1
|
Wang L, Zhao Q, Wu G, Wang P, Zhou M, Wu Z, Lai M, Zhao M. Enzymatic synthesis of pyridine heterocyclic compounds and their thermal stability. Heliyon 2024; 10:e32435. [PMID: 38961989 PMCID: PMC11219360 DOI: 10.1016/j.heliyon.2024.e32435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
An efficient method was discovered for catalyzing the esterification under air using Novozym 435 to obtain pyridine esters. The following conditions were found to be optimal: 60 mg of Novozyme 435, 5.0 mL of n-hexane, a molar ratio of 2:1 for nicotinic acids (0.4 mmol) to alcohols (0.2 mmol), 0.25 g of molecular sieve 3A, a revolution speed of 150 rpm, a reaction temperature of 50 °C, and reaction time of 48 h. Under nine cycles of Novozym 435, the 80 % yield was consistently obtained. Optimum conditions were used to synthesize 23 pyridine esters, including five novel compounds. Among them, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) showed phenethyl nicotinate (3g), (E)-hex-4-en-1-yl nicotinate (3m), and octyl nicotinate (3n) possessed strong aromas. Thermogravimetric analysis (TG) revealed that the compounds 3g, 3m and 3n exhibited stability at the specified temperature. This finding provides theoretical support for adding pyridine esters fragrance to high-temperature processed food.
Collapse
Affiliation(s)
- Longxin Wang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| | - Guangpeng Wu
- Henan Province Tobacco Company, #15 Business Outer Ring Road, Zhengzhou, Henan Province, 450046, PR China
| | - Pengze Wang
- Tianchang International Tobacco Co., Ltd, Jian'an Avenue Road, Xuchang, Henan Province, 461000, PR China
| | - Meng Zhou
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, #218 Ping'an Avenue Road, Zhengzhou, Henan Province, 450046, PR China
| |
Collapse
|
2
|
Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Shimomura KI, Harami H, Matsubara Y, Nokami T, Katada N, Itoh T. Lipase-mediated dynamic kinetic resolution (DKR) of secondary alcohols in the presence of zeolite using an ionic liquid solvent system. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
de Miranda AS, Miranda LS, de Souza RO. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 2015; 33:372-93. [DOI: 10.1016/j.biotechadv.2015.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
|
5
|
Hu F, Szostak M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500319] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Verho O, Bäckvall JE. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines. J Am Chem Soc 2015; 137:3996-4009. [PMID: 25730714 PMCID: PMC4415027 DOI: 10.1021/jacs.5b01031] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Chemoenzymatic
dynamic kinetic resolution (DKR) constitutes a convenient
and efficient method to access enantiomerically pure alcohol and amine
derivatives. This Perspective highlights the work carried out within
this field during the past two decades and pinpoints important avenues
for future research. First, the Perspective will summarize the more
developed area of alcohol DKR, by delineating the way from the earliest
proof-of-concept protocols to the current state-of-the-art systems
that allows for the highly efficient and selective preparation of
a wide range of enantiomerically pure alcohol derivatives. Thereafter,
the Perspective will focus on the more challenging DKR of amines,
by presenting the currently available homogeneous and heterogeneous
methods and their respective limitations. In these two parts, significant
attention will be dedicated to the design of efficient racemization
methods as an important means of developing milder DKR protocols.
In the final part of the Perspective, a brief overview of the research
that has been devoted toward improving enzymes as biocatalysts is
presented.
Collapse
Affiliation(s)
- Oscar Verho
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
#Nitrosocarbonyls 1: antiviral activity of N-(4-hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the influenza A virus H1N1. ScientificWorldJournal 2014; 2014:472373. [PMID: 25610906 PMCID: PMC4293787 DOI: 10.1155/2014/472373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022] Open
Abstract
Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with the in vitro antiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1.
Collapse
|
8
|
HNO made-easy from photochemical cycloreversion of novel 3,5-heterocyclic disubstituted 1,2,4-oxadiazole-4-oxides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Das BC, Tang XY, Rogler P, Evans T. Design and synthesis of 3,5-disubstituted boron-containing 1,2,4-oxadiazoles as potential combretastatin A-4 (CA-4) analogs. Tetrahedron Lett 2012; 53:3947-3950. [PMID: 24039307 PMCID: PMC3771381 DOI: 10.1016/j.tetlet.2012.02.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have designed and synthesized a small library of 3,5-disubstituted-1,2,4-oxadiazole containing combretastatin A-4 (CA-4) analogs. Our objective is to increase the efficacy of the CA-4 as an anti-tubulin and antimitotic agent by substituting the cis-alkene bond with one of its bioisosteres, the 1,2,4-oxadiazole ring. We also modified the substituents attached to both of the phenyl rings (ring A and B in Fig. 1) of CA-4 for the purpose of diversifying our analogs based on SAR. These compounds were synthesized via a coupling reaction between an amidoxime and a carboxylic acid in DMF solvent, with HOBt as a base, and utilizing EDCI as a coupling reagent. Using this protocol, we synthesized a small library of 10 compounds with moderate to good yields. A detailed biological study is currently undergoing in our laboratory to evaluate the activity of these compounds.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiang-Ying Tang
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Patrick Rogler
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
10
|
Marcos R, Martín-Matute B. Combined Enzyme and Transition-Metal Catalysis for Dynamic Kinetic Resolutions. Isr J Chem 2012. [DOI: 10.1002/ijch.201200012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Das BC, Tang XY, Evans T. Design and synthesis of boron containing potential pan-RAR inverse agonists. Tetrahedron Lett 2012; 53:1316-1318. [PMID: 23180890 PMCID: PMC3505081 DOI: 10.1016/j.tetlet.2011.12.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We designed and successfully synthesized the compounds 5 and 8 as potential pan-RAR (retinoic acid receptor) agonists. These two compounds were designed based on an existing pan-RAR agonist (BMS493). We synthesized compound 5, in which the carboxylic acid group in BMS 493 was replaced by boronic ester; and compound 8, in which the double bond of BMS 493 was changed to an oxadiazole (as bioisosteres of double bond) ring. The two target molecules 5 and 8 were synthesized from the commercially available 7-bromo-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one 1. Compound 1 was derivatized to intermediate 5,5-dimethyl-8-(phenylethynyl)-5,6-dihydronaphthalene-2 carbaldehyde 4 by using alkylation, dehydration, and metal exchange reactions. The intermediate 4 was further converted to 5 by using a Wittig reaction and to 8 by amide coupling and dehydration to give overall 18% and 33% yields, respectively, after 8 steps in each case.
Collapse
Affiliation(s)
- Bhaskar C. Das
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiang-Ying Tang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
12
|
|
13
|
Das BC, Tang XY, Sanyal S, Mohapatra S, Rogler P, Nayak S, Evans T. Design and Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazole Containing Retinoids from a Retinoic Acid Receptor Agonist. Tetrahedron Lett 2011; 52:2433-2435. [PMID: 21765558 PMCID: PMC3135900 DOI: 10.1016/j.tetlet.2011.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously synthesized novel retinoid libraries, and after screening for bioactivity found one compound BT10 that functions as a specific agonist for retinoic acid receptors. This lead compound was further derivatized using SAR and LRD to obtain 3,5-disubstituted-1,2,4-oxadiazole-containing retinoids. The new oxadiazole (amide bioisosters)-containing retinoids (compounds 1, 2, 3, 4, 5, and 6) were synthesized in 42-65% yield by reacting with (E)-4-((3-ethyl,2-4,4,4-trimethylcyclohex-2-enylidene)methyl)benzoic acid and phenyl substituted amidoxime in DMF using CDI as the coupling reagent. The biological activities of the synthesized compounds are currently being evaluated.
Collapse
Affiliation(s)
- Bhaskar C Das
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
|
16
|
|