1
|
Das G, Harikrishna S, Gore KR. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. J Phys Chem B 2024; 128:8313-8331. [PMID: 39172066 DOI: 10.1021/acs.jpcb.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Over the last few decades, chemically modified sugars have been incorporated into nucleic acid-based therapeutics to improve their pharmacological potential. Chemical modification can influence the sugar conformation, Watson-Crick hydrogen (W-C) bonding, and nucleobase stacking interactions, which play major roles in the structural integrity and dynamic properties of nucleic acid duplexes. In this study, we categorized 33 uridine (U*) and cytidine (C*) sugar modifications and calculated their sugar conformational parameters. We also calculated the Watson-Crick hydrogen bond energies of the modified RNA-type base pairs (U*:A and C*:G) using DFT and sSAPT0 methods. The W-C base pairing energy calculations suggested that the South-type modified sugar strengthens the C*:G base pair and weakens the U*:A base pair compared to the unmodified one. In contrast, the North-type sugar modifications form weaker C*:G base pair and marginally stronger U*:A base pair compared to the South-type modified sugars. Moreover, intrastrand base stacking energies were calculated for 15 modifications incorporated at the fourth position in 7-mer non-self-complementary RNA duplexes [(GCAU*GAC)2 and (GCAC*GAC)2], utilizing molecular dynamics simulation and quantum mechanical (DFT and sSAPT0) methods. The sugar modifications were found to have minimal effect on the intrastrand base-stacking interactions. However, the glycol nucleic acid modification disturbs the intrastrand base-stacking significantly, corroborating the experimental data.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
3
|
Walczak D, Sikorski A, Grzywacz D, Nowacki A, Liberek B. Identification of the furanose ring conformations and the factors driving their adoption. Carbohydr Res 2023; 526:108780. [PMID: 36944302 DOI: 10.1016/j.carres.2023.108780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Three groups of furanoses with restricted freedom of rotation on the C3-C4, C2-C3, and C1-C2 bonds, respectively, are presented. Conformational analysis of these furanoses is conducted based on the proton nuclear magnetic resonance (1H NMR) spectroscopy, density functional theory (DFT) calculations, and X-ray analysis. It is shown that the particular group of the presented furanoses is locked in the specific conformation. These are the 1T2-like, the 0E-like, and the 3T4-like conformation, respectively. Characteristic 1H NMR spectra of these three conformations are presented and the factors influencing the conformational preferences of the analyzed furanoses are discussed.
Collapse
Affiliation(s)
- Dominik Walczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Daria Grzywacz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
4
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
5
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
6
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
7
|
Li Q, Trajkovski M, Fan C, Chen J, Zhou Y, Lu K, Li H, Su X, Xi Z, Plavec J, Zhou C. 4'-SCF 3 -Labeling Constitutes a Sensitive 19 F NMR Probe for Characterization of Interactions in the Minor Groove of DNA. Angew Chem Int Ed Engl 2022; 61:e202201848. [PMID: 36163470 PMCID: PMC9828712 DOI: 10.1002/anie.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/12/2023]
Abstract
Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China,Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
8
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
9
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
10
|
Abazid AH, Hollwedel TN, Nachtsheim BJ. Stereoselective Oxidative Cyclization of N-Allyl Benzamides to Oxaz(ol)ines. Org Lett 2021; 23:5076-5080. [PMID: 34138574 DOI: 10.1021/acs.orglett.1c01607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study presents an enantioselective oxidative cyclization of N-allyl carboxamides via a chiral triazole-substituted iodoarene catalyst. The method allows the synthesis of highly enantioenriched oxazolines and oxazines, with yields of up to 94% and enantioselectivities of up to 98% ee. Quaternary stereocenters can be constructed and, besides N-allyl amides, the corresponding thioamides and imideamides are well tolerated as substrates, giving rise to a plethora of chiral 5-membered N-heterocycles. By applying a multitude of further functionalizations, we finally demonstrate the high value of the observed chiral heterocycles as strategic intermediates for the synthesis of other enantioenriched target structures.
Collapse
Affiliation(s)
- Ayham H Abazid
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| | - Tom-Niklas Hollwedel
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- University of Bremen, Institute of Organic and Analytical Chemistry, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
11
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
12
|
Akabane-Nakata M, Erande ND, Kumar P, Degaonkar R, Gilbert JA, Qin J, Mendez M, Woods LB, Jiang Y, Janas M, O’Flaherty DK, Zlatev I, Schlegel M, Matsuda S, Egli M, Manoharan M. siRNAs containing 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides: in vitro and in vivo RNAi activity and inability of mitochondrial polymerases to incorporate 2'-F-NMC NTPs. Nucleic Acids Res 2021; 49:2435-2449. [PMID: 33577685 PMCID: PMC7969009 DOI: 10.1093/nar/gkab050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.
Collapse
Affiliation(s)
| | - Namrata D Erande
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Pawan Kumar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Rohan Degaonkar
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Jason A Gilbert
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martha Mendez
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Lauren Blair Woods
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Derek K O’Flaherty
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Zheng Z, Groaz E, Snoeck R, De Jonghe S, Herdewijn P, Andrei G. Influence of 4'-Substitution on the Activity of Gemcitabine and Its ProTide Against VZV and SARS-CoV-2. ACS Med Chem Lett 2021; 12:88-92. [PMID: 33479570 PMCID: PMC7737538 DOI: 10.1021/acsmedchemlett.0c00485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
![]()
In
addition to its therapeutic value as a chemotherapy drug, gemcitabine
is of ongoing interest to the scientific community for its broad-spectrum
antiviral activity. Herein the synthesis of 4′-methoxy- and
4′-fluoro-substituted gemcitabine analogues along with their
phosphoramidate prodrugs is described. Among these derivatives, 4′-fluorogemcitabine
proved to be active against varicella zoster virus (VZV, TK+ strain)
with an EC50 of 0.042 μM and produced significant
cytotoxicity (CC50 = 0.11 μM). Upon derivatization
of this trifluoro nucleoside as its prodrug, decreased anti-VZV activity
was observed, but with a concomitantly improved selectivity index
(SI = 36). When this prodrug was tested against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), its antiviral activity (EC50 = 0.73 μM) was comparable to or slightly lower than
its cytotoxic concentration in measurements of cell growth and cell
morphology, respectively.
Collapse
Affiliation(s)
- Zihua Zheng
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Synthesis and Conformational Analysis of Fluorinated Uridine Analogues Provide Insight into a Neighbouring-Group Participation Mechanism. Molecules 2020; 25:molecules25235513. [PMID: 33255573 PMCID: PMC7728060 DOI: 10.3390/molecules25235513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
Fluorinated nucleoside analogues have attracted much attention as anticancer and antiviral agents and as probes for enzymatic function. However, the lack of direct synthetic methods, especially for 2′,3′-dideoxy-2′,3′-difluoro nucleosides, hamper their practical utility. In order to design more efficient synthetic methods, a better understanding of the conformation and mechanism of formation of these molecules is important. Herein, we report the synthesis and conformational analysis of a 2′,3′-dideoxy-2′,3′-difluoro and a 2′-deoxy-2′-fluoro uridine derivative and provide an insight into the reaction mechanism. We suggest that the transformation most likely diverges from the SN1 or SN2 pathway, but instead operates via a neighbouring-group participation mechanism.
Collapse
|
15
|
|
16
|
Harp JM, Guenther DC, Bisbe A, Perkins L, Matsuda S, Bommineni GR, Zlatev I, Foster DJ, Taneja N, Charisse K, Maier MA, Rajeev KG, Manoharan M, Egli M. Structural basis for the synergy of 4'- and 2'-modifications on siRNA nuclease resistance, thermal stability and RNAi activity. Nucleic Acids Res 2019; 46:8090-8104. [PMID: 30107495 PMCID: PMC6144868 DOI: 10.1093/nar/gky703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2′/O2′ atoms are the most common sites for modification. Compared to 2′-O-substituents, ribose 4′-C-substituents lie in proximity of both the 3′- and 5′-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2′-F and 2′-OMe with 4′-Cα- and 4′-Cβ-OMe, and 2′-F with 4′-Cα-methyl modification. The α- and β-epimers of 4′-C-OMe-uridine and the α-epimer of 4′-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4′α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2′-substituent (H, F, OMe). The 4′β-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2′-F,4′-Cα-OMe-U, 2′-F,4′-Cβ-OMe-U, 2′-OMe,4′-Cα-OMe-U, 2′-OMe,4′-Cβ-OMe-U or 2′-F,4′-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4′β-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2′-F,4′-Cα-OMe-U or 2′-F,4′-Cβ-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2′-/4′-C-modifications.
Collapse
Affiliation(s)
- Joel M Harp
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Lydia Perkins
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Donald J Foster
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Nate Taneja
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Martin A Maier
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| |
Collapse
|
17
|
Akabane-Nakata M, Kumar P, Das RS, Erande ND, Matsuda S, Egli M, Manoharan M. Synthesis and Biophysical Characterization of RNAs Containing 2'-Fluorinated Northern Methanocarbacyclic Nucleotides. Org Lett 2019; 21:1963-1967. [PMID: 30892051 DOI: 10.1021/acs.orglett.8b04153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-Fluorinated Northern methanocarbacyclic (2'-F-NMC) nucleosides and phosphoramidites, based on a bicyclo[3.1.0]hexane scaffold bearing all four natural nucleobases (U, C, A, and G), were synthesized to enable exploration of this novel nucleotide modification related to the clinically validated 2'-deoxy-2'-fluororibonucleotides (2'-F-RNA). Biophysical properties of the 2'-F-NMC-containing oligonucleotides were evaluated. A duplex of 2'-F-NMC-modified oligonucleotide with RNA exhibited thermal stability similar to that of the parent RNA duplex, 2'-F-NMC-modified oligonucleotides had higher stability against 5'- and 3'-exonucleolytic degradation than the corresponding oligonucleotides modified with 2'-F-RNA, and 2'-F-NMC-modified oligonucleotides exhibited higher lipophilicity than the corresponding RNA oligonucleotides as well as those modified with 2'-F-RNA.
Collapse
Affiliation(s)
- Masaaki Akabane-Nakata
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Pawan Kumar
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Rajat S Das
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Namrata D Erande
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
18
|
Frei S, Katolik AK, Leumann CJ. Synthesis, biophysical properties, and RNase H activity of 6'-difluoro[4.3.0]bicyclo-DNA. Beilstein J Org Chem 2019; 15:79-88. [PMID: 30680042 PMCID: PMC6334804 DOI: 10.3762/bjoc.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Here we present the synthesis, the biophysical properties, and the RNase H profile of 6'-difluorinated [4.3.0]bicyclo-DNA (6'-diF-bc4,3-DNA). The difluorinated thymidine phosphoramidite building block was synthesized starting from an already known gem-difluorinated tricyclic glycal. This tricyclic siloxydifluorocyclopropane was converted into the [4.3.0]bicyclic nucleoside via cyclopropane ring-opening through the addition of an electrophilic iodine during the nucleosidation step followed by reduction. The gem-difluorinated bicyclic nucleoside was then converted into the corresponding phosphoramidite building block which was incorporated into oligonucleotides. Thermal denaturation experiments of these oligonucleotides hybridized to complementary DNA or RNA disclosed a significant destabilization of both duplex types (ΔT m/mod = -1.6 to -5.5 °C). However, in the DNA/RNA hybrid the amount of destabilization could be reduced by multiple insertions of the modified unit. In addition, CD spectroscopy of the oligonucleotides hybridized to RNA showed a similar structure than the natural DNA/RNA duplex. Furthermore, since the structural investigation on the nucleoside level by X-ray crystallography and ab initio calculations pointed to a furanose conformation in the southern region, a RNase H cleavage assay was conducted. This experiment revealed that the oligonucleotide containing five modified units was able to elicit the RNase H-mediated cleavage of the complementary RNA strand.
Collapse
Affiliation(s)
- Sibylle Frei
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Adam K Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
19
|
Frei S, Istrate A, Leumann CJ. 6'-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations. Beilstein J Org Chem 2018; 14:3088-3097. [PMID: 30643586 PMCID: PMC6317435 DOI: 10.3762/bjoc.14.288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated 6'-fluoro[4.3.0]bicyclo nucleotides (6'F-bc4,3-DNA). Two 6'F-bc4,3 phosphoramidite building blocks (T and C) were synthesized starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermediate via difluorocarbene addition followed either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the β-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6'F-bc4,3 nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔT m/mod = -1.5 to -3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level revealed the preference of the C1'-exo/C2'-endo alignment of the furanose ring. Moreover, the simulation of duplexes with complementary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.
Collapse
Affiliation(s)
- Sibylle Frei
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
20
|
He XY, Wang J, Lu DD, Wang SQ. Synthesis and Antisense Properties of 2'β-F-Arabinouridine Modified Oligonucleotides with 4'- C-OMe Substituent. Molecules 2018; 23:molecules23092374. [PMID: 30227644 PMCID: PMC6225415 DOI: 10.3390/molecules23092374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
A novel 2′-F,4′-C-OMe–arabinouridine (araU) was successfully synthesized and introduced into oligonucleotides. The oligonucleotide containing 2′-F,4′-C-OMe–araU exhibited improved nuclease resistance and RNA hybridizing selective ability relative to 2′-F–araU. In particular, when 2′-F,4′-C-OMe–araU inserted into C–H⋯F–C bonding-favorable 5′–uridine–purine–3′ steps, the modified oligonucleotide showed remarkable binding affinity and selectivity to RNA complements. Thus, 2′-F,4′-C-OMe–araU has valuable antisense properties and can be used as novel chemical modification for antisense therapeutic strategy.
Collapse
Affiliation(s)
- Xiao-Yang He
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Dan-Dan Lu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
21
|
Malek-Adamian E, Patrascu MB, Jana SK, Martínez-Montero S, Moitessier N, Damha MJ. Adjusting the Structure of 2'-Modified Nucleosides and Oligonucleotides via C4'-α-F or C4'-α-OMe Substitution: Synthesis and Conformational Analysis. J Org Chem 2018; 83:9839-9849. [PMID: 29963864 DOI: 10.1021/acs.joc.8b01329] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the first syntheses of three nucleoside analogues, namely, 2',4'-diOMe-rU, 2'-OMe,4'-F-rU, and 2'-F,4'-OMe-araU, via stereoselective introduction of fluorine or methoxy functionalities at the C4'-α-position of a 4',5'-olefinic intermediate. Conformational analyses of these nucleosides and comparison to other previously reported 2',4'-disubstituted nucleoside analogues make it possible to evaluate the effect of fluorine and methoxy substitution on the sugar pucker, as assessed by NMR, X-ray diffraction, and computational methods. We found that C4'-α-F/OMe substituents reinforce the C3'-endo ( north) conformation of 2'-OMe-rU. Furthermore, the predominant C2'-endo ( south/ east) conformation of 2'-F-araU switches to C3'-endo upon introduction of these substituents at C4'. The nucleoside analogues were incorporated into DNA and RNA oligonucleotides via standard phosphoramidite chemistry, and their effects on the thermal stability of homo- and heteroduplexes were assessed via UV thermal melting experiments. We found that 4'-substituents can modulate the binding affinity of the parent 2'-modified oligomers, inducing a mildly destabilizing or stabilizing effect depending on the duplex type. This study expands the spectrum of oligonucleotide modifications available for rational design of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Mihai Burai Patrascu
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Sunit Kumar Jana
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Saúl Martínez-Montero
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Masad J Damha
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| |
Collapse
|
22
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
23
|
Malek-Adamian E, Guenther DC, Matsuda S, Martínez-Montero S, Zlatev I, Harp J, Burai Patrascu M, Foster DJ, Fakhoury J, Perkins L, Moitessier N, Manoharan RM, Taneja N, Bisbe A, Charisse K, Maier M, Rajeev KG, Egli M, Manoharan M, Damha MJ. 4'-C-Methoxy-2'-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. J Am Chem Soc 2017; 139:14542-14555. [PMID: 28937776 DOI: 10.1021/jacs.7b07582] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dale C Guenther
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Donald J Foster
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lydia Perkins
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Masad J Damha
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Bhuma N, Burade SS, Bagade AV, Kumbhar NM, Kodam KM, Dhavale DD. Synthesis and anti-proliferative activity of 3′-deoxy-3′-fluoro-3′- C -hydroxymethyl-pyrimidine and purine nucleosides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Istrate A, Katolik A, Istrate A, Leumann CJ. 2'β-Fluoro-Tricyclo Nucleic Acids (2'F-tc-ANA): Thermal Duplex Stability, Structural Studies, and RNase H Activation. Chemistry 2017; 23:10310-10318. [PMID: 28477335 DOI: 10.1002/chem.201701476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/16/2023]
Abstract
We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'β-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications.
Collapse
Affiliation(s)
- Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
26
|
Shoji T, Kim S, Chiba K. Synthesis of Azanucleosides by Anodic Oxidation in a Lithium Perchlorate-Nitroalkane Medium and Diversification at the 4′-Nitrogen Position. Angew Chem Int Ed Engl 2017; 56:4011-4014. [DOI: 10.1002/anie.201700547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Takao Shoji
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Shokaku Kim
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
27
|
Shoji T, Kim S, Chiba K. Synthesis of Azanucleosides by Anodic Oxidation in a Lithium Perchlorate-Nitroalkane Medium and Diversification at the 4′-Nitrogen Position. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Takao Shoji
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Shokaku Kim
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
28
|
Yoshimura Y. Development of a Glycosylation Reaction: A Key to Accessing Structurally Unique Nucleosides. HETEROCYCLES 2017. [DOI: 10.3987/rev-17-865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem 2015; 7:2221-42. [PMID: 26510815 DOI: 10.4155/fmc.15.144] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.
Collapse
|
30
|
Martínez-Montero S, Deleavey GF, Martín-Pintado N, Fakhoury JF, González C, Damha MJ. Locked 2'-Deoxy-2',4'-Difluororibo Modified Nucleic Acids: Thermal Stability, Structural Studies, and siRNA Activity. ACS Chem Biol 2015; 10:2016-23. [PMID: 26053215 DOI: 10.1021/acschembio.5b00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
2'-Deoxy-2',4'-difluorouridine (2',4'-diF-rU) was readily incorporated into DNA and RNA oligonucleotides via standard solid phase synthesis protocols. NMR and thermal denaturation (Tm) data of duplexes was consistent with the 2',4'-diF-rU nucleotides adopting a rigid North (RNA-like) sugar conformation, as previously observed for the nucleoside monomer. The impact of this modification on Tm is neutral when incorporated within RNA:RNA duplexes, mildly destabilizing when located in the RNA strand of a DNA:RNA duplex, and highly destabilizing when inserted in the DNA strand of DNA:RNA and DNA:DNA duplexes. Molecular dynamics calculations suggest that the destabilization effect in DNA:DNA and DNA:RNA duplexes is the result of structural distortions created by A/B junctions within the helical structures. Quantum mechanics calculations suggest that the "neutral" effect imparted to A-form duplexes is caused by alterations in charge distribution that compensate the stabilizing effect expected for a pure North-puckered furanose sugar. 2',4'-diF-RNA modified siRNAs were able to trigger RNA interference with excellent efficiency. Of note, incorporation of a few 2',4'-diF-rU residues in the middle of the guide (antisense) strand afforded siRNAs that were more potent than the corresponding siRNAs containing LNA and 2'-F-ANA modifications, and as active as the 2'-F-RNA modified siRNAs.
Collapse
Affiliation(s)
- Saúl Martínez-Montero
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Glen F. Deleavey
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Nerea Martín-Pintado
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Johans F. Fakhoury
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
31
|
Suresh G, Priyakumar UD. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study. J Mol Graph Model 2015; 61:150-9. [PMID: 26254870 DOI: 10.1016/j.jmgm.2015.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
| |
Collapse
|