1
|
Just D, Gonçalves CR, Vezonik U, Kaiser D, Maulide N. General acid-mediated aminolactone formation using unactivated alkenes. Chem Sci 2023; 14:10806-10811. [PMID: 37829023 PMCID: PMC10566462 DOI: 10.1039/d3sc04073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Spirocyclic butyrolactones and butenolides are widespread structural motifs in bioactive substances. Despite their prevalence, a simple method ensuring their direct preparation from exocyclic alkenes, ideally in a late-stage context, remains elusive. Herein, we report direct aminolactone formation using unactivated alkenes which addresses this gap, employing cheap and readily available reactants. The method relies on the hijacking of a cationic aminoalkylation pathway and affords (spiro)aminolactones with excellent functional group tolerance and chemoselectivity. The synthetic versatility of the products is demonstrated through a range of transformations, notably exploiting stereospecific rearrangement chemistry to produce sterically congested scaffolds.
Collapse
Affiliation(s)
- David Just
- Institute of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Carlos R Gonçalves
- Institute of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Uroš Vezonik
- Institute of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Daniel Kaiser
- Institute of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
2
|
Zhao B, Zhang Z, Li P, Miao T, Wang L. Synthesis of Spirolactones via a BF 3·Et 2O-Promoted Cascade Annulation of α-Keto Acids and 1,3-Enynes. Org Lett 2021; 23:5698-5702. [PMID: 34264080 DOI: 10.1021/acs.orglett.1c01827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and effective method for the synthesis of spirolactones from readily available α-keto acids and 1,3-enynes is developed via a BF3·Et2O-promoted cascade annulation. This sequential process is conducted at room temperature, and it provides the functionalized spirolactones in good to excellent yield under metal-free conditions.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhen Zhang
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Mandal S, Thirupathi B. Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis. Org Biomol Chem 2021; 18:5287-5314. [PMID: 32633316 DOI: 10.1039/d0ob00954g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last four decades, a number of γ-spirocyclic butenolide containing natural products, drugs, and medicinally useful synthetic compounds have been reported. In this review, we discuss diverse chemical approaches to synthesize γ-spiro butenolides and their application towards natural product synthesis. The collective perception of various methods may allow superior approaches capable of delivering efficient synthetic approaches to obtain γ-spiro butenolide comprising natural products and their hybrid analogues for further drug discovery and development.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| |
Collapse
|
4
|
Yadav P, Pratap R, Ji Ram V. Natural and Synthetic Spirobutenolides and Spirobutyrolactones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pratik Yadav
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110 007 India
| | - Ramendra Pratap
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Vishnu Ji Ram
- B-67, Eldeco Towne IIM road, PO-Diguria Lucknow-226020 Uttar Pradesh India
| |
Collapse
|
5
|
Tan K, Yan H, Lu P, Liu Y, Ji R, Liu Z, Li YM, Yu FC, Shen Y. Access to Multisubstituted 2(5H)-Furanones Using Hydrogen Bonding-Promoted Ring-Closing Metathesis and Polyamine Workup. J Org Chem 2019; 84:3419-3430. [DOI: 10.1021/acs.joc.8b03293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Pengbo Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehui Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruigeng Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhongxian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fu-Chao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Wiseman MS, Dugan FM, Kim YK, Xiao CL. A Postharvest Fruit Rot of Apple Caused by Lambertella corni-maris in Washington State. PLANT DISEASE 2015; 99:201-206. [PMID: 30699562 DOI: 10.1094/pdis-03-14-0327-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During surveys for postharvest diseases of apple conducted in Washington State, an unknown fruit rot was observed on stored apple fruit collected from commercial fruit packinghouses. This disease was present in 66 of the 179 grower lots sampled, accounting for an average 1 to 3% of the total decayed fruit sampled. The disease appeared to originate from infection of wounds on the fruit skin. Lesions were brown and decayed tissues were spongy. A Lambertella sp. was consistently isolated from the decayed fruit. Sequences of the fungus and those of Lambertella corni-maris in GenBank differed by 0 to 4 bp across the combined small ribosomal subunit + internal transcribed spacer + large ribosomal subunit regions with a maximum identity ranging from 99 to 100%. The fungus grew at 0 to 20°C and formed apothecia on artificial media after 8 to 24 weeks. On potato dextrose agar under a 12-h photoperiod, apothecial dimensions were variable, ranging from 1 to 6 mm in diameter with stipes of 1 to 4 by 0.5 mm. Asci were 76 to 125 by 3.5 to 5.5 μm, inoperculate, eight-spored, clavate, and narrowed at the base. Ascospores were aseptate, 7 to 10 by 2.5 to 4.5 μm, uniseriate to biseriate, and orange-brown at maturity in the ascus. Colony characteristics included little or no aerial mycelium, dark-yellow to gray-black mycelium, gray-black pseudosclerotia, and yellow pigmentation in the agar. Morphological characteristics of the fungus overlapped with the description of L. corni-maris. 'Fuji' apple fruit that were wounded, inoculated with representative isolates, and incubated at 0°C yielded the same symptoms as seen in packinghouses, and the fungus was reisolated from the diseased fruit. This is the first report of a fruit rot in stored apple caused by L. corni-maris in the United States. We propose Lambertella rot as the name of this disease.
Collapse
Affiliation(s)
- M S Wiseman
- Department of Plant Pathology, Washington State University, Pullman
| | - F M Dugan
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA
| | - Y K Kim
- Pace International, Wapato, WA
| | - C L Xiao
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
7
|
Hashimoto M, Murakami T. Molecular Mechanism of Mycoparasitism on Apple Fruits. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Hirose A, Kudo S, Murakami T, Tanaka K, Harada Y, Hashimoto M. Lambertellin system, the mechanism for fungal replacement of Monilinia fructigena with Lambertella corni-maris without competitive inhibition on agar media. Bioorg Med Chem 2014; 22:2489-95. [DOI: 10.1016/j.bmc.2014.02.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 11/15/2022]
|
9
|
Bouanou H, Tapia R, Cano MJ, Ramos JM, Alvarez E, Boulifa E, Dahdouh A, Mansour AI, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E. The first synthesis of (−)-isoambreinolide, (+)-vitexifolin D and (+)-vitedoin B. Org Biomol Chem 2014; 12:667-72. [DOI: 10.1039/c3ob42122h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. The Vinylogous Aldol and Related Addition Reactions: Ten Years of Progress. Chem Rev 2011; 111:3076-154. [DOI: 10.1021/cr100304n] [Citation(s) in RCA: 454] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni Casiraghi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Lucia Battistini
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Claudio Curti
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| | - Gloria Rassu
- Istituto di Chimica Biomolecolare del CNR, Traversa La Crucca 3, I-07100 Li Punti, Sassari, Italy
| | - Franca Zanardi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27A, I-43124 Parma, Italy
| |
Collapse
|
11
|
Bartoli A, Rodier F, Commeiras L, Parrain JL, Chouraqui G. Construction of spirolactones with concomitant formation of the fused quaternary centre – application to the synthesis of natural products. Nat Prod Rep 2011; 28:763-82. [DOI: 10.1039/c0np00053a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Yang Y, Zheng K, Zhao J, Shi J, Lin L, Liu X, Feng X. Asymmetric Direct Vinylogous Aldol Reaction of Unactivated γ-Butenolide to Aldehydes. J Org Chem 2010; 75:5382-4. [DOI: 10.1021/jo100946d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiannan Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jian Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
|
14
|
Blanc R, Héran V, Rahmani R, Commeiras L, Parrain JL. Diels–Alder cycloaddition of o-quinonedimethides and alkylidene-5H-furan-2-ones: new and rapid access to lambertellol cores and arthrinone derivatives. Org Biomol Chem 2010; 8:5490-4. [DOI: 10.1039/c0ob00448k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|