1
|
A Convergent Total Synthesis of Resorcylic Acid Lactones Zeaenol and Cochliomycin A. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Salituro LJ, Pazienza JE, Rychnovsky SD. Total Syntheses of Strasseriolide A and B, Antimalarial Macrolide Natural Products. Org Lett 2022; 24:1190-1194. [PMID: 35094508 DOI: 10.1021/acs.orglett.1c04340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first total syntheses of strasseriolide A and B. Strasseriolide B shows potent activity against the wild-type malaria parasite Plasmodium falciparum and good activity against a chloroquine-resistant strain. A convergent strategy was envisioned with an aldehyde-acid fragment and a vinyl iodide-alcohol fragment. Both fragments were prepared using chiral pool starting materials. They were combined with a Yamaguchi esterification and cyclized with a Nozaki-Hiyama-Kishi reaction. Strasseriolide B was assembled in a 16-step LLS.
Collapse
Affiliation(s)
- Leah J Salituro
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Jessica E Pazienza
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Scott D Rychnovsky
- Department of Chemistry, University of California at Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
3
|
Nagalatha G, Siva Ganesh N, Venkat Narsaiah A. Stereoselective synthesis of resorcylic acid lactone Cochliomycin B. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Abstract
A convergent synthetic route to the fungal metabolites cladosins B and C has been developed, affording these natural products in 29% and 27% overall yield, respectively. The cladosins are rare examples of hybrid polyketides featuring a 3-enamine tetramic acid group derived from l-valine. Key steps in this modular six-step sequence include a DMAP-mediated O- to C-acyl rearrangement to unite the side chains with the tetramic acid core and subsequent amine incorporation using either ammonium acetate or HMDS.
Collapse
Affiliation(s)
- Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - James Mease
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Justin Kim
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
5
|
Doda SR, Raghavendar A, Haridasyam SB, Putta CS, rao BK, Kadari S. Asymmetric total synthesis of filamentous fungi related resorcylic acid lactones 7-epi-zeaenol and zeaenol. HETEROCYCL COMMUN 2019. [DOI: 10.1515/hc-2019-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAn efficient, short and, a convenient asymmetric total synthesis of filamentous fungi related resorcylic acid lactones 7-epi-zeaenol (2) and zeaenol (1) have been achieved in 7 and 9 linear steps with the high overall yield of 32% and 21% respectively, from the known intermediate 13. Mitsunobu inversion, De Brabander’s protocol for macrolactonisation, Heck cross-coupling, diastereoselective alkyne aldehyde coupling and Ohira–Bestmann alkynylation are the key reactions.
Collapse
Affiliation(s)
- Sai Reddy Doda
- Natural Products Chemistry Division, CSIR – IICT, Hyderabad500007; India
| | - Avula Raghavendar
- Department of Chemistry GITAM University Hyderabad Campus, Rudrarar Village, Patancheru Mandal, Medak Dist, Telangana State - 502329, Hyderabad, India
| | - Sharath Babu Haridasyam
- Department of Chemistry GITAM University Hyderabad Campus, Rudrarar Village, Patancheru Mandal, Medak Dist, Telangana State - 502329, Hyderabad, India
| | | | | | - Sudhakar Kadari
- Department of Chemistry Osmania University, Hyderabad-500007, India
| |
Collapse
|
6
|
Cr(II)-promoted internal cyclization of acyclic enediynes fused to benzo[b]thiophene core: Macrocycles versus 2-methylenecycloalkan-1-ols formation. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Chakraborty J, Nanda S. Asymmetric total synthesis of paecilomycin C through intramolecular nucleophilic ring opening of an epoxide. Org Biomol Chem 2019; 17:7369-7379. [DOI: 10.1039/c9ob01504c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient asymmetric total synthesis of naturally occurring resorcylic acid lactone (RAL) paecilomycin C was achieved by employing carboxylate assisted 5-exo-tet ring opening of an epoxide as a key reaction.
Collapse
Affiliation(s)
- Joy Chakraborty
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
8
|
Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep 2019; 36:1546-1575. [DOI: 10.1039/c8np00094h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review covers selected examples of point chirality-forming macrocyclizations in natural product total synthesis in the past three decades.
Collapse
Affiliation(s)
- Kuan Zheng
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
9
|
Ye X, Peng H, Wei C, Yuan T, Wojtas L, Shi X. Gold-Catalyzed Oxidative Coupling of Alkynes toward the Synthesis of Cyclic Conjugated Diynes. Chem 2018; 4:1983-1993. [PMID: 30911697 DOI: 10.1016/j.chempr.2018.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A gold-catalyzed oxidative coupling of alkynes was developed as an efficient approach for the synthesis of challenging cyclic conjugated diynes (CCD). Compared to the classical copper-promoted oxidative coupling reaction of alkynes, this gold-catalyzed process exhibits a faster reaction rate due to the rapid reductive elimination from the Au(III) intermediate. This unique reactivity thus allowed a challenging diyne macrocyclization to take place in high efficiency. Condition screening revealed a [(n-Bu)4N]+[Cl-Au-Cl]- salt as the optimal pre-catalyst. Macrocycles with ring size between 13 to 28 atoms were prepared in moderate to good yields, which highlighted the broad substrate scope of this new strategy. Furthermore, the synthetic utilities of the cyclic conjugated diynes for copper-free click chemistry have been demonstrated, which showcased the potential application of this strategy in biological systems.
Collapse
Affiliation(s)
- Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Haihui Peng
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Chiyu Wei
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Teng Yuan
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL33620, USA.,Lead Contact
| |
Collapse
|
10
|
Heravi MM, Mohammadkhani L. Recent applications of Stille reaction in total synthesis of natural products: An update. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Heravi MM, Ghalavand N, Ghanbarian M, Mohammadkhani L. Applications of Mitsunobu Reaction in total synthesis of natural products. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Nastaran Ghalavand
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| | - Leyla Mohammadkhani
- Department of Chemistry; Alzahra University; Vanak, P.O. Box 1993893973 Tehran Iran
| |
Collapse
|
12
|
Sherwood AM, Williamson SE, Johnson SN, Yilmaz A, Day VW, Prisinzano TE. Scalable Regioselective and Stereoselective Synthesis of Functionalized (E)-4-Iodobut-3-en-1-ols: Gram-Scale Total Synthesis of Fungal Decanolides and Derivatives. J Org Chem 2018; 83:980-992. [PMID: 29271194 DOI: 10.1021/acs.joc.7b02324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable protocol to synthesize both racemic and chiral (E)-4-iodobut-3-en-1-ols from aldehydes or epoxides, respectively, containing various aromatic and aliphatic substitutions has been established. The utility of these compounds was then demonstrated by providing access to known fungal decanolides as well as novel aromatic macrocycles. The protocol provided a gram-scale route to (-)-aspinolide A and (-)-5-epi-aspinolide A utilizing a catalytic Nozaki-Hiyama-Kishi reaction to close the macrolide in the final step in 65-84% yields.
Collapse
Affiliation(s)
- Alexander M Sherwood
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Samuel E Williamson
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Stephanie N Johnson
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Anil Yilmaz
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Victor W Day
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66047, United States
| |
Collapse
|
13
|
Jana N, Nanda S. Resorcylic acid lactones (RALs) and their structural congeners: recent advances in their biosynthesis, chemical synthesis and biology. NEW J CHEM 2018. [DOI: 10.1039/c8nj02534g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resorcylic acid lactones (RALs) are naturally occurring 14-membered macrolactones that constitute a class of polyketides derived from fungal metabolites and that possess significant and promising biological activity.
Collapse
Affiliation(s)
- Nandan Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
14
|
Banwell MG, Ma X, Bolte B, Zhang Y, Dlugosch M. Chemical syntheses of the cochliomycins and certain related resorcylic acid lactones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Zhang XQ, Spadafora C, Pineda LM, Ng MG, Sun JH, Wang W, Wang CY, Gu YC, Shao CL. Discovery, Semisynthesis, Antiparasitic and Cytotoxic Evaluation of 14-Membered Resorcylic Acid Lactones and Their Derivatives. Sci Rep 2017; 7:11822. [PMID: 28924201 PMCID: PMC5603512 DOI: 10.1038/s41598-017-12336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Ten antifouling 14-membered resorcylic acid lactones 1-10 were isolated previously with low or trace natural abundance from the zoanthid-derived Cochliobolus lunatus fungus. Further optimization of fermentation conditions led to the isolation of two major natural compounds 7 and 8 with multi-gram quantities. By one or two steps, we semisynthesized the six trace natural compounds 1-6 and a series of derivatives 11-27 of compounds 7 and 8 with high yields (65-95%). Compounds 11-13 showed strong antiplasmodial activity against Plasmodium falciparum with IC50 values of 1.84, 8.36, and 6.95 μM, respectively. Very importantly, 11 and 12 were non-toxic with very safety and high therapeutic indices (CC50/IC50 > 180), and thus representing potential promising leads for antiplasmodial drug discovery. Furthermore, 11 was the only compound showed obvious antileishmanial activity against Leishmania donovani with an IC50 value of 9.22 μM. Compounds 11 and 12 showed the values of IC50 at 11.9 and 17.2 μM against neglected Chagas' disease causing Trypanosoma cruzi, respectively.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Laura M Pineda
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Michelle G Ng
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Clayton, Apartado, 0816-02852, Panama
| | - Ji-Hong Sun
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Wei Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
16
|
Gil A, Albericio F, Álvarez M. Role of the Nozaki–Hiyama–Takai–Kishi Reaction in the Synthesis of Natural Products. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.7b00144] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alejandro Gil
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Albericio
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- University of Kwa-Zulu-Natal, 4001, Durban, South Africa
| | - Mercedes Álvarez
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
17
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Liao L, Zhou J, Xu Z, Ye T. Concise Total Synthesis of Nannocystin A. Angew Chem Int Ed Engl 2016; 55:13263-13266. [DOI: 10.1002/anie.201606679] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/17/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Linping Liao
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Jingjing Zhou
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Tao Ye
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| |
Collapse
|
19
|
Affiliation(s)
- Linping Liao
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Jingjing Zhou
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Zhengshuang Xu
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| | - Tao Ye
- Laboratory of Chemical Genomics; Engineering Laboratory for Chiral Drug Synthesis; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Xili, Nanshan District Shenzhen 518055 China
| |
Collapse
|
20
|
Ma X, Bolte B, Banwell MG, Willis AC. Total Syntheses of the Resorcylic Acid Lactones Paecilomycin F and Cochliomycin C Using an Intramolecular Loh-Type α-Allylation Reaction for Macrolide Formation. Org Lett 2016; 18:4226-9. [PMID: 27541929 DOI: 10.1021/acs.orglett.6b01963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Subjection of the resorcylic ester 16 to a Nozaki-Hiyama-Kishi reaction afforded the 12-membered lactone 17, while treatment of it under the Loh-type α-allylation conditions using indium metal gave the isomeric, 14-membered macrolide 18. Compound 18 was readily elaborated to the resorcylic acid lactone type natural products paecilomycin F and cochliomycin C.
Collapse
Affiliation(s)
- Xiang Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Benoit Bolte
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Wang HY, Kato A, Kinami K, Li YX, Fleet GWJ, Yu CY. Concise synthesis of calystegines B2 and B3via intramolecular Nozaki-Hiyama-Kishi reaction. Org Biomol Chem 2016; 14:4885-96. [PMID: 27161660 DOI: 10.1039/c6ob00697c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).
Collapse
Affiliation(s)
- Hong-Yao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
22
|
Pal P, Chakraborty J, Mali A, Nanda S. Asymmetric total synthesis of paecilomycin F, cochliomycin C, zeaenol, 5-bromo-zeaenol and 3,5-dibromo-zeaenol by Heck coupling and late stage macrolactonization approach. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Wood JM, Furkert DP, Brimble MA. Synthesis of the 2-formylpyrrole spiroketal pollenopyrroside A and structural elucidation of xylapyrroside A, shensongine A and capparisine B. Org Biomol Chem 2016; 14:7659-64. [DOI: 10.1039/c6ob01361a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A convergent synthesis enabled structural elucidation of the 2-formyl pyrrole spiroketals pollenopyrroside A and shensongine A/xylapyrroside A. The key step involves a Maillard-type condensation to furnish the 2-formylpyrrole ring system.
Collapse
Affiliation(s)
- James M. Wood
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Daniel P. Furkert
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
24
|
|
25
|
Mahankali B, Srihari P. A Carbohydrate Approach for the First Total Synthesis of Cochliomycin C: Stereoselective Total Synthesis of Paecilomycin E, Paecilomycin F and 6′-epi-Cochliomycin C. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Affiliation(s)
- Kiyomi Ohba
- Medicinal
Chemistry Research Laboratories, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Masaya Nakata
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
27
|
Zhang Y, Dlugosch M, Jübermann M, Banwell MG, Ward JS. Total syntheses of the resorcylic acid lactone neocosmosin A and its enantiomer. J Org Chem 2015; 80:4828-33. [PMID: 25831481 DOI: 10.1021/acs.joc.5b00590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A total synthesis of the structure, 1, assigned to the recently reported resorcylic acid lactone (RAL) neocosmosin A has been established. Olefin-cross metathesis, ring-closing metathesis, palladium-catalyzed Meinwald rearrangement, and Mitsunobu esterification reactions were used as key steps. A late-stage and simple modification to the reaction sequence also provided compound ent-1 that, in fact, represents the true structure of the natural product.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael Dlugosch
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin Jübermann
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S Ward
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|