-substrate complexes in solution for sensing the spacial positions of the five dA residues relative to the cleavage site using fluorescence spectra. The position-dependent quenching effect of pyrene emission fluorescence by nucleobases, especially the pyrenyl-pyrenyl interaction, was observed for some positions. The adenine residues in the 3'-part of the catalytic loop seem to be closer to the cleavage site than the adenine residues in the 5'-part, which is consistent with the molecular dynamics simulation result. The catalytic activities and Tm changes also confirmed the effect of the pyrenyl-nucleobase and pyrenyl-pyrenyl pair interactions. Together with functional group mutations, catalytically relevant nucleobases will be identified for understanding the catalytic mechanism of 10-23 DNAzyme.
Collapse
Affiliation(s)
- Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
4
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Nim-Anussornkul D, Vilaivan T. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid bearing a base discriminating fluorescence nucleobase 8-(pyrene-1-yl)-ethynyladenine. Bioorg Med Chem 2017; 25:6388-6397. [PMID: 29111370 DOI: 10.1016/j.bmc.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
A combination of fluorophore and nucleobase through a π-conjugated rigid linker integrates the base pairing and the fluorescence change into a single event. Such base discriminating fluorophore can change its fluorescence as a direct response to the base pairing event and therefore have advantages over tethered labels or base surrogates lacking the hydrogen-bonding ability. 8-(Pyrene-1-yl)ethynyl-adenine (APyE) has been extensively used as fluorescence labels in DNA and LNA, but it showed little discrimination between different nucleobases. Herein we investigated the synthesis, base pairing ability and optical properties of APyE in pyrrolidinyl peptide nucleic acid - a DNA mimic that shows much stronger affinity and specificity towards DNA than natural oligonucleotides. The APyE in PNA pairs specifically with thymine in the DNA strand, and resulted in 1.5-5.2-fold enhanced and blue-shifted fluorescence emission. Fluorescence quenching was observed in the presence of mismatched base or abasic site directly opposite to the APyE. The behavior of APyE in acpcPNA is distinctively different from DNA whereby a fluorescence was increased selectively upon duplex formation with complementary DNA and therefore emphasizing the unique advantages of using PNA as alternative oligonucleotide probes. Applications as color-shifting probe for detection of trinucleotide repeats in DNA were demonstrated, and the performance of the probe was further improved by combination with reduced graphene oxide as an external nanoquencher.
Collapse
Affiliation(s)
- Duangrat Nim-Anussornkul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Hara T, Kodama T, Takegaki Y, Morihiro K, Ito KR, Obika S. Synthesis and Properties of 7-Deazapurine- and 8-Aza-7-deazapurine-Locked Nucleic Acid Analogues: Effect of the Glycosidic Torsion Angle. J Org Chem 2016; 82:25-36. [DOI: 10.1021/acs.joc.6b02525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takashi Hara
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate
School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yumi Takegaki
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Morihiro
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ramon Ito
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Kumar M, Kumar R, Rana N, Prasad AK. Synthesis of 3′-azido/-amino-xylobicyclonucleosides. RSC Adv 2016. [DOI: 10.1039/c5ra25222a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipozyme® TL IM mediated the selective deacetylation of one of the two acetoxy groups in 4-C-acetoxymethyl-5-O-acetyl-3-azido-3-deoxy-1,2-O-isopropylidene-α-d-xylofuranose, leading to the first efficient syntheses of 3′-azido/3′-amino-xylobicyclonucleosides T, U, C and A.
Collapse
Affiliation(s)
- Manish Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Rajesh Kumar
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Neha Rana
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi-110 007
- India
| |
Collapse
|
8
|
Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2015. [PMID: 26222265 DOI: 10.1089/nat.2015.0547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the effect of introducing a single incorporation of 2-thio-deoxythymidine (2S-dT) or C5-Triazolylphenyl-deoxythymidine (5-TrPh-dT) at four positions within the gap region of RNase H gapmer antisense oligonucleotides (ASOs) for reducing wild-type and mutant huntingtin mRNA in human patient fibroblasts. We show that these modifications can modulate processing of the ASO/RNA heteroduplexes by recombinant human RNase H1 in a position-dependent manner. We also created a structural model of the catalytic domain of human RNase H bound to ASO/RNA heteroduplexes to rationalize the activity and selectivity observations in cells and in the biochemical assays. Our results highlight the ability of chemical modifications in the gap region to produce profound changes in ASO behavior.
Collapse
Affiliation(s)
| | - Pawan Kumar
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | | - Andrew Watt
- 1 Isis Pharmaceuticals , Carlsbad, California
| | - Pawan K Sharma
- 3 Department of Chemistry, Kurukshetra University , Kurukshetra, India
| | - Poul Nielsen
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | |
Collapse
|
9
|
Kaura M, Hrdlicka PJ. Locked nucleic acid (LNA) induced effect on the hybridization and fluorescence properties of oligodeoxyribonucleotides modified with nucleobase-functionalized DNA monomers. Org Biomol Chem 2015; 13:7236-47. [PMID: 26055658 DOI: 10.1039/c5ob00860c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
LNA and nucleobase-modified DNA monomers are two types of building blocks that are used extensively in oligonucleotide chemistry. However, there are only very few reports in which these two monomer families are used alongside each other. In the present study we set out to characterize the biophysical properties of oligodeoxyribonucleotides in which C5-modified 2'-deoxyuridine or C8-modified 2'-deoxyadenosine monomers are flanked by LNA nucleotides. We hypothesized that the LNA monomers would alter the sugar rings of the modified DNA monomers toward more RNA-like North-type conformations for maximal DNA/RNA affinity and specificity. Indeed, the incorporation of LNA monomers almost invariably results in increased target affinity and specificity relative to the corresponding LNA-free ONs, but the magnitude of the stabilization varies greatly. Introduction of LNA nucleotides as direct neighbors into C5-pyrene-functionalized pyrimidine DNA monomers yields oligonucleotide probes with more desirable photophysical properties as compared to the corresponding LNA-free probes, including more intense fluorescence emission upon target binding and improved discrimination of single nucleotide polymorphisms (SNPs). These hybrid oligonucleotides are therefore promising probes for diagnostic applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA.
| | | |
Collapse
|
10
|
Šála M, Dejmek M, Procházková E, Hřebabecký H, Rybáček J, Dračínský M, Novák P, Rosenbergová Š, Fukal J, Sychrovský V, Rosenberg I, Nencka R. Synthesis of locked cyclohexene and cyclohexane nucleic acids (LCeNA and LCNA) with modified adenosine units. Org Biomol Chem 2015; 13:2703-15. [DOI: 10.1039/c4ob02193b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We designed novel conformationally locked cyclohexene nucleic acid and studied their properties.
Collapse
|