1
|
Wanner DM, Becker PM, Suhr S, Wannenmacher N, Ziegler S, Herrmann J, Willig F, Gabler J, Jangid K, Schmid J, Hans AC, Frey W, Sarkar B, Kästner J, Peters R. Cooperative Lewis Acid-1,2,3-Triazolium-Aryloxide Catalysis: Pyrazolone Addition to Nitroolefins as Entry to Diaminoamides. Angew Chem Int Ed Engl 2023; 62:e202307317. [PMID: 37358186 DOI: 10.1002/anie.202307317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward β,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.
Collapse
Affiliation(s)
- Daniel M Wanner
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Patrick M Becker
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Simon Suhr
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nick Wannenmacher
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Justin Herrmann
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Felix Willig
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Julia Gabler
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Khushbu Jangid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Juliane Schmid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Andreas C Hans
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Wolfgang Frey
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Johannes Kästner
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - René Peters
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Jiang H, Yuan P, Ding J, Wu H, Wang L, Chen K, Jiang N, Dai Y. Novel biodegradation pathway of insecticide flonicamid mediated by an amidase and its unusual substrate spectrum. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129952. [PMID: 36116312 DOI: 10.1016/j.jhazmat.2022.129952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The insecticide flonicamid (FLO) and its main degradation intermediate 4-trifluoromethylnicotinamide (TFNA-AM) are hazardous to the environment and animals. Microbial transformation of FLO has been well studied, but no study has yet reported on TFNA-AM degradation by a microorganism. Here, Pseudomonas stutzeri CGMCC 22915 effectively degraded TFNA-AM to 5-trifluoromethylnicotinic acid (TFNA). P. stutzeri CGMCC 22915 degraded 60.0% of TFNA-AM (1154.44 μmol/L) within 6 h with a half-life of just 4.5 h. Moreover, P. stutzeri CGMCC 22915 significantly promoted TFNA-AM decomposition in surface water. The reaction was catalyzed by an amidase, PsAmiA. PsAmiA is encoded in a novel nitrile-converting enzyme gene cluster. The enzyme shared only 20-44% identities with previously characterized signature amidases. PsAmiA was successfully expressed in Escherichia coli and its enzymatic properties were investigated using TFNA-AM as the substrate. PsAmiA was more active toward amides without hydrophilic groups, and did not hydrolyze another amide metabolite of FLO, N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), which is structurally very similar to TFNA-AM. Molecular docking of PsAmiA and TFNA-AM indicated that hydrophobic residues Leu148, Ala150, Ala195, Ile225, Trp341, Leu460, and Ile463 may affect its substrate spectrum. This study provides new insights of the environmental fate of FLO at the molecular level and the structure-function relationships of amidases.
Collapse
Affiliation(s)
- Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Panpan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jianjun Ding
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Hongkai Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Kexin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Nengdang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
3
|
Wannenmacher N, Heberle M, Yu X, Demircan A, Wanner DM, Pfeffer C, Peters R. Diastereospecific Enantiodivergent Allylation of Pyrazolones as an Entry to β‐Aminoamides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nick Wannenmacher
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Martin Heberle
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Xin Yu
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Aysegül Demircan
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Daniel M. Wanner
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Camilla Pfeffer
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
4
|
Zhang S, Seeberger PH. Total Syntheses of Conjugation-Ready Repeating Units of Acinetobacter baumannii AB5075 for Glycoconjugate Vaccine Development. Chemistry 2021; 27:17444-17451. [PMID: 34665908 PMCID: PMC9298076 DOI: 10.1002/chem.202103234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that causes serious nosocomial infections. One of the multidrug-resistant strains, AB5075, can result in bacteremia, pneumonia and wound infections associated with high morbidity and mortality. The structurally unique glycans on the surface of these bacteria are attractive targets for the development of glycoconjugate vaccines. Here, we report the first total synthesis of the densely functionalized trisaccharide repeating unit of A. baumannii AB5075 as well as two analogues. The construction of 1,2-cis linkages between the rare sugars relies on a double-serial inversion strategy. The judicious selection of building blocks and reaction conditions allowed for stereoselective glycosylations, the installation of acetamido groups and the (S)-3-hydroxybutanoyl chain.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
5
|
Zhao YX, Guo L, Wang L, Jiang ND, Chen KX, Dai YJ. Biodegradation of the pyridinecarboxamide insecticide flonicamid by Microvirga flocculans and characterization of two novel amidases involved. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112384. [PMID: 34091185 DOI: 10.1016/j.ecoenv.2021.112384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinecarboxamide insecticide that exhibits particularly good efficacy in pest control. However, the extensive use of FLO in agricultural production poses environmental risks. Hence, its environmental behavior and degradation mechanism have received increasing attention. Microvirga flocculans CGMCC 1.16731 rapidly degrades FLO to produce the intermediate N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) and the end acid metabolite 4-(trifluoromethyl) nicotinol glycine (TFNG). This bioconversion is mediated by the nitrile hydratase/amidase system; however, the amidase that is responsible for the conversion of TFNG-AM to TFNG has not yet been reported. Here, gene cloning, overexpression in Escherichia coli and characterization of pure enzymes showed that two amidases-AmiA and AmiB-hydrolyzed TFNG-AM to TFNG. AmiA and AmiB showed only 20-30% identity to experimentally characterized amidase signature family members, and represent novel amidases. Compared with AmiA, AmiB was more sensitive to silver and copper ions but more resistant to organic solvents. Both enzymes demonstrated good pH tolerance and exhibited broad amide substrate specificity. Homology modeling suggested that residues Asp191 and Ser195 may strongly affect the catalytic activity of AmiA and AmiB, respectively. The present study furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and may aid in the development of a bioremediation agent for FLO.
Collapse
Affiliation(s)
- Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Crochet P, Cadierno V. Access to
α
‐ and
β
‐Hydroxyamides and Ureas Through Metal‐Catalyzed C≡N Bond Hydration and Transfer Hydration Reactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pascale Crochet
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Victorio Cadierno
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
7
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
8
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
9
|
Mareya TM, Coady TM, O'Reilly C, Kinsella M, Coffey L, Lennon CM. Process Optimisation Studies and Aminonitrile Substrate Evaluation of Rhodococcus erythropolis SET1, A Nitrile Hydrolyzing Bacterium. ChemistryOpen 2020; 9:512-520. [PMID: 32346499 PMCID: PMC7184877 DOI: 10.1002/open.202000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
A comprehensive series of optimization studies including pH, solvent and temperature were completed on the nitrile hydrolyzing Rhodococcus erythropolis bacterium SET1 with the substrate 3-hydroxybutyronitrile. These identified temperature of 25 °C and pH of 7 as the best conditions to retain enantioselectivity and activity. The effect of the addition of organic solvents to the biotransformation mixture was also determined. The results of the study suggested that SET1 is suitable for use in selected organo-aqueous media at specific ratios only. The functional group tolerance of the isolate with unprotected and protected β-aminonitriles, structural analogues of β-hydroxynitriles was also investigated with disappointingly poor isolated yields and selectivity obtained. The isolate was further evaluated with the α- aminonitrile phenylglycinonitrile generating acid in excellent yield and ee (>99 % (S) - isomer and 50 % yield). A series of pH studies with this substrate indicated pH 7 to be the optimum pH to avoid product and substrate degradation.
Collapse
Affiliation(s)
- Tatenda M. Mareya
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Tracey M. Coady
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Catherine O'Reilly
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Michael Kinsella
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Lee Coffey
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Claire M. Lennon
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| |
Collapse
|
10
|
González-Fernández R, Crochet P, Cadierno V. Synthesis of β-hydroxyamides through ruthenium-catalyzed hydration/transfer hydrogenation of β-ketonitriles in water: Scope and limitations. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Méndez‐Sánchez D, Mourelle‐Insua Á, Gotor‐Fernández V, Lavandera I. Synthesis of α‐Alkyl‐β‐Hydroxy Amides through Biocatalytic Dynamic Kinetic Resolution Employing Alcohol Dehydrogenases. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Méndez‐Sánchez
- Department of Organic and Inorganic ChemistryUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
- Current address: Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Ángela Mourelle‐Insua
- Department of Organic and Inorganic ChemistryUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Department of Organic and Inorganic ChemistryUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Department of Organic and Inorganic ChemistryUniversity of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
12
|
Mourelle-Insua Á, Méndez-Sánchez D, Galman JL, Slabu I, Turner NJ, Gotor-Fernández V, Lavandera I. Efficient synthesis of α-alkyl-β-amino amides by transaminase-mediated dynamic kinetic resolutions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01004a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A transaminase-catalyzed dynamic kinetic resolution is described for the stereoselective synthesis of a series of α-alkyl-β-amino amides.
Collapse
Affiliation(s)
- Ángela Mourelle-Insua
- Organic and Inorganic Chemistry Department
- University of Oviedo
- 33006 Oviedo
- Spain
- School of Chemistry
| | | | - James L. Galman
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Iustina Slabu
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Nicholas J. Turner
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | | | - Iván Lavandera
- Organic and Inorganic Chemistry Department
- University of Oviedo
- 33006 Oviedo
- Spain
| |
Collapse
|
13
|
Zheng J, Lin L, Dai L, Tang Q, Liu X, Feng X. Nickel-Catalyzed Conjugate Addition of Silyl Ketene Imines to In Situ Generated Indol-2-ones: Highly Enantioselective Construction of Vicinal All-Carbon Quaternary Stereocenters. Angew Chem Int Ed Engl 2017; 56:13107-13111. [DOI: 10.1002/anie.201705943] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/23/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jianfeng Zheng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Li Dai
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Qiong Tang
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
14
|
Zheng J, Lin L, Dai L, Tang Q, Liu X, Feng X. Nickel-Catalyzed Conjugate Addition of Silyl Ketene Imines to In Situ Generated Indol-2-ones: Highly Enantioselective Construction of Vicinal All-Carbon Quaternary Stereocenters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jianfeng Zheng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Li Dai
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Qiong Tang
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology; Ministry of Education; College of Chemistry; Sichuan University; Chengdu 610064 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
15
|
Rapheeha OKL, Roux-van der Merwe MP, Badenhorst J, Chhiba V, Bode ML, Mathiba K, Brady D. Hydrolysis of nitriles by soil bacteria: variation with soil origin. J Appl Microbiol 2016; 122:686-697. [PMID: 27930842 DOI: 10.1111/jam.13367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 12/01/2022]
Abstract
AIMS The aim of this study was to explore bacterial soil diversity for nitrile biocatalysts, in particular, those for hydrolysis of β-substituted nitriles, to the corresponding carboxamides and acids that may be incorporated into peptidomimetics. To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. METHODS AND RESULTS Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long transect of South Africa, including agricultural soil, a gold mine tailing dam and uncultivated soil. The substrate profile of these isolates was determined through element-limited growth studies on seven different aliphatic or aromatic nitriles. A subset of these organisms expressing broad substrate ranges was evaluated for their ability to hydrolyse β-substituted nitriles (3-amino-3-phenylpropionitrile and 3-hydroxy-4-phenoxybutyronitrile) and the active organisms were found to be Rhodococcus erythropolis from uncultivated soil and Rhodococcus rhodochrous from agricultural soils. CONCLUSIONS The capacity for hydrolysis of β-substituted nitriles appears to reside almost exclusively in Rhodococci. Land use has a much greater effect on the biocatalysis substrate profile than geographical location. SIGNIFICANCE AND IMPACT OF THE STUDY Enzymes are typically substrate specific in their catalytic reactions, and this means that a wide diversity of enzymes is required to provide a comprehensive biocatalysis toolbox. This paper shows that the microbial diversity of nitrile hydrolysis activity can be targeted according to land utilization. Nitrile biocatalysis is a green chemical method for the enzymatic production of amides and carboxylic acids that has industrial applications, such as in the synthesis of acrylamide and nicotinamide. The biocatalysts discovered in this study may be applied to the synthesis of peptidomimetics which are an important class of therapeutic compounds.
Collapse
Affiliation(s)
- O K L Rapheeha
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - M P Roux-van der Merwe
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - J Badenhorst
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - V Chhiba
- CSIR Biosciences, Pretoria, South Africa.,Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - M L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - K Mathiba
- CSIR Biosciences, Pretoria, South Africa
| | - D Brady
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa.,CSIR Biosciences, Pretoria, South Africa.,Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid. Appl Microbiol Biotechnol 2016; 101:1953-1964. [DOI: 10.1007/s00253-016-7921-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
17
|
Wu ZM, Zheng RC, Zheng YG. Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174. Enzyme Microb Technol 2016; 86:93-102. [DOI: 10.1016/j.enzmictec.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
18
|
Zhu L, Kitanosono T, Xu P, Kobayashi S. Chiral Cu(II)-catalyzed enantioselective β-borylation of α,β-unsaturated nitriles in water. Beilstein J Org Chem 2015; 11:2007-11. [PMID: 26664621 PMCID: PMC4661013 DOI: 10.3762/bjoc.11.217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
The promising performance of copper(II) complexes was demonstrated for asymmetric boron conjugate addition to α,β-unsaturated nitriles in water. The catalyst system, which consisted of Cu(OAc)2 and a chiral 2,2′-bipyridine ligand, enabled β-borylation and chiral induction in water. Subsequent protonation, which was accelerated in aqueous medium, led to high activity of this asymmetric catalysis. Both solid and liquid substrates were suitable despite being insoluble in water.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Pengyu Xu
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by other methods. Nitrile substrates are readily available, and the mild reaction conditions are specific toward cyano and amido functional groups without interfering with other reactive functional groups. I anticipate that further advances in this field will lead to new and engineered nitrile-hydrolyzing enzymes or catalytic systems with improved activity and altered selectivity. These advances will broaden the scope of these transformations and their applications in organic synthesis.
Collapse
Affiliation(s)
- Mei-Xiang Wang
- MOE Key
Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
20
|
Sundell R, Kanerva LT. Studies onN-Activation for the Lipase-Catalyzed Enantioselective Preparation of β-Amino Esters from 4-Phenylazetidin-2-one. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Coady TM, Coffey LV, O'Reilly C, Lennon CM. Substrate Evaluation ofRhodococcus erythropolisSET1, a Nitrile Hydrolysing Bacterium, Demonstrating Dual Activity Strongly Dependent on Nitrile Sub-Structure. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Bhaskara Rao VU, Kumar K, Singh RP. An efficient aldol-type direct reaction of isatins with TMSCH2CN. Org Biomol Chem 2015; 13:9755-9. [DOI: 10.1039/c5ob01560j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cesium fluoride catalyzed direct cyanomethylation of various isatins by using trimethylsilyl acetonitrile (TMSAN) as a nucleophile has been developed. The reaction has been explored for a number of isatins, with various substitutions on its aromatic ring. Further, the versatility of the reaction is demonstrated by converting the direct aldol adducts to various corresponding intermediates.
Collapse
Affiliation(s)
- V. U. Bhaskara Rao
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India 110016
| | - Krishna Kumar
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India 110016
| | - Ravi P. Singh
- Department of Chemistry
- Indian Institute of Technology
- New Delhi
- India 110016
| |
Collapse
|
23
|
Zhao J, Fang B, Luo W, Hao X, Liu X, Lin L, Feng X. Enantioselective Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Silyl Ketene Imines with Isatin‐Derived Ketimines. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408730] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiannan Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Bing Fang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Weiwei Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaoyu Hao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China)
| |
Collapse
|
24
|
Zhao J, Fang B, Luo W, Hao X, Liu X, Lin L, Feng X. Enantioselective Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Silyl Ketene Imines with Isatin‐Derived Ketimines. Angew Chem Int Ed Engl 2014; 54:241-4. [DOI: 10.1002/anie.201408730] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/05/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jiannan Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Bing Fang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Weiwei Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaoyu Hao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China)
| |
Collapse
|
25
|
Ao YF, Leng DH, Wang DX, Zhao L, Wang MX. Efficient synthesis of highly enantiopure β-lactam derivatives from biocatalytic transformations of amides and nitriles. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zhang LB, Wang DX, Zhao L, Wang MX. Synthesis and Application of Enantioenriched Functionalized α-Tetrasubstituted α-Amino Acids from Biocatalytic Desymmetrization of Prochiral α-Aminomalonamides. J Org Chem 2012; 77:5584-91. [DOI: 10.1021/jo3007122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Li-Bing Zhang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Molecular Recognition
and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Xian Wang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Molecular Recognition
and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Chen P, Gao M, Wang DX, Zhao L, Wang MX. Enantioselective Biotransformations of Racemic and Meso Pyrrolidine-2,5-dicarboxamides and Their Application in Organic Synthesis. J Org Chem 2012; 77:4063-72. [DOI: 10.1021/jo300412j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Chen
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Gao
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular
Sciences, CAS Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Zhao
- MOST Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- MOST Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Chhiba V, Bode ML, Mathiba K, Kwezi W, Brady D. Enantioselective biocatalytic hydrolysis of β-aminonitriles to β-amino-amides using Rhodococcus rhodochrous ATCC BAA-870. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Chen P, Gao M, Wang DX, Zhao L, Wang MX. Practical biocatalytic desymmetrization of meso-N-heterocyclic dicarboxamides and their application in the construction of aza-sugar containing nucleoside analogs. Chem Commun (Camb) 2012; 48:3482-4. [PMID: 22322323 DOI: 10.1039/c2cc18012j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amidase-catalyzed desymmetrization of meso-N-heterocyclic dicarboxamides under very mild conditions provided a highly efficient and practical method for the preparation of enantiomerically pure carbamoyl-substituted heterocyclic amino acids that were unique and versatile platforms for the construction of both antipodes of aza-sugar containing nucleoside analogs.
Collapse
Affiliation(s)
- Peng Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | |
Collapse
|
31
|
Microbial whole cell-catalyzed desymmetrization of prochiral malonamides: practical synthesis of enantioenriched functionalized carbamoylacetates and their application in the preparation of unusual α-amino acids. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Overexpression of a recombinant amidase in a complex auto-inducing culture: purification, biochemical characterization, and regio- and stereoselectivity. J Ind Microbiol Biotechnol 2011; 38:1931-8. [DOI: 10.1007/s10295-011-0979-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022]
|
34
|
van Pelt S, Zhang M, Otten LG, Holt J, Sorokin DY, van Rantwijk F, Black GW, Perry JJ, Sheldon RA. Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org Biomol Chem 2011; 9:3011-9. [DOI: 10.1039/c0ob01067g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Stereoselective synthesis of optically active cyclic α- and β-amino esters through lipase-catalyzed transesterification or interesterification processes. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T. Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Ma M, Hou G, Sun T, Zhang X, Li W, Wang J, Zhang X. Highly Efficient RhI-Catalyzed Asymmetric Hydrogenation of β-Amino Acrylonitriles. Chemistry 2010; 16:5301-4. [DOI: 10.1002/chem.201000325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Wang YS, Zheng RC, Xu JM, Liu ZQ, Cheng F, Feng ZH, Liu LL, Zheng YG, Shen YC. Enantioselective hydrolysis of (R)-2, 2-dimethylcyclopropane carboxamide by immobilized cells of an R-amidase-producing bacterium, Delftia tsuruhatensis CCTCC M 205114, on an alginate capsule carrier. J Ind Microbiol Biotechnol 2010; 37:503-10. [DOI: 10.1007/s10295-010-0696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/03/2010] [Indexed: 11/28/2022]
|
39
|
Rodríguez-Mata M, García-Urdiales E, Gotor-Fernández V, Gotor V. Stereoselective Chemoenzymatic Preparation of β-Amino Esters: Molecular Modelling Considerations in Lipase-Mediated Processes and Application to the Synthesis of (S)-Dapoxetine. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M. Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:184-92. [DOI: 10.1016/j.bbapap.2009.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/27/2009] [Accepted: 10/01/2009] [Indexed: 11/26/2022]
|
41
|
Veitía MSI, Brun PL, Jorda P, Falguières A, Ferroud C. Synthesis of novel N-protected β3-amino nitriles: study of their hydrolysis involving a nitrilase-catalyzed step. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Novel synthesis of 3-aminopropionitriles by ring opening of 2-oxazolidinones with cyanide ion. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Poisson T, Gembus V, Oudeyer S, Marsais F, Levacher V. Product-Catalyzed Addition of Alkyl Nitriles to Unactivated Imines Promoted by Sodium Aryloxide/Ethyl(trimethylsilyl)acetate (ETSA) Combination. J Org Chem 2009; 74:3516-9. [DOI: 10.1021/jo802763b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Poisson
- Chimie Organique, Bioorganique, Réactivité et Analyse (UMR6014), CNRS, Université et INSA de Rouen, IRCOF, BP08, F-76131Mont-Saint-Aignan Cedex, France
| | - Vincent Gembus
- Chimie Organique, Bioorganique, Réactivité et Analyse (UMR6014), CNRS, Université et INSA de Rouen, IRCOF, BP08, F-76131Mont-Saint-Aignan Cedex, France
| | - Sylvain Oudeyer
- Chimie Organique, Bioorganique, Réactivité et Analyse (UMR6014), CNRS, Université et INSA de Rouen, IRCOF, BP08, F-76131Mont-Saint-Aignan Cedex, France
| | - Francis Marsais
- Chimie Organique, Bioorganique, Réactivité et Analyse (UMR6014), CNRS, Université et INSA de Rouen, IRCOF, BP08, F-76131Mont-Saint-Aignan Cedex, France
| | - Vincent Levacher
- Chimie Organique, Bioorganique, Réactivité et Analyse (UMR6014), CNRS, Université et INSA de Rouen, IRCOF, BP08, F-76131Mont-Saint-Aignan Cedex, France
| |
Collapse
|
44
|
Yang L, Wang DX, Zheng QY, Pan J, Huang ZT, Wang MX. Highly efficient and concise synthesis of both antipodes of SB204900, clausenamide, neoclausenamide, homoclausenamide and ζ-clausenamide. Implication of biosynthetic pathways of clausena alkaloids. Org Biomol Chem 2009; 7:2628-34. [DOI: 10.1039/b901965k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|