1
|
Fuwa H. Synthesis-Driven Stereochemical Assignment of Marine Polycyclic Ether Natural Products. Mar Drugs 2021; 19:257. [PMID: 33947080 PMCID: PMC8145320 DOI: 10.3390/md19050257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/11/2023] Open
Abstract
Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of "difficult" stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Carella A, Ramos Ferronatto G, Marotta E, Mazzanti A, Righi P, Paolucci C. Betti's base for crystallization-induced deracemization of substituted aldehydes: synthesis of enantiopure amorolfine and fenpropimorph. Org Biomol Chem 2017; 15:2968-2978. [PMID: 28294238 DOI: 10.1039/c6ob02765b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acid-promoted crystallization-induced diastereoisomer transformation (CIDT) of naphthoxazines derived from racemic O-protected 2-substituted 4-hydroxybutyraldehydes and enantiopure Betti's base allows the deracemization of the starting aldehydes with ee up to 96%. As an alternative, reduction with lithium aluminum hydride of the diastereoisomerically enriched naphthoxazines leads to enantioenriched primary amines. The utility of the latter strategy was demonstrated by applying it to the synthesis of enantioenriched fenpropimorph and to the first synthesis of enantiopure amorolfine, with ee up to 99.5%.
Collapse
Affiliation(s)
- Andrea Carella
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| | - Gabriel Ramos Ferronatto
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| | - Emanuela Marotta
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| | - Andrea Mazzanti
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| | - Paolo Righi
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| | - Claudio Paolucci
- Dipartimento di Chimica Industriale "Toso Montanari" - Alma Mater Studiorum - Università di Bologna - Viale del Risorgimento, 4 - I-40136 Bologna, Italy
| |
Collapse
|
3
|
Fuwa H, Sasaki M. Exploiting Ruthenium Carbene-Catalyzed Reactions in Total Synthesis of Marine Oxacyclic Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Applications of sodium borohydride procedure for the reductive removal of Evans and other chiral auxiliaries. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.09.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Takamura H, Fujiwara T, Kawakubo Y, Kadota I, Uemura D. Stereoselective Synthesis of the Proposed C79-C104 Fragment of Symbiodinolide. Chemistry 2015; 22:1979-1983. [DOI: 10.1002/chem.201503880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Takayuki Fujiwara
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Yohei Kawakubo
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Isao Kadota
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Daisuke Uemura
- Department of Chemistry; Faculty of Science; Kanagawa University; 2946 Tsuchiya Hiratsuka 259-1293 Japan
| |
Collapse
|
6
|
Misassigned natural products and their revised structures. Arch Pharm Res 2015; 39:143-153. [DOI: 10.1007/s12272-015-0649-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/08/2015] [Indexed: 01/16/2023]
|
7
|
Fuwa H, Fukazawa R, Sasaki M. Concise synthesis of the A/BCD-ring fragment of gambieric acid A. Front Chem 2015; 2:116. [PMID: 25629027 PMCID: PMC4292782 DOI: 10.3389/fchem.2014.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022] Open
Abstract
Gambieric acid A (GAA) and its congeners belong to the family of marine polycyclic ether natural products. Their highly complex molecular architecture and unique biological activities have been of intense interest within the synthetic community. We have previously reported the first total synthesis, stereochemical reassignment, and preliminary structure–activity relationships of GAA. Here we disclose a concise synthesis of the A/BCD-ring fragment of GAA. The synthesis started from our previously reported synthetic intermediate that represents the A/B-ring. The C-ring was synthesized via an oxiranyl anion coupling and a 6-endo cyclization, and the D-ring was forged by means of an oxidative lactonization and subsequent palladium-catalyzed functionalization of the lactone ring. In this manner, the number of linear synthetic steps required for the construction of the C- and D-rings was reduced from 22 to 11.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University Sendai, Japan
| | - Ryo Fukazawa
- Graduate School of Life Sciences, Tohoku University Sendai, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
8
|
Sasaki M, Fuwa H. Total synthesis and complete structural assignment of gambieric acid A, a large polycyclic ether marine natural product. CHEM REC 2014; 14:678-703. [PMID: 25092231 DOI: 10.1002/tcr.201402052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 12/30/2022]
Abstract
More than thirty years after the discovery of polycyclic ether marine natural products, they continue to receive intense attention from the chemical, biological, and pharmacological communities because of their potent biological activities and highly complex molecular architectures. Gambieric acids are intriguing polycyclic ethers that exhibit potent antifungal activity with minimal toxicity against mammals. Despite the recent advances in the synthesis of this class of natural products, gambieric acids remain unconquered due to their daunting structural complexity, which poses a formidable synthetic challenge to organic chemists. This paper reviews our long-term studies on the total synthesis, complete configurational reassignment, and structure-activity relationships of gambieric acid A over the last decade.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | |
Collapse
|
9
|
Van Wagoner RM, Satake M, Wright JLC. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 2014; 31:1101-37. [DOI: 10.1039/c4np00016a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Fuwa H, Muto T, Sekine K, Sasaki M. Total synthesis and structure revision of didemnaketal B. Chemistry 2014; 20:1848-60. [PMID: 24431266 DOI: 10.1002/chem.201303713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 11/07/2022]
Abstract
Didemnaketal B, a structurally complex spiroacetal that exhibits potent HIV-1 protease inhibitory activity, was originally discovered by Faulkner and his colleagues from the ascidian Didemnum sp. collected at Palau. Its absolute configuration was proposed on the basis of degradation/derivatization experiments of the authentic sample. However, our total synthesis of the proposed structure of didemnaketal B questioned the stereochemical assignment made by Faulkner et al. Here we describe in detail our first total synthesis of the proposed structure 2 of didemnaketal B, which features 1) a convergent synthesis of the C7-C21 spiroacetal domain by means of a strategy exploiting Suzuki-Miyaura coupling, 2) an Evans syn-aldol reaction and a vinylogous Mukaiyama aldol reaction for the assembly of the C1-C7 acyclic domain, and 3) a Nozaki-Hiyama-Kishi reaction for the construction of the C21-C28 side chain domain. The NMR spectroscopic discrepancies observed between synthetic 2 and the authentic sample as well as careful inspection of the Faulkner's stereochemical assignment led us to postulate that the absolute configuration of the C10-C20 domain of 2 has been erroneously assigned. Accordingly, the total synthesis of the revised structure 65 was achieved to show that the NMR spectroscopic properties of synthetic 65 were in good agreement with those of the authentic sample. Furthermore, application of the phenylglycine methyl ester (PGME) method to the C7-C21 spiroacetal domain enabled us to establish the absolute configuration of didemnaketal B.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan), Fax: (+81) 22-217-6214.
| | | | | | | |
Collapse
|
12
|
Fuwa H, Sekine K, Sasaki M. Total Synthesis of the Proposed Structure of Didemnaketal B. Org Lett 2013; 15:3970-3. [DOI: 10.1021/ol4017518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haruhiko Fuwa
- Gradutate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kumiko Sekine
- Gradutate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Makoto Sasaki
- Gradutate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Ishigai K, Fuwa H, Hashizume K, Fukazawa R, Cho Y, Yotsu-Yamashita M, Sasaki M. Total synthesis and biological evaluation of (+)-gambieric acid A and its analogues. Chemistry 2013; 19:5276-88. [PMID: 23554126 DOI: 10.1002/chem.201204303] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/09/2013] [Indexed: 11/06/2022]
Abstract
In this study, we report the first total synthesis and complete stereostructure of gambieric acid A, a potent antifungal polycyclic ether metabolite, in detail. The A/B-ring exocyclic enol ether 32 was prepared through a Suzuki-Miyaura coupling of the B-ring vinyl iodide 18 and the alkylborate 33 and subsequent closure of the A-ring by using diastereoselective bromoetherification as the key transformation. Suzuki-Miyaura coupling of 32 with acetate-derived enol phosphate 49, followed by ring-closing metathesis of the derived diene, produced the D-ring. Subsequent closure of the C-ring through a mixed thioacetalization completed the synthesis of the A/BCD-ring fragment 8. The A/BCD- and F'GHIJ-ring fragments (i.e., 8 and 9) were assembled through Suzuki-Miyaura coupling. The C25 stereogenic center was elaborated by exploiting the intrinsic conformational property of the seven-membered F'-ring. After the oxidative cleavage of the F'-ring, the E-ring was formed as a cyclic mixed thioacetal (i.e., 70) and then stereoselectively allylated by using glycosylation chemistry. Ring-closing metathesis of the diene 3 thus obtained closed the F-ring and completed the polycyclic ether skeleton. Finally, the J-ring side chain was introduced by using a Julia-Kocienski olefination in the presence of CeCl3 to complete the total synthesis of gambieric acid A (1), thereby unambiguously establishing its complete stereostructure. The present total synthesis enabled us to evaluate the antifungal and antiproliferative activities of 1 and several synthetic analogues.
Collapse
Affiliation(s)
- Kazuya Ishigai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Fuwa H, Ishigai K, Hashizume K, Sasaki M. Total synthesis and complete stereostructure of gambieric acid A. J Am Chem Soc 2012; 134:11984-7. [PMID: 22779404 DOI: 10.1021/ja305864z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Total synthesis of gambieric acid A, a potent antifungal polycyclic ether metabolite, has been accomplished for the first time, which firmly established the complete stereostructure of this natural product.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
15
|
Lamani M, Ravikumara GS, Prabhu KR. Iron(III) Chloride-Catalysed Aerobic Reduction of Olefins using Aqueous Hydrazine at Ambient Temperature. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Zuckerman NB, Myers AS, Quan TK, Bray WM, Lokey RS, Hartzog GA, Konopelski JP. Structural determination of NSC 670224, synthesis of analogues and biological evaluation. ChemMedChem 2012; 7:761-5. [PMID: 22378491 DOI: 10.1002/cmdc.201200038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Indexed: 11/10/2022]
Abstract
Follow my lead! NSC 670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), breast cancer drug. The structure of NSC 670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated.
Collapse
Affiliation(s)
- Nathaniel B Zuckerman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Seidel G, Fürstner A. Suzuki reactions of extended scope: the ‘9-MeO-9-BBN variant’ as a complementary format for cross-coupling. Chem Commun (Camb) 2012; 48:2055-70. [DOI: 10.1039/c2cc17070a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Tsubone K, Hashizume K, Fuwa H, Sasaki M. Studies toward the total synthesis of gambieric acids, potent antifungal polycyclic ethers: convergent synthesis of a fully elaborated GHIJ-ring fragment. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
A new strategy for the synthesis of substituted dihydropyrones and tetrahydropyrones via palladium-catalyzed coupling of thioesters. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Six-Membered Ring Systems:. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s0959-6380(11)22015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Marsh BJ, Heath EL, Carbery DR. Organocatalytic diimide reduction of enamides in water. Chem Commun (Camb) 2011; 47:280-2. [DOI: 10.1039/c0cc02272a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Tsubone K, Hashizume K, Fuwa H, Sasaki M. Studies toward the total synthesis of gambieric acids: convergent synthesis of the GHIJ-ring fragment having a side chain. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Fuwa H, Noji S, Sasaki M. Studies toward the total synthesis of gambieric acids: stereocontrolled synthesis of a DEFG-ring model compound. J Org Chem 2010; 75:5072-82. [PMID: 20593761 DOI: 10.1021/jo1008146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereocontrolled convergent synthesis of a DEFG-ring model compound of gambieric acids, highly potent antifungal marine polycyclic ether natural products, has been achieved based on Suzuki-Miyaura coupling. Conformational analysis of the model compound revealed that the nine-membered F-ring exists exclusively as a single stable conformer, as opposed to that of ciguatoxins.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
24
|
Fuwa H, Noji S, Sasaki M. Convergent Assembly of the Spiroacetal Subunit of Didemnaketal B. Org Lett 2010; 12:5354-7. [DOI: 10.1021/ol1024713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Sayaka Noji
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
25
|
Fuwa H, Noji S, Sasaki M. Stereocontrolled Synthesis of the DEFG-ring Skeleton of Gambieric Acids. CHEM LETT 2009. [DOI: 10.1246/cl.2009.866] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|