1
|
Synthesis of Bio-Inspired 1,3-Diarylpropene Derivatives via Heck Cross-Coupling and Cytotoxic Evaluation on Breast Cancer Cells. Molecules 2022; 27:molecules27175373. [PMID: 36080141 PMCID: PMC9457622 DOI: 10.3390/molecules27175373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).
Collapse
|
2
|
Ali K, Prajapati G, Ampapathi RS, Panda G. Transition metal-free reductive coupling of allylic sulfonylhydrazones with aryl boronic acids for C(sp 3)–C(sp 2) bond formation. Org Biomol Chem 2022; 20:8672-8684. [DOI: 10.1039/d2ob01472f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The reductive coupling between allylic sulfonylhydrazones and aryl boronic acids gives 1,3-diarylpropene systems with good to excellent yields under very simple reaction conditions without metal catalysts and an inert atmosphere.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gurudayal Prajapati
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Sankar Ampapathi
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
3
|
Casalta C, Gourlaouen C, Bouzbouz S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of α-Fluoro But-1-enoic Acid Amides via β-F-Elimination in Water. Org Lett 2021; 23:8122-8126. [PMID: 34617755 DOI: 10.1021/acs.orglett.1c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allylic arylation of α-fluoro but-1-enoic acid amides with arylboronic acids was carried out in water by comparing the catalytic activity of iridium(III) and rhodium(III). Ir(III) has shown a strong superiority over Rh(III) to give allyl-aryl coupling products with excellent stereoselectivity in favor of the Z-isomer. The origin of high stereoselectivity is perhaps because of the a coordination of iridium Ir-N or Ir-O.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 67070 Strasbourg, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| |
Collapse
|
4
|
Chinnabattigalla S, Choudhury A, Gedu S. [Pd]-Catalyzed para-selective allylation of phenols: access to 4-[( E)-3-aryl/alkylprop-2-enyl]phenols. Org Biomol Chem 2021; 19:8259-8263. [PMID: 34532727 DOI: 10.1039/d1ob01489g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-[(E)-3-Arylprop-2-enyl]phenols are omnipresent scaffolds and constitute natural products and biologically significant compounds. Obtusastyrene and obtustyrene are two such phenolic-based natural products isolated from Dalbergia retusa. The development of strategies based on a site-selective allylation, particularly protecting group-free substrates and non-activated coupling agents, is indispensable in organic synthesis. Herein, we present a highly regioselective [Pd]-catalyzed para-allylation of phenols using simple, inactivated allylic alcohols as allylating coupling partners. Notably, this strategy is successful in open-air and under mild reaction conditions. Besides, the efficacy of the present protocol was demonstrated by the direct synthesis of obtusastyrene and obtustyrene.
Collapse
Affiliation(s)
| | - Aditya Choudhury
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Satyanarayana Gedu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| |
Collapse
|
5
|
Dealkenylative Ni-Catalyzed Cross-Coupling Enabled by Tetrazine and Photoexcitation. J Am Chem Soc 2021; 143:14046-14052. [PMID: 34437800 DOI: 10.1021/jacs.1c05092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new and general method to functionalize the C(sp3)-C(sp2) bond of alkyl and alkene linkages has been developed, leading to the dealkenylative generation of carbon-centered radicals that can be intercepted to undergo Ni-catalyzed C(sp3)-C(sp2) cross-coupling. This one-pot protocol leverages the easily procured alkene feedstocks for organic synthesis with excellent functional group compatibility without the need for a photoredox catalyst.
Collapse
|
6
|
Zhang GM, Zhang H, Wang B, Wang JY. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water. RSC Adv 2021; 11:17025-17031. [PMID: 35479693 PMCID: PMC9031380 DOI: 10.1039/d1ra01922h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
A metal-free catalytic allylation with atom economy and green environment friendly was developed. Allylic alcohols could be directly dehydrated in water by B(C6F5)3, without using any base additives. The reaction can afford the corresponding monoallylated product in moderate to high yield and has been performed on a gram-scale, and a quaternary carbon center can be constructed for the active methine compounds of 1,3-diketones or β-ketone esters in this process. The product can be further converted, such as the synthesis of tetra-substituted pyrazole compounds, or 1,4-dienes and functionalized dihydropyrans.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
7
|
Emami M, Bikas R, Noshiranzadeh N, Kozakiewicz A, Lis T. Cu(II)-Hydrazide Coordination Compound Supported on Silica Gel as an Efficient and Recyclable Heterogeneous Catalyst for Green Click Synthesis of β-Hydroxy-1,2,3-triazoles in Water. ACS OMEGA 2020; 5:13344-13357. [PMID: 32548521 PMCID: PMC7288712 DOI: 10.1021/acsomega.0c01491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 05/02/2023]
Abstract
A hydrazone ligand, (E)-6-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinyl)nicotinohydrazide (H2L), was synthesized and characterized by spectroscopic methods. The reaction of H2L with CuCl2·2H2O in methanol gave Cu(II) coordination compound, [Cu(HL')(Cl)]·CH3OH (1), which was characterized by elemental analysis and spectroscopic methods (Fourier transform infrared (FT-IR) and UV-vis). The structure of 1 was also determined by single-crystal X-ray analysis. Structural studies confirmed the formation of esteric group during the synthesis of 1. Compound 1 was immobilized on 3-aminopropyltriethoxysilane (APTS)-functionalized silica gel through the amidification reaction and the obtained heterogeneous coordination compound was utilized as a catalyst for the three-component azide-epoxide-alkyne cycloaddition reaction in water as a green solvent. The structural properties of the heterogeneous catalyst were characterized by a combination of FT-IR, UV-vis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analyses. The effect of the amount of catalyst and temperature on the cycloaddition reaction was studied, and the obtained 1,2,3-triazoles were characterized by spectroscopic studies and single-crystal X-ray analysis. The catalytic investigations revealed that this catalytic system has high activity in the synthesis of β-hydroxy-1,2,3-triazoles. It was also found that the aromatic and aliphatic substituents on the alkyne and epoxide together with the reaction temperature have considerable effects on the activity and regioselectivity of this catalytic system.
Collapse
Affiliation(s)
- Marzieh Emami
- Department
of Chemistry, Faculty of Science, University
of Zanjan, 45371-38791 Zanjan, Iran
| | - Rahman Bikas
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, 34148-96818 Qazvin, Iran
- ,
| | - Nader Noshiranzadeh
- Department
of Chemistry, Faculty of Science, University
of Zanjan, 45371-38791 Zanjan, Iran
| | - Anna Kozakiewicz
- Faculty
of Chemistry, Nicolaus Copernicus University
in Toruń, 87-100 Toruń, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| |
Collapse
|
8
|
Casalta C, Bouzbouz S. Rhodium(III) Catalyzed Regioselective and Stereospecific Allylic Arylation in Water by β-Fluorine Elimination of the Allylic Fluoride: Toward the Synthesis of Z-Alkenyl-Unsaturated Amides. Org Lett 2020; 22:2359-2364. [PMID: 32159966 DOI: 10.1021/acs.orglett.0c00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A direct coupling of arylboronic acids with allylic fluorides was carried out in water without additives using a rhodium(III) catalyst (Cp*RhCl2)2. The transformation proceeded with excellent γ-selectivity to afford major allyl-aryl coupling products (Z) γ-substituted α,β-unsaturated amides. The reactions of α-chiral allylic fluorides took place with excellent α-to-γ chirality transfer to give allylated arenes with a stereogenic center at the benzylic and allylic position.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| |
Collapse
|
9
|
Yurino T, Ece H, Ohkuma T. Friedel−Crafts‐Type Allylation of Phenol Derivatives Catalyzed by In Situ‐Generated Silyl Cyanometallates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taiga Yurino
- Department of Applied Chemistry and Frontier Chemistry CenterFaculty of EngineeringHokkaido University 060-8628 Kita 13, Nishi 8 Kita-ku, Sapporo Hokkaido Japan
| | - Hamdiye Ece
- Graduate School of Chemical Sciences and EngineeringHokkaido University 060-8628 Kita 13, Nishi 8 Kita-ku, Sapporo Hokkaido Japan
| | - Takeshi Ohkuma
- Department of Applied Chemistry and Frontier Chemistry CenterFaculty of EngineeringHokkaido University 060-8628 Kita 13, Nishi 8 Kita-ku, Sapporo Hokkaido Japan
| |
Collapse
|
10
|
Ohtaka A, Kawase M, Usami A, Fukui S, Yamashita M, Yamaguchi K, Sakon A, Shiraki T, Ishida T, Nagata S, Kimura Y, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Mechanistic Study on Allylic Arylation in Water with Linear Polystyrene-Stabilized Pd and PdO Nanoparticles. ACS OMEGA 2019; 4:15764-15770. [PMID: 31572880 PMCID: PMC6761747 DOI: 10.1021/acsomega.9b02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The catalytic cycle of allylic arylation in water catalyzed by linear polystyrene-stabilized Pd or PdO nanoparticles (PS-PdNPs or PS-PdONPs) was investigated. Stoichiometric stepwise reactions indicated that the reaction did not proceed stepwise on the surface of the catalyst. In the case of the reaction with PS-PdNPs, the leached Pd species is the catalytically active species and the reaction takes place through a similar reaction pathway accepted in the case of a complex catalyst. In contrast, allylic arylation using PS-PdONPs as a catalyst occurs via a Pd(II) catalytic cycle.
Collapse
Affiliation(s)
- Atsushi Ohtaka
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Misa Kawase
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Usami
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Shiho Fukui
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Mana Yamashita
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Kazuki Yamaguchi
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Akira Sakon
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Tomoya Shiraki
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Taiki Ishida
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Soma Nagata
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Yuji Kimura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Go Hamasaka
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Tsutomu Shinagawa
- Osaka
Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto, Osaka 536-8553, Japan
| | - Osamu Shimomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Ryôki Nomura
- Department
of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| |
Collapse
|
11
|
Wang J, Torigoe T, Kuninobu Y. Hydrogen-Bond-Controlled Formal Meta-Selective C-H Transformations and Regioselective Synthesis of Multisubstituted Aromatic Compounds. Org Lett 2019; 21:1342-1346. [PMID: 30735396 DOI: 10.1021/acs.orglett.9b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The meta-selective introduction of functional groups into aromatic substrates was successfully achieved by hydrogen-bond-controlled meta-selective C-H borylation and successive conversion of the boryl group to other functional groups. By this method a wide range of functional groups could be introduced without isolation of the borylated intermediates. The desired meta-functionalized aromatic products were obtained in a one-pot manner even on a gram scale. Regioselective synthesis of multisubstituted aromatic compounds was also achieved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan.,Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan.,Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga-shi , Fukuoka 816-8580 , Japan
| |
Collapse
|
12
|
Watanabe K, Mino T, Yoshida Y, Sakamoto M. Hydrazone-Palladium Catalyzed Reactions Using Allyl Compounds. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Takashi Mino
- Graduate School of Engineering, Chiba University
| | | | | |
Collapse
|
13
|
Watanabe K, Mino T, Ishikawa E, Masuda C, Yoshida Y, Sakamoto M. Hydrazone–Pd-catalyzed direct intermolecular reaction of o-alkynylphenols with allylic acetates. Org Biomol Chem 2018; 16:575-584. [DOI: 10.1039/c7ob02873c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hydrazone–palladium catalyzed direct intermolecular reaction of o-alkynylphenols with allylic acetates gave the corresponding 2-substituted-3-allylbenzofuran derivatives at room temperature.
Collapse
Affiliation(s)
- Kohei Watanabe
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| | - Eri Ishikawa
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Chihiro Masuda
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Yasushi Yoshida
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| | - Masami Sakamoto
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
- Molecular Chirality Research Center
| |
Collapse
|
14
|
Ghorpade SA, Sawant DN, Renn D, Zernickel A, Du W, Sekar N, Eppinger J. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using a Bedford-type palladacycle catalyst. NEW J CHEM 2018. [DOI: 10.1039/c8nj00660a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Allylic arylation using 0.002 mol% of a Bedford-type palladacycle catalyst is described under mild reaction conditions.
Collapse
Affiliation(s)
- Seema Arun Ghorpade
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
- Department of Dyestuff Technology
- Institute of Chemical Technology (Deemed University)
| | - Dinesh Nanaji Sawant
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Dominik Renn
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Anna Zernickel
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Weiyuan Du
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| | - Nagaiyan Sekar
- Department of Dyestuff Technology
- Institute of Chemical Technology (Deemed University)
- N. Parekh Marg
- Matunga
- Mumbai-400019
| | - Jörg Eppinger
- King Abdullah University of Science and Technology, Division of Physical Sciences & Engineering and KAUST Catalysis Center (KCC)
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
15
|
Yagishita F, Nomura K, Shiono S, Nii C, Mino T, Sakamoto M, Kawamura Y. Palladium-catalyzed Mizoroki-Heck Reaction Using Imidazo[1,5-a]pyridines. ChemistrySelect 2016. [DOI: 10.1002/slct.201601185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fumitoshi Yagishita
- Department of Applied Chemistry, Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Koh Nomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Saki Shiono
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Chiho Nii
- Department of Applied Chemistry, Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Yasuhiko Kawamura
- Department of Applied Chemistry, Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| |
Collapse
|
16
|
Watanabe K, Mino T, Ikematsu T, Hatta C, Yoshida Y, Sakamoto M. Hydrazone–palladium catalyzed annulation of 1-cinnamyloxy-2-ethynylbenzene derivatives. Org Chem Front 2016. [DOI: 10.1039/c6qo00112b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annulation of 1-cinnamyloxy-2-ethynylbenzene derivatives using a hydrazone–palladium catalyst system proceeded smoothly and gave the corresponding 2-substituted-3-cinnamylbenzofurans in good-to-excellent yields.
Collapse
Affiliation(s)
- Kohei Watanabe
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Tatsuya Ikematsu
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Chikako Hatta
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
17
|
Halder M, Islam MM, Ahammed S, Islam SM. Polymeric β-alanine incarcerated Pd(ii) catalyzed allylic etherification in water: a mild and efficient method for the formation of C(sp3)–O bonds. RSC Adv 2016. [DOI: 10.1039/c5ra26182a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new heterogeneous palladium(ii) catalyst has been developed through a convenient and economic way for the synthesis of allyl-aryl ether.
Collapse
Affiliation(s)
- Mita Halder
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
- Department of Chemistry
| | | | - Sabir Ahammed
- Department of Chemistry
- Aliah University
- Kolkata-700156
- India
| | | |
Collapse
|
18
|
Cyclometallation, steric and electronic tendencies in a series of Pd(II) complex pre-catalysts bearing imidazole–phenol ligands and effects on Suzuki–Miyaura catalytic efficiencies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Arumugam V, Kaminsky W, Bhuvanesh NSP, Nallasamy D. Palladium(ii) complexes containing ONO tridentate hydrazone for Suzuki–Miyaura coupling of aryl chlorides in aqueous-organic media. RSC Adv 2015. [DOI: 10.1039/c5ra10973f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Robust and recyclable pincer type palladium(ii) complexes for Suzuki–Miyaura coupling of challenging aryl chlorides in aqueous-organic media.
Collapse
Affiliation(s)
- Vignesh Arumugam
- Inorganic & Nanomaterials Research Laboratory
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | | | | | - Dharmaraj Nallasamy
- Inorganic & Nanomaterials Research Laboratory
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| |
Collapse
|