1
|
Kashina MV, Luzyanin KV, Katlenok EA, Kinzhalov MA. Green-Light Hydrosilylation Photocatalysis with Platinum(II)Metalla-N-Heterocyclic Carbene Complexes. Chemistry 2024:e202403264. [PMID: 39252655 DOI: 10.1002/chem.202403264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Platinum(II) metalla-N-heterocyclic carbene complexes featuring pyridyl heterocyclic moiety demonstrate remarkable catalytic efficiency in alkyne hydrosilylation under green light irradiation. The photocatalytic properties of complexes are rationalised by the photo-induced charge transfer occurring in extended condensed system identified with the help of various experimental (UV/vis and emission spectroscopy, cyclic voltammetry) and theoretical methods (DFT/TD-DFT, IFCT analysis).
Collapse
Affiliation(s)
- Maria V Kashina
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| | - Konstantin V Luzyanin
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Eugene A Katlenok
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russian Federation
| |
Collapse
|
2
|
Deckers C, Rehm TH. In situ Diazonium Salt Formation and Photochemical Aryl-Aryl Coupling in Continuous Flow Monitored by Inline NMR Spectroscopy. Chemistry 2024; 30:e202303692. [PMID: 38462439 DOI: 10.1002/chem.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
A novel class of diazonium salts is introduced for the photochemical aryl-aryl coupling to produce (substituted) biphenyls. As common diazonium tetrafluoroborate salts fail, soluble and safe aryl diazonium trifluoroacetates are applied. In this mild synthesis route no catalysts are required to generate an aryl-radical by irradiation with UV-A light (365 nm). This reactive species undergoes direct C-H arylation at an arene, forming the product in reasonable reaction times. With the implementation of a continuous flow setup in a capillary photoreactor 13 different biphenyl derivatives are successfully synthesized. By integrating an inline 19F-NMR benchtop spectrometer, samples are reliably quantified as the fluorine-substituents act as a probe. Here, real-time NMR spectroscopy is a perfect tool to monitor the continuously operated system, which produces fine chemicals of industrial relevance even in a multigram scale.
Collapse
Affiliation(s)
- Christoph Deckers
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thomas H Rehm
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| |
Collapse
|
3
|
Okayama M, Matsumoto T, Kitagawa T, Nakamura S, Ohta T, Yoshida T, Watanabe T. Cytotoxic activities of alkaloid constituents from the climbing stems and rhizomes of Sinomenium acutum against cancer stem cells. J Nat Med 2024; 78:226-235. [PMID: 37656375 DOI: 10.1007/s11418-023-01744-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
From the methanolic extract of the climbing stems and rhizomes of Sinomenium acutum, two new aporphine analogues, acutumalkaloids I and II, were isolated together with fifteen known compounds including lysicamine. The chemical structures of the isolated new compounds were elucidated based on chemical/physicochemical evidence such as NMR and MS spectra. For acutumalkaloids I and II, the absolute configurations were established by comparison of experimental and predicted electronic circular dichroism (ECD) data. We compared anti-proliferative activities of isolated compounds with reported naturally occurring Wnt/β-catenin pathway inhibitor, nuciferine. Among the isolated compounds, we found lysicamine have anti-proliferative activity against both of HT-29 human colon cancer cell line and its cancer stem cells (CSCs). The IC50 values of lysicamine against non-CSCs and its CSCs were lower than that of nuciferine. In addition, the results of western blotting analysis suggested that lysicamine inhibited the expression of Wnt/β-catenin pathway target protein such as survivin. These results suggested that lysicamine show cytotoxic activity via inhibition of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Masaya Okayama
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Takahiro Kitagawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
4
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
5
|
Modern Photocatalytic Strategies in Natural Product Synthesis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 120:1-104. [PMID: 36587307 DOI: 10.1007/978-3-031-11783-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Modern photocatalysis has proven its generality for the development and functionalization of native functionalities. To date, the field has found broad applications in diverse research areas, including the total synthesis of natural products. This contribution covers recent reports of total syntheses involving as a key step a photocatalytic reaction. Among the selected examples, the photocatalytic processes proceed in a highly chemo-, regio-, and stereoselective manner, thereby allowing the rapid access to structurally complex architectures under light-driven conditions.
Collapse
|
6
|
Liu T, Chen YN, Tan DX, Han FS. The 2,4-diarylquinoline-based Platinum(II) complexes: Synthesis, photophysical and electrochemical properties, and application in detection of hypochlorite. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Prabhala P, Sutar SM, Kalkhambkar RG, Jeong YT. Ultrasonication Assisted α‐Arylation of
N‐
heteroarenes Employing 1‐Aryltriazenes Promoted by Brønsted Acidic Ionic Liquid under Aerobic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pavankumar Prabhala
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Suraj M. Sutar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Rajesh G. Kalkhambkar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Yeon T. Jeong
- Department of Image Science and Engineering Pukyong National University Busan 608737, Republic of Korea
| |
Collapse
|
8
|
Castellanos-Soriano J, Álvarez-Gutiérrez D, Jiménez MC, Pérez-Ruiz R. Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochem Photobiol Sci 2022; 21:1175-1184. [PMID: 35303293 DOI: 10.1007/s43630-022-00203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
In this work, the feasibility of triplet fusion upconversion (TFU, also named triplet-triplet annihilation upconversion) technology for the functionalization (arylation) of furans and thiophenes has been successfully proven. Activation of aryl halides by TFU leads to generation of aryl radical intermediates; trapping of the latter by the corresponding heteroarenes, which act as nucleophiles, affords the final coupling products. Advantages of this photoredox catalytic method include the use of very mild conditions (visible light, standard conditions), employment of commercially available reactants and low-loading metal-free photocatalysts, absence of any sacrificial agent (additive) in the medium and short irradiation times. The involvement of the high energetic delayed fluorescence in the reaction mechanism has been evidenced by quenching studies, whereas the two-photon nature of this photoredox arylation of furans and thiophenes has been manifested by the dependence on the energy source power. Finally, the scaling-up conditions have been gratifyingly afforded by a continuous-flow device.
Collapse
Affiliation(s)
- Jorge Castellanos-Soriano
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Daniel Álvarez-Gutiérrez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
9
|
Grover J, Prakash G, Goswami N, Maiti D. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat Commun 2022; 13:1085. [PMID: 35228555 PMCID: PMC8885660 DOI: 10.1038/s41467-022-28707-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Biaryl scaffolds are found in natural products and drug molecules and exhibit a wide range of biological activities. In past decade, the transition metal-catalyzed C–H arylation reaction came out as an effective tool for the construction of biaryl motifs. However, traditional transition metal-catalyzed C–H arylation reactions have limitations like harsh reaction conditions, narrow substrate scope, use of additives etc. and therefore encouraged synthetic chemists to look for alternate greener approaches. This review aims to draw a general overview on C–H bond arylation reactions for the formation of C–C bonds with the aid of different methodologies, majorly highlighting on greener and sustainable approaches. Transition-metal-catalyzed C–H arylations are an effective tool for the construction of biaryl motifs in an efficient and selective manner. Here the authors provide an overview of the state-of-the-art of the field and perspectives on emerging directions toward increased sustainability.
Collapse
|
10
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
11
|
Krumb M, Kammer LM, Badir SO, Cabrera-Afonso MJ, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. Photochemical C-H arylation of heteroarenes for DNA-encoded library synthesis. Chem Sci 2022; 13:1023-1029. [PMID: 35211268 PMCID: PMC8790789 DOI: 10.1039/d1sc05683b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
DNA-encoded library (DEL) technology has emerged as a time- and cost-efficient technique for the identification of therapeutic candidates in the pharmaceutical industry. Although several reaction classes have been successfully validated in DEL environments, there remains a paucity of DNA-compatible reactions that harness building blocks (BBs) from readily available substructures bearing multifunctional handles for further library diversification under mild, dilute, and aqueous conditions. In this study, the direct C-H carbofunctionalization of medicinally-relevant heteroarenes can be accomplished via the photoreduction of DNA-conjugated (hetero)aryl halides to deliver reactive aryl radical intermediates in a regulated fashion within minutes of blue light illumination. A broad array of electron-rich and electron-poor heteroarene scaffolds undergo transformation in the presence of sensitive functional groups.
Collapse
Affiliation(s)
- Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
12
|
Ouyang YN, Yue X, Peng J, Zhu J, Shen Q, Li W. Organic-acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Org Biomol Chem 2022; 20:6619-6629. [DOI: 10.1039/d2ob01187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free method for the Minisci-type arylation of heterocycles with aryl acyl peroxides has been reported. This strategy enables the rapid and simple synthesis of a series of Minisci-type adducts...
Collapse
|
13
|
Xu ZJ, Liu XY, Zhu MZ, Xu YL, Yu Y, Xu HR, Cheng AX, Lou HX. Photoredox-Catalyzed Cascade Reactions Involving Aryl Radical: Total Synthesis of (±)-Norascyronone A and (±)-Eudesmol. Org Lett 2021; 23:9073-9077. [PMID: 34797080 DOI: 10.1021/acs.orglett.1c03319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we have developed two types of photoredox-catalyzed cascade reactions using diaryliodonium salts for the concise synthesis of norascyronone A and β-eudesmol. A rationally designed photoredox-catalyzed arylation/cyclization/Friedel-Crafts cascade reaction of enone was exploited to generate the norascyronone polycyclic skeleton. A visible-light-induced radical cyclization/acyloxy-migration reaction was explored to forge the decalin skeleton of eudesmol, and mechanistic studies indicated the reaction was initiated by one-electron oxidation of the enol ester.
Collapse
Affiliation(s)
- Ze-Jun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Jinan 2000325, China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yu-Liang Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yue Yu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hai-Ruo Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ai-Xia Cheng
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Pitre SP, Overman LE. Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chem Rev 2021; 122:1717-1751. [PMID: 34232019 DOI: 10.1021/acs.chemrev.1c00247] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent progress in the development of photocatalytic reactions promoted by visible light is leading to a renaissance in the use of photochemistry in the construction of structurally elaborate organic molecules. Because of the rich functionality found in natural products, studies in natural product total synthesis provide useful insights into functional group compatibility of these new photocatalytic methods as well as their impact on synthetic strategy. In this review, we examine total syntheses published through the end of 2020 that employ a visible-light photoredox catalytic step. To assist someone interested in employing the photocatalytic steps discussed, the review is organized largely by the nature of the bond formed in the photocatalytic step.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
15
|
Levernier E, Jaouadi K, Zhang HR, Corcé V, Bernard A, Gontard G, Troufflard C, Grimaud L, Derat E, Ollivier C, Fensterbank L. Phenyl Silicates with Substituted Catecholate Ligands: Synthesis, Structural Studies and Reactivity. Chemistry 2021; 27:8782-8790. [PMID: 33856711 DOI: 10.1002/chem.202100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/05/2023]
Abstract
While the generation of aryl radicals by photoredox catalysis under reductive conditions is well documented, it has remained challenging under an oxidative pathway. Because of the easy photo-oxidation of alkyl bis-catecholato silicates, a general study of phenyl silicates bearing substituted catecholate ligands has been achieved. The newly synthesized phenyl silicates have been fully characterized, and their reactivity has been explored. It was found that, thanks to the substitution of the catecholate moiety, notably with the 4-cyanocatecholato ligand, the phenyl radical could be generated and trapped. Computational studies provided a rationale for these findings.
Collapse
Affiliation(s)
- Etienne Levernier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Khaoula Jaouadi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
- Laboratoire de biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, 75005, Paris, France
| | - Heng-Rui Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Aurélie Bernard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Claire Troufflard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Laurence Grimaud
- Laboratoire de biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, 75005, Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris, France
| |
Collapse
|
16
|
Alvarez EM, Karl T, Berger F, Torkowski L, Ritter T. Late-Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α-Amino Alkyl Radicals. Angew Chem Int Ed Engl 2021; 60:13609-13613. [PMID: 33835680 PMCID: PMC8251951 DOI: 10.1002/anie.202103085] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 11/25/2022]
Abstract
We report a late‐stage heteroarylation of aryl sulfonium salts through activation with α‐amino alkyl radicals in a mechanistically distinct approach from previously reported halogen‐atom transfer (XAT). The new mode of activation of aryl sulfonium salts proceeds in the absence of light and photoredox catalysts, engaging a wide range of hetarenes. Furthermore, we demonstrate the applicability of this methodology in synthetically useful cross‐coupling transformations.
Collapse
Affiliation(s)
- Eva Maria Alvarez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Teresa Karl
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Luca Torkowski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Late‐Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α‐Amino Alkyl Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Ma J, Liu H, He X, Chen Z, Liu Y, Hou C, Sun Z, Chu W. Ni-Catalyzed C–H Cyanation of (Hetero)arenes with 2-Cyanoisothiazolidine 1,1-Dioxide as a Cyanation Reagent. Org Lett 2021; 23:2868-2872. [DOI: 10.1021/acs.orglett.1c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junjie Ma
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Hao Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Xin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhicheng Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Yue Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| |
Collapse
|
20
|
Ramu S, Baskar B. A simple and efficient metal free, additive, or base free dehydrogenation of tetrahydroisoquinolines using oxygen as a clean oxidant. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal free dehydrogenation of various substituted tetrahydroisoquinolines via a simple and convenient metal free, atom economical route for the synthesis of corresponding isoquinolines under oxygen atmosphere in N-methyl-2-pyrollidone (NMP) is described. Metal free dehydrogenation was carried out without the use of additive or base. A scope of the methodology was demonstrated for a number of aryl and heteroaryl substitutions present at C1 position and ester moiety at C3 position and was found to be good substrates. Substituted isoquinolines (3a–3h) and their esters (3i–3m) were synthesized in very good to excellent yields.
Collapse
Affiliation(s)
- Shanmugam Ramu
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| | - Baburaj Baskar
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpet (Dt), Tamilnadu 603 203, India
| |
Collapse
|
21
|
Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Visible‐Light‐Mediated Functionalization of Aryl Diazonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yaoyao Mei
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yangyang Li
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jingang Hu
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yicheng Bi
- Qingdao University of Science & Technology
| |
Collapse
|
22
|
Xiao Y, Yang Y, Zhang F, Feng Y, Cui X. UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Ai W, Yang Q, Gao Y, Liu X, Liu H, Bai Y. In Situ Laser Scattering Electrospray Ionization Mass Spectrometry and Its Application in the Mechanism Study of Photoinduced Direct C-H Arylation of Heteroarenes. Anal Chem 2020; 92:11967-11972. [PMID: 32786502 DOI: 10.1021/acs.analchem.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in situ laser scattering electrospray ionization mass spectrometry (LS-ESI-MS) was developed, where the laser scattering was simply achieved through the laser radiation of the "media" modified on the capillary. The laser scattering extended the reaction window and powerfully promoted the reaction yield of the photoinduced organic reaction, which enables the trace intermediates to be efficiently tracked in real time. For instance, the key radical cation in the photoinduced direct C-H arylation of heteroarenes was captured inventively, which provided direct experimental evidence for the verification of the reaction mechanism. Together with the characterization of oxidative photocatalytic Ru(III) intermediate, the integral insight into the process of visible-light-mediated direct C-H arylation of heteroarenes was confirmed. This approach is facile, powerful, and promising in the mechanism study of organic reaction.
Collapse
Affiliation(s)
- Wanpeng Ai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qirong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunpeng Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
24
|
Capaldo L, Ravelli D. The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luca Capaldo
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| | - Davide Ravelli
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
25
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
26
|
Yuan S, Chang J, Yu B. Construction of Biologically Important Biaryl Scaffolds through Direct C–H Bond Activation: Advances and Prospects. Top Curr Chem (Cham) 2020; 378:23. [DOI: 10.1007/s41061-020-0285-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
27
|
Hagui W, Soulé JF. Synthesis of 2-Arylpyridines and 2-Arylbipyridines via Photoredox-Induced Meerwein Arylation with in Situ Diazotization of Anilines. J Org Chem 2020; 85:3655-3663. [DOI: 10.1021/acs.joc.9b03306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wided Hagui
- Univ Rennes, CNRS, UMR 6226, F-3500 Rennes, France
| | | |
Collapse
|
28
|
Li D, Liang C, Jiang Z, Zhang J, Zhuo WT, Zou FY, Wang WP, Gao GL, Song J. Visible-Light-Promoted C2 Selective Arylation of Quinoline and Pyridine N-Oxides with Diaryliodonium Tetrafluoroborate. J Org Chem 2020; 85:2733-2742. [PMID: 31906619 DOI: 10.1021/acs.joc.9b02933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A protocol of visible-light-promoted C2 selective arylation of quinoline and pyridine N-oxides, with diaryliodonium tetrafluoroborate as an arylation reagent, using eosin Y as a photocatalyst for the construction of N-heterobiaryls was presented. This methodology provided an efficient way for the synthesis of 2-aryl-substituted quinoline and pyridine N-oxides. This strategy has the following advantages: specific regioselectivity, simple operation, good functional group tolerance, and high to moderate yields under mild conditions.
Collapse
Affiliation(s)
- Dazhi Li
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Zaixing Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Junzheng Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Wang-Tao Zhuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Fan-Yue Zou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Wan-Peng Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Jinzhu Song
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| |
Collapse
|
29
|
Zhang S, Tang Z, Bao W, Li J, Guo B, Huang S, Zhang Y, Rao Y. Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight. Org Biomol Chem 2019; 17:4364-4369. [PMID: 30984953 DOI: 10.1039/c9ob00659a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naturally occurring perylenequinonoid pigments (PQPs) have attracted considerable attention owing to their excellent properties of photosensitization. They have been widely investigated as an aspect of photophysics and photobiology. However, their applications in photocatalysis are yet to be explored. We report here that sunlight along with 1 mol% cercosporin, which is one of the perylenequinonoid pigments, catalyzes the direct C-H bond arylation of (het)arenes by a photoredox process with good regioselectivity and broad functional group compatibility. Furthermore, a gram-scale reaction with great conversions of substrates was achieved even by a cercosporin-containing supernatant without organic solvent extraction and purification after liquid fermentation. Thus we set up a bridge between microbial fermentation and organic photocatalysis for chemical reactions in a sustainable, environmentally friendly manner.
Collapse
Affiliation(s)
- Shiwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang P, Yang Z, Wang Z, Xu C, Huang L, Wang S, Zhang H, Lei A. Electrochemical Arylation of Electron-Deficient Arenes through Reductive Activation. Angew Chem Int Ed Engl 2019; 58:15747-15751. [PMID: 31433101 DOI: 10.1002/anie.201909600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 01/28/2023]
Abstract
An electrochemical method has been developed to achieve arylation of electron-deficient arenes through reductive activation. Various electron-deficient arenes and aryldiazonium tetrafluoroborates are amenable to this transformation within the conditions of an undivided cell, providing the desired products in up to 92 % yield. Instead of preparing diazonium reagents, these reactions can begin from anilines, and they can be carried out in one pot. Electron paramagnetic resonance studies indicate that cathodic reduction of quinoxaline occurs using the transformation. Moreover, cyclic voltammetry indicates that both quinoxaline and aryl diazonium salt have relatively low reduction potentials, which suggests they can be activated through reduction during the reaction.
Collapse
Affiliation(s)
- Pan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Zhenlin Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Ziwei Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Chenyang Xu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lei Huang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
31
|
Wang P, Yang Z, Wang Z, Xu C, Huang L, Wang S, Zhang H, Lei A. Electrochemical Arylation of Electron‐Deficient Arenes through Reductive Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pan Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Zhenlin Yang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Ziwei Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chenyang Xu
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Lei Huang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
32
|
Chaubey NR, Vishwakarma RK, Singh KN. Direct C‐H Arylation of
N
‐Heterocycles with Aryl Triazenes Using Molecular Oxygen as Oxidant. ChemistrySelect 2019. [DOI: 10.1002/slct.201901144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Narendra R. Chaubey
- Department of Chemistry, Institute of ScienceBanaras Hindu University Varanasi 221005 India >Varanasi 221005, <country
| | - Ramesh Kumar Vishwakarma
- Department of Chemistry, Institute of ScienceBanaras Hindu University Varanasi 221005 India >Varanasi 221005, <country
| | - Krishna Nand Singh
- Department of Chemistry, Institute of ScienceBanaras Hindu University Varanasi 221005 India >Varanasi 221005, <country
| |
Collapse
|
33
|
Phase-selective modulation of TiO2 for visible light-driven C H arylation: Tuning of absorption and adsorptivity. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Yamaguchi E, Kashima Y, Itoh A. Single-Electron-Transfer-Initiated Sequential Direct Arylation Reaction of Pyrrole with Aryl Diazonium Salts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eiji Yamaguchi
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196
| | - Yayoi Kashima
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196
| | - Akichika Itoh
- Gifu Pharmaceutical University; 1-25-4, Daigaku-nishi Gifu 501-1196
| |
Collapse
|
35
|
Felpin FX, Sengupta S. Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chem Soc Rev 2019; 48:1150-1193. [PMID: 30608075 DOI: 10.1039/c8cs00453f] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rich legacy of arenediazonium salts in the synthesis of unsymmetrical biaryls, built around the seminal works of Pschorr, Gomberg and Bachmann more than a century ago, continues to make important contributions at various evolutionary stages of modern biaryl synthesis. Based on in-depth mechanistic analysis and design of novel pathways and reaction conditions, the scope of biaryl synthesis with arenediazonium salts has enormously expanded in recent years through applications of transition metal/photoredox-catalysed cross-coupling, thermal/photosensitized radical chain CH-arylation of (hetero)arenes and arylative radical annulation reactions with alkynes. These recent developments have provided facile synthetic access to a wide variety of unsymmetrical biaryls of pharmaceutical, agrochemical and optoelectronic importance with green scale-up options and created opportunities for late-stage modification of peptides, nucleosides, carbon nanotubes and electrodes, the details of which are captured in this review.
Collapse
Affiliation(s)
- François-Xavier Felpin
- Université de Nantes, UFR des Sciences et des Techniques, CNRS UMR 6230, CEISAM, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France. and Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | | |
Collapse
|
36
|
Wang L, Byun J, Li R, Huang W, Zhang KAI. Molecular Design of Donor-Acceptor-Type Organic Photocatalysts for Metal-free Aromatic C−C Bond Formations under Visible Light. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lei Wang
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany Fax: (+49)-6131-379-370
| | - Jeehye Byun
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany Fax: (+49)-6131-379-370
| | - Run Li
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany Fax: (+49)-6131-379-370
| | - Wei Huang
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany Fax: (+49)-6131-379-370
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany Fax: (+49)-6131-379-370
| |
Collapse
|
37
|
Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS OMEGA 2018; 3:8243-8252. [PMID: 31458961 PMCID: PMC6644811 DOI: 10.1021/acsomega.8b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/06/2018] [Indexed: 06/10/2023]
Abstract
A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Qi-Qi Fan
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
38
|
Wang CS, Dixneuf PH, Soulé JF. Photoredox Catalysis for Building C-C Bonds from C(sp 2)-H Bonds. Chem Rev 2018; 118:7532-7585. [PMID: 30011194 DOI: 10.1021/acs.chemrev.8b00077] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Collapse
|
39
|
Zhang J, Chen L, Sun J. Oxoisoaporphine Alkaloids: Prospective Anti-Alzheimer's Disease, Anticancer, and Antidepressant Agents. ChemMedChem 2018; 13:1262-1274. [PMID: 29696800 DOI: 10.1002/cmdc.201800196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine alkaloids are a family of oxoisoquinoline-derived alkaloids that were first isolated from the rhizome of Menispermum dauricum DC. (Menispermaceae). It has been demonstrated that oxoisoaporphine alkaloids possess various biological properties, such as cholinesterase and β-amyloid inhibition, acting as a topoisomerase intercalator, monoamine oxidase A inhibition, and are expected to become anti-Alzheimer's disease, anticancer, and antidepressant drugs. This review provides an overview of natural sources, synthetic routes, bioactivities, structure-function relationship, and modification investigations into oxoisoaporphine alkaloids, with the aim of providing references to the structure-activity relationships for the design and development of oxoisoaporphine derivatives with higher efficacy and therapeutic potential.
Collapse
Affiliation(s)
- Jiayao Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Jianbo Sun
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| |
Collapse
|
40
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Mondal A, Kundu P, Jash M, Chowdhury C. Palladium-catalysed stereoselective synthesis of 4-(diarylmethylidene)-3,4-dihydroisoquinolin-1(2H)-ones: expedient access to 4-substituted isoquinolin-1(2H)-ones and isoquinolines. Org Biomol Chem 2018; 16:963-980. [DOI: 10.1039/c7ob02788e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Palladium-catalysed stereoselective synthesis of 4-(diarylmethylidene)-3,4-dihydroisoquinolin-1(2H)-ones and their straightforward transformations to 4-substituted isoquinolin-1(2H)-ones and isoquinolines are described.
Collapse
Affiliation(s)
- Amrita Mondal
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Priyanka Kundu
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Moumita Jash
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology (CSIR)
- Kolkata-700032
- India
| |
Collapse
|
42
|
Functionalization of C(sp2)–H Bonds of Arenes and Heteroarenes Assisted by Photoredox Catalysts for the C–C Bond Formation. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Melzer BC, Bracher F. A novel approach to oxoisoaporphine alkaloids via regioselective metalation of alkoxy isoquinolines. Beilstein J Org Chem 2017; 13:1564-1571. [PMID: 28904605 PMCID: PMC5564254 DOI: 10.3762/bjoc.13.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/28/2017] [Indexed: 01/23/2023] Open
Abstract
Oxoisoaporphine alkaloids are conveniently prepared via direct ring metalation of alkoxy-substituted isoquinolines at C-1, followed by reaction with iodine. Subsequent Suzuki cross-coupling of the resulting 1-iodoisoquinolines to methyl 2-(isoquinolin-1-yl)benzoates and intramolecular acylation of the corresponding carboxylic acids with Eaton's reagent afforded five alkaloids of the oxoisoaporphine type. The yield of the cyclization step strongly depends on the electrophilic properties of ring B. An alternative cyclization protocol via directed remote metalation of ester and amide intermediates was investigated thoroughly, but found to be not feasible. Two of the alkaloids showed strong cytotoxicity against the HL-60 tumor cell line.
Collapse
Affiliation(s)
- Benedikt C Melzer
- Department für Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Franz Bracher
- Department für Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
44
|
Kianmehr E, Fardpour M, Khan KM. Direct Regioselective Alkylation of Non-Basic Heterocycles with Alcohols and Cyclic Ethers through a Dehydrogenative Cross-Coupling Reaction under Metal-Free Conditions. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Maryam Fardpour
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; 75270 Karachi Pakistan
| |
Collapse
|
45
|
Abstract
Azines, which are six-membered aromatic compounds containing one or more nitrogen atoms, serve as ubiquitous structural cores of aromatic species with important applications in biological and materials sciences. Among a variety of synthetic approaches toward azines, C-H functionalization represents the most rapid and atom-economical transformation, and it is advantageous for the late-stage functionalization of azine-containing functional molecules. Since azines have several C-H bonds with different reactivities, the development of new reactions that allow for the functionalization of azines in a regioselective fashion has comprised a central issue. This review describes recent advances in the C-H functionalization of azines categorized as follows: (1) SNAr reactions, (2) radical reactions, (3) deprotonation/functionalization, and (4) metal-catalyzed reactions.
Collapse
Affiliation(s)
- Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Shuya Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Kaneda
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
46
|
Boubertakh O, Goddard JP. Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601653] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oualid Boubertakh
- Laboratoire de Chimie Organique et Bioorganique EA 4566; Université de Haute-Alsace; 3 bis rue Alfred Werner 68093 Mulhouse Cedex France
| | - Jean-Philippe Goddard
- Laboratoire de Chimie Organique et Bioorganique EA 4566; Université de Haute-Alsace; 3 bis rue Alfred Werner 68093 Mulhouse Cedex France
| |
Collapse
|
47
|
Jin C, Su L, Ma D, Cheng M. Transition-metal-free, visible-light-mediated cyclization of o-azidoarylalkynes with aryl diazonium salts. NEW J CHEM 2017. [DOI: 10.1039/c7nj03144k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light promoted transformation of o-azidoarylalkynes and aryl diazonium salts for the synthesis of unsymmetrical 2,3-diaryl-substituted indoles under transition-metal-free conditions was described.
Collapse
Affiliation(s)
- Cheng Jin
- New United Group Company Limited
- Changzhou
- China
| | | | - Daxi Ma
- Department of General Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital
- Shanghai
- China
| | - Mingrong Cheng
- Department of General Surgery
- Tianyou Hospital
- Tongji University
- Shanghai
- China
| |
Collapse
|
48
|
Yuan JW, Yang LR, Mao P, Qu LB. AgNO3-catalyzed direct C–H arylation of quinolines by oxidative decarboxylation of aromatic carboxylic acids. Org Chem Front 2017. [DOI: 10.1039/c6qo00533k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AgNO3-catalyzed direct C–H arylation of quinolines by oxidative decarboxylation of aromatic carboxylic acids to afford aryl quinoline derivatives in moderate yields was described.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P.R. China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P.R. China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P.R. China
| | - Ling-Bo Qu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P.R. China
| |
Collapse
|
49
|
|
50
|
Leow WR, Ng WKH, Peng T, Liu X, Li B, Shi W, Lum Y, Wang X, Lang X, Li S, Mathews N, Ager JW, Sum TC, Hirao H, Chen X. Al2O3 Surface Complexation for Photocatalytic Organic Transformations. J Am Chem Soc 2016; 139:269-276. [DOI: 10.1021/jacs.6b09934] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wan Ru Leow
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Wilson Kwok Hung Ng
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Tai Peng
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Xinfeng Liu
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Bin Li
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Wenxiong Shi
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yanwei Lum
- Joint
Center for Artificial Photosynthesis, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Xiaotian Wang
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Xianjun Lang
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Shuzhou Li
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Nripan Mathews
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Joel W. Ager
- Joint
Center for Artificial Photosynthesis, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Tze Chien Sum
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Hajime Hirao
- School
of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|