1
|
Rühling M, Kersting L, Wagner F, Schumacher F, Wigger D, Helmerich DA, Pfeuffer T, Elflein R, Kappe C, Sauer M, Arenz C, Kleuser B, Rudel T, Fraunholz M, Seibel J. Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nat Commun 2024; 15:7456. [PMID: 39198435 PMCID: PMC11358447 DOI: 10.1038/s41467-024-51874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.
Collapse
Affiliation(s)
- Marcel Rühling
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Fabienne Wagner
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominic A Helmerich
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tom Pfeuffer
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Robin Elflein
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Kappe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Markus Sauer
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rudel
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
3
|
Font-Mateu J, Sanllehí P, Sot J, Abad B, Mateos N, Torreno-Pina JA, Ferrari R, Wright RHG, Garcia-Parajo MF, Joglar J, Goñi FM, Beato M. A progesterone derivative linked to a stable phospholipid activates breast cancer cell response without leaving the cell membrane. Cell Mol Life Sci 2024; 81:98. [PMID: 38386110 PMCID: PMC10884080 DOI: 10.1007/s00018-024-05116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.
Collapse
Affiliation(s)
- Jofre Font-Mateu
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Pol Sanllehí
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jesús Sot
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Beatriz Abad
- SGIKER, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Nicolas Mateos
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Juan Andres Torreno-Pina
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roni H G Wright
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Maria F Garcia-Parajo
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Jesús Joglar
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
4
|
Kuerschner L, Thiele C. Tracing Lipid Metabolism by Alkyne Lipids and Mass Spectrometry: The State of the Art. Front Mol Biosci 2022; 9:880559. [PMID: 35669564 PMCID: PMC9163959 DOI: 10.3389/fmolb.2022.880559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.
Collapse
|
5
|
Ancajas CF, Ricks TJ, Best MD. Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chem Phys Lipids 2020; 232:104971. [PMID: 32898510 PMCID: PMC7606648 DOI: 10.1016/j.chemphyslip.2020.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023]
Abstract
Metabolic labeling, in which substrate analogs containing diminutive tags can infiltrate biosynthetic pathways and generate labeled products in cells, has led to dramatic advancements in the means by which complex biomolecules can be detected and biological processes can be elucidated. Within this realm, metabolic labeling of lipid products, particularly in a manner that is headgroup-specific, brings about a number of technical challenges including the complexity of lipid metabolic pathways as well as the simplicity of biosynthetic precursors to headgroup functionality. As such, only a handful of strategies for metabolic labeling of lipids have thus far been reported. However, these approaches provide enticing examples of how strategic modifications to substrate structures, particularly by introducing clickable moieties, can enable the hijacking of lipid biosynthesis. Furthermore, early work in this field has led to an explosion in diverse applications by which these techniques have been exploited to answer key biological questions or detect and track various lipid-containing biological entities. In this article, we review these efforts and emphasize recent advancements in the development and application of lipid metabolic labeling strategies.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
6
|
Varandas PAMM, Cobb AJA, Segundo MA, Silva EMP. Emergent Glycerophospholipid Fluorescent Probes: Synthesis and Applications. Bioconjug Chem 2019; 31:417-435. [DOI: 10.1021/acs.bioconjchem.9b00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pedro A. M. M. Varandas
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
8
|
Mukai M, Higaki Y, Hirai T, Takahara A. Separation of Endo-cyclic 2-Methacryloyloxyethyl Choline Phosphate by Anion Exchange Approach. CHEM LETT 2018. [DOI: 10.1246/cl.180787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Masaru Mukai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Mohamed ZH, Rhein C, Saied EM, Kornhuber J, Arenz C. FRET probes for measuring sphingolipid metabolizing enzyme activity. Chem Phys Lipids 2018; 216:152-161. [DOI: 10.1016/j.chemphyslip.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022]
|
10
|
Click chemistry in sphingolipid research. Chem Phys Lipids 2018; 215:71-83. [DOI: 10.1016/j.chemphyslip.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
|
11
|
Laguerre A, Schultz C. Novel lipid tools and probes for biological investigations. Curr Opin Cell Biol 2018; 53:97-104. [PMID: 30015291 DOI: 10.1016/j.ceb.2018.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
We present the latest advances in lipid tool development for studying cellular membrane trafficking and metabolism. We focus on chemical modifications that are introduced to natural lipid structures. The new functionalities are used to follow and interfere with lipid dynamics in intact cells.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Carsten Schultz
- Dept. of Physiology & Pharmacology, Oregon Health and Science University (OHSU), Portland, OR, USA; European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
12
|
Sreekanth V, Medatwal N, Pal S, Kumar S, Sengupta S, Bajaj A. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Mol Pharm 2017; 14:2649-2659. [DOI: 10.1021/acs.molpharmaceut.7b00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- KIIT University, Bhubaneswar-751024, Odisha, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
13
|
Kinoshita M, Suzuki KGN, Matsumori N, Takada M, Ano H, Morigaki K, Abe M, Makino A, Kobayashi T, Hirosawa KM, Fujiwara TK, Kusumi A, Murata M. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 2017; 216:1183-1204. [PMID: 28330937 PMCID: PMC5379944 DOI: 10.1083/jcb.201607086] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/30/2016] [Accepted: 02/02/2017] [Indexed: 01/01/2023] Open
Abstract
Sphingomyelin (SM) has been proposed to form cholesterol-dependent raft domains and sphingolipid domains in the plasma membrane (PM). How SM contributes to the formation and function of these domains remains unknown, primarily because of the scarcity of suitable fluorescent SM analogs. We developed new fluorescent SM analogs by conjugating a hydrophilic fluorophore to the SM choline headgroup without eliminating its positive charge, via a hydrophilic nonaethylene glycol linker. The new analogs behaved similarly to the native SM in terms of their partitioning behaviors in artificial liquid order-disorder phase-separated membranes and detergent-resistant PM preparations. Single fluorescent molecule tracking in the live-cell PM revealed that they indirectly interact with each other in cholesterol- and sphingosine backbone-dependent manners, and that, for ∼10-50 ms, they undergo transient colocalization-codiffusion with a glycosylphosphatidylinositol (GPI)-anchored protein, CD59 (in monomers, transient-dimer rafts, and clusters), in CD59-oligomer size-, cholesterol-, and GPI anchoring-dependent manners. These results suggest that SM continually and rapidly exchanges between CD59-associated raft domains and the bulk PM.
Collapse
Affiliation(s)
- Masanao Kinoshita
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.,The Institute for Stem Cell Biology and Regenerative Medicine, The National Centre for Biological Sciences, Bangalore 560065, India
| | - Nobuaki Matsumori
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan .,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Misa Takada
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hikaru Ano
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan
| | - Kenichi Morigaki
- Research Center for Environmental Genomics, Kobe University, Kobe 657-8501, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Cellular Informatics Laboratory, Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- UMR 7213 Centre National de la Recherche Scientifique, University of Strasbourg, Illkirch 67401, France
| | - Koichiro M Hirosawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan .,Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Michio Murata
- Lipid Active Structure Project, Exploratory Research for Advanced Technology Organization, Japan Science and Technology Agency, Osaka University, Osaka 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, Osaka 560-0043, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Sanllehí P, Abad JL, Bujons J, Casas J, Delgado A. Studies on the inhibition of sphingosine-1-phosphate lyase by stabilized reaction intermediates and stereodefined azido phosphates. Eur J Med Chem 2016; 123:905-915. [PMID: 27543882 DOI: 10.1016/j.ejmech.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL.
Collapse
Affiliation(s)
- Pol Sanllehí
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - José-Luís Abad
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jordi Bujons
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry and Molecular Modelling, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Josefina Casas
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Antonio Delgado
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034, Barcelona, Spain; University of Barcelona (UB), Faculty of Pharmacy, Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), Avda. Joan XXIII s/n, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Dauner M, Batroff E, Bachmann V, Hauck CR, Wittmann V. Synthetic Glycosphingolipids for Live-Cell Labeling. Bioconjug Chem 2016; 27:1624-37. [PMID: 27253729 DOI: 10.1021/acs.bioconjchem.6b00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.
Collapse
Affiliation(s)
- Martin Dauner
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Ellen Batroff
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Verena Bachmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Christof R Hauck
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
16
|
Cui J, Matsuoka S, Kinoshita M, Matsumori N, Sato F, Murata M, Ando J, Yamakoshi H, Dodo K, Sodeoka M. Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior. Bioorg Med Chem 2015; 23:2989-94. [PMID: 26026768 DOI: 10.1016/j.bmc.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
Abstract
Three Raman probes of sphingomyelin (SM) were synthesized and evaluated for their applicability to imaging experiments. One probe containing a hydroxymethyl-1,3-butadiyne moiety in the polar head group showed strong scattering. The solid-state (2)H NMR spectra of this probe in oriented bilayer membrane revealed excellent compatibility with natural SM in phase behavior since the probe undergoes phase separation to form raft-like liquid ordered (Lo) domains in the raft-mimicking mixed bilayers.
Collapse
Affiliation(s)
- Jin Cui
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Fuminori Sato
- JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; JST, ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Project Research Centre for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Jun Ando
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Yamakoshi
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- JST, ERATO, Sodeoka Live Cell Chemistry Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; AMED-CREST, AMED 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Hu G, Parelkar SS, Emrick T. A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polym Chem 2015. [DOI: 10.1039/c4py01292e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe a facile synthesis of an n-butyl substituted choline phosphate monomer (MBP), and its polymerization to afford polyMBP and its copolymers. PolyMBP provides access to water-soluble choline phosphate polymers that by cell culture analysis exhibit low toxicity and immunogenicity.
Collapse
Affiliation(s)
- Gaojie Hu
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Sangram S. Parelkar
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Todd Emrick
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
18
|
Li C, Key JA, Jia F, Dandapat A, Hur S, Cairo CW. Practical labeling methodology for choline-derived lipids and applications in live cell fluorescence imaging. Photochem Photobiol 2014; 90:686-95. [PMID: 24383866 DOI: 10.1111/php.12234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 12/18/2022]
Abstract
Lipids of the plasma membrane participate in a variety of biological processes, and methods to probe their function and cellular location are essential to understanding biochemical mechanisms. Previous reports have established that phosphocholine-containing lipids can be labeled by alkyne groups through metabolic incorporation. Herein, we have tested alkyne, azide and ketone-containing derivatives of choline as metabolic labels of choline-containing lipids in cells. We also show that 17-octadecynoic acid can be used as a complementary metabolic label for lipid acyl chains. We provide methods for the synthesis of cyanine-based dyes that are reactive with alkyne, azide and ketone metabolic labels. Using an improved method for fluorophore conjugation to azide or alkyne-modified lipids by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), we apply this methodology in cells. Lipid-labeled cell membranes were then interrogated using flow cytometry and fluorescence microscopy. Furthermore, we explored the utility of this labeling strategy for use in live cell experiments. We demonstrate measurements of lipid dynamics (lateral mobility) by fluorescence photobleaching recovery (FPR). In addition, we show that adhesion of cells to specific surfaces can be accomplished by chemically linking membrane lipids to a functionalized surface. The strategies described provide robust methods for introducing bioorthogonal labels into native lipids.
Collapse
Affiliation(s)
- Caishun Li
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Kuerschner L, Thiele C. Multiple bonds for the lipid interest. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1031-7. [PMID: 24412758 DOI: 10.1016/j.bbalip.2013.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Polyene lipids and alkyne lipids allow study of lipid organization, dynamics and metabolism. Both types of lipids contain multiple bonds as the essential functional group, leading to minimal disturbance of the hydrophobic properties on which the characteristic behavior of lipids is based. Polyene lipids can directly be traced due to their intrinsic fluorescence, while alkyne lipids need the copper-catalyzed click reaction to an azido-reporter for detection. This review describes recent developments in synthesis and application of both types of lipid analogs with emphasis on metabolic tracing and microscopy imaging. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Lars Kuerschner
- Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| | - Christoph Thiele
- Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| |
Collapse
|
20
|
Hornillos V, Amat-Guerri F, Acuña AU. Fluorescent labeling of alkyl chains of phosphocholine lipids by one-pot TMS cleavage-click reaction. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Goretta SA, Kinoshita M, Mori S, Tsuchikawa H, Matsumori N, Murata M. Effects of chemical modification of sphingomyelin ammonium group on formation of liquid-ordered phase. Bioorg Med Chem 2012; 20:4012-9. [DOI: 10.1016/j.bmc.2012.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
|
22
|
Sandbhor MS, Soya N, Albohy A, Zheng RB, Cartmell J, Bundle DR, Klassen JS, Cairo CW. Substrate recognition of the membrane-associated sialidase NEU3 requires a hydrophobic aglycone. Biochemistry 2011; 50:6753-62. [PMID: 21675735 DOI: 10.1021/bi200449j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The human neuraminidases (NEU) consist of a family of four isoforms (NEU1-NEU4). Members of this enzyme family are proposed to have important roles in health and disease through regulation of the composition of cellular sialosides. The NEU3 isoform is a membrane-associated enzyme that cleaves glycolipid substrates. However, few reports have examined the substrate specificity of the enzyme for non-natural substrates. We report here a series of 11 synthetic trisaccharides that feature modifications of the aglycone or the Neu5Ac residue of an octyl β-sialyllactoside. The time course of substrate cleavage by NEU3 was monitored using an electrospray ionization mass spectrometry assay to obtain relative rates (k(rel)). We observed that NEU3 substrate activity was directly dependent upon the hydrophobicity of the aglycone but had no apparent requirement for features of the ceramide headgroup. We also observed that trisaccharides with incorporated azide groups in the Neu5Ac residue at either C9 or the N5-Ac position were substrates, and in the case of the N5-azidoacetyl derivative, the activity was superior to that of GM3. However, the incorporation of larger aryl groups was tolerated only at C9, but not at N5-Ac. We propose a two-site model for enzyme recognition, requiring interaction at both the Neu5Ac residue and the hydrophobic aglycone.
Collapse
Affiliation(s)
- Mahendra S Sandbhor
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Best MD, Rowland MM, Bostic HE. Exploiting bioorthogonal chemistry to elucidate protein-lipid binding interactions and other biological roles of phospholipids. Acc Chem Res 2011; 44:686-98. [PMID: 21548554 DOI: 10.1021/ar200060y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipids play critical roles in a litany of physiological and pathophysiological events, often through the regulation of protein function. These activities are generally difficult to characterize, however, because the membrane environment in which lipids operate is very complex. Moreover, lipids have a diverse range of biological functions, including the recruitment of proteins to membrane surfaces, actions as small-molecule ligands, and covalent protein modification through lipidation. Advancements in the development of bioorthogonal reactions have facilitated the study of lipid activities by providing the ability to selectively label probes bearing bioorthogonal tags within complex biological samples. In this Account, we discuss recent efforts to harness the beneficial properties of bioorthogonal labeling strategies in elucidating lipid function. Initially, we summarize strategies for the design and synthesis of lipid probes bearing bioorthogonal tags. This discussion includes issues to be considered when deciding where to incorporate the tag, particularly the presentation within a membrane environment. We then present examples of the application of these probes to the study of lipid activities, with a particular emphasis on the elucidation of protein-lipid binding interactions. One such application involves the development of lipid and membrane microarray analysis as a high-throughput platform for characterizing protein-binding interactions. Here we discuss separate strategies for binding analysis involving the immobilization of either whole liposomes or simplified isolated lipid structures. In addition, we present the different strategies that have been used to derivatize membrane surfaces via bioorthogonal reactions, either by using this chemistry to produce functionalized lipid scaffolds that can be incorporated into membranes or through direct modification of intact membrane surfaces. We then provide an overview of the development of lipid activity probes to label and identify proteins that bind to a particular lipid from complex biological samples. This process involves the strategy of activity-based proteomics, in which proteins are collectively labeled on the basis of function (in this case, ligand binding) rather than abundance. We summarize strategies for designing and applying lipid activity probes that allow for the selective labeling and characterization of protein targets. Additionally, we briefly comment on applications other than studying protein-lipid binding. These include the generation of new lipid structures with beneficial properties, labeling of tagged lipids in live cells for studies involving fluorescence imaging, elucidation of covalent protein lipidation, and identification of biosynthetic lipid intermediates. These applications illustrate the early phase of the promising field of applying bioorthogonal chemistry to the study of lipid function.
Collapse
Affiliation(s)
- Michael D. Best
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Meng M. Rowland
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Heidi E. Bostic
- Department of Chemistry, the University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Berchel M, Haelters JP, Couthon-Gourvès H, Deschamps L, Midoux P, Lehn P, Jaffrès PA. Modular Construction of Fluorescent Lipophosphoramidates by Click Chemistry. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100900] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|