1
|
He Y, Bian KJ, Liu P, Jiang CH, Jin RX, West JG, Wang XS. Remote Functionalization of Inert C(sp 3)-H Bonds via Dual Catalysis Driven by Alkene Hydrofluoroalkylation Using Industrial Feedstocks. Org Lett 2024; 26:8278-8283. [PMID: 39298654 DOI: 10.1021/acs.orglett.4c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We have developed a dual-catalytic system capable of site-selective azidation of inert C(sp3)-H bonds with concomitant and modular anti-Markovnikov alkene fluoroalkylation. The protocol leverages the synergetic cooperation of both the photocatalyst and earth-abundant iron catalyst to deliver two radical species in succession to minimally functionalized alkenes. This powerful catalyst system exhibits broad scope, mild conditions, and excellent regioselectivity for a variety of substrates and fluoroalkyl fragments. The key to this C-centered radical relay is the matched rate of both photocatalytic and iron catalytic cycles, ensuring selective azidofluoroalkylation with a broad array of fluoroalkyl sources from trivial reagents.
Collapse
Affiliation(s)
- Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Peng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Chen-Hui Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
2
|
Wei MM, Ma YF, Zhang GL, Li Q, Xiong DC, Ye XS. Urea-catalyzed N-Glycosylation of Amides/Azacycles with Glycosyl Halides. Chem Asian J 2023; 18:e202300791. [PMID: 37843982 DOI: 10.1002/asia.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The efficient synthesis of N-glycosides via direct N-glycosylation of amides/azacycles has been reported. The glycosylation of amides/azacycles with glycosyl halides in the presence of a catalytic amount of urea proceeded smoothly to provide the corresponding N-glycosylated amides or nucleosides in good to excellent yields with 1,2-trans-stereoselectivity. Moreover, by the addition of terpyridine, the 1,2-cis-stereoselectivity was achieved.
Collapse
Affiliation(s)
- Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Yu-Feng Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Gao-Lan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No.38, Beijing, 100191, China
| |
Collapse
|
3
|
Geulin A, Bourne-Branchu Y, Ben Ayed K, Lecourt T, Joosten A. Ferrier/Aza-Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2-Trans 3-Amino-3-deoxyglycosides. Chemistry 2023; 29:e202203987. [PMID: 36793144 DOI: 10.1002/chem.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/17/2023]
Abstract
3-Amino-3-deoxyglycosides constitute an essential class of nitrogen-containing sugars. Among them, many important 3-amino-3-deoxyglycosides possess a 1,2-trans relationship. In view of their numerous biological applications, the synthesis of 3-amino-3-deoxyglycosyl donors giving rise to a 1,2-trans glycosidic linkage is thus an important challenge. Even though glycals are highly polyvalent donors, the synthesis and reactivity of 3-amino-3-deoxyglycals have been little studied. In this work, we describe a new sequence, involving a Ferrier rearrangement and subsequent aza-Wacker cyclization that allows the rapid synthesis of orthogonally protected 3-amino-3-deoxyglycals. Finally a 3-amino-3-deoxygalactal derivative was submitted for the first time to an epoxidation/glycosylation with high yield and great diastereoselectivity, highlighting FAWEG (Ferrier/Aza-Wacker/Epoxidation/Glycosylation) as a new approach to access 1,2-trans 3-amino-3-deoxyglycosides.
Collapse
Affiliation(s)
- Anselme Geulin
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Yann Bourne-Branchu
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Kawther Ben Ayed
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| |
Collapse
|
4
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Nakagawa Y, Yamaji F, Miyanishi W, Ojika M, Igarashi Y, Ito Y. Binding Evaluation of Pradimicins for Oligomannose Motifs from Fungal Mannans. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Fumiya Yamaji
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Matović J, Järvinen J, Sokka IK, Imlimthan S, Raitanen JE, Montaser A, Maaheimo H, Huttunen KM, Peräniemi S, Airaksinen AJ, Sarparanta M, Johansson MP, Rautio J, Ekholm FS. Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and In Vitro Evaluation of the Entire Positional Isomer Library of ortho-Carboranylmethyl-Bearing Glucoconjugates. Mol Pharm 2020; 18:285-304. [PMID: 33390018 DOI: 10.1021/acs.molpharmaceut.0c00917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.
Collapse
Affiliation(s)
- Jelena Matović
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iris K Sokka
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Surachet Imlimthan
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jan-Erik Raitanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Ahmed Montaser
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anu J Airaksinen
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mikael P Johansson
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.,Helsinki Institute of Sustainability Science, HELSUS, FI-00014 Helsinki, Finland.,CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Sarkar S, Cheung KPS, Gevorgyan V. C-H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem Sci 2020; 11:12974-12993. [PMID: 34123240 PMCID: PMC8163321 DOI: 10.1039/d0sc04881j] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Selective functionalization of ubiquitous unactivated C-H bonds is a continuous quest for synthetic organic chemists. In addition to transition metal catalysis, which typically operates under a two-electron manifold, a recent renaissance in the radical approach relying on the hydrogen atom transfer (HAT) process has led to tremendous growth in the area. Despite several challenges, protocols proceeding via HAT are highly sought after as they allow for relatively easy activation of inert C-H bonds under mild conditions leading to a broader scope and higher functional group tolerance and sometimes complementary reactivity over methods relying on traditional transition metal catalysis. A number of methods operating via heteroatom-based HAT have been extensively reported over the past few years, while methods employing more challenging carbon analogues have been less explored. Recent developments of mild methodologies for generation of various carbon-centered radical species enabled their utilization in the HAT process, which, in turn, led to the development of remote C(sp3)-H functionalization reactions of alcohols, amines, amides and related compounds. This review covers mostly recent advances in C-H functionalization reactions involving the HAT step to carbon-centered radicals.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| |
Collapse
|
8
|
Bian KJ, Li Y, Zhang KF, He Y, Wu TR, Wang CY, Wang XS. Iron-catalyzed remote functionalization of inert C(sp 3)-H bonds of alkenes via 1, n-hydrogen-atom-transfer by C-centered radical relay. Chem Sci 2020; 11:10437-10443. [PMID: 34123184 PMCID: PMC8162260 DOI: 10.1039/d0sc03987j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As an alternative approach to traditional C-H activation that often involved harsh conditions, and vicinal or primary C-H functionalization, radical relay offers a solution to these long-held problems. Enabled by 1,n (n = 5, 6)-hydrogen atom transfer (HAT), we use a most prevalent moiety, alkene, as the precursor to an sp3 C-centered radical to promote selective cleavage of inert C(sp3)-H bonds for the generation of azidotrifluoromethylated molecules. Mild conditions, broad scope and excellent regioselective control (>20 : 1) are observed in the reactions. Deuterium labelling studies disclose the kinetic characteristics of the transformations and verify a direct 1,n-HAT pathway. The key to this C-centered radical relay is that iron plays a dual role as a radical initiator and terminator to incorporate the azide functionality through radical oxidation via azido-ligand-transfer. The methods and the later derivatization promise expeditious synthesis of CF3-containing organic azides, γ-lactam and triazoles that are widely used in designing new fluorescent tags and functional materials.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kai-Fan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Cheng-Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
9
|
Matsuoka T, Inuki S, Miyagawa T, Oishi S, Ohno H. Total Synthesis of (+)-Polyoxamic Acid via Visible-Light-Mediated Photocatalytic β-Scission and 1,5-Hydrogen Atom Transfer of Glucose Derivative. J Org Chem 2020; 85:8271-8278. [PMID: 32425047 DOI: 10.1021/acs.joc.0c00910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A total synthesis of polyoxamic acid has been achieved. The key feature of the synthetic route is a visible-light-mediated β-scission and carbon-to-carbon 1,5-hydrogen atom transfer (1,5-HAT) to provide the functionalized alditol under mild conditions. This type of carbon-to-carbon 1,5-HAT initiated by C(sp3)-centered radicals has been scarcely reported. Furthermore, the reaction was adapted for flow chemistry, facilitating the total synthesis of polyoxamic acid.
Collapse
Affiliation(s)
- Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Miyagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Gucchait A, Kundu M, Manna T, Shit P, Misra AK. Influence of Functional Groups towards the β-Selective Glycosylation of 2-Azido-2-deoxy Glycosyl Thioglycosides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arin Gucchait
- Division of Molecular Medicine; Bose Institute; P-1/12, C.I.T. Scheme VII M 700054 Kolkata India
| | - Monalisa Kundu
- Division of Molecular Medicine; Bose Institute; P-1/12, C.I.T. Scheme VII M 700054 Kolkata India
| | - Tapasi Manna
- Division of Molecular Medicine; Bose Institute; P-1/12, C.I.T. Scheme VII M 700054 Kolkata India
| | - Pradip Shit
- Division of Molecular Medicine; Bose Institute; P-1/12, C.I.T. Scheme VII M 700054 Kolkata India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute; P-1/12, C.I.T. Scheme VII M 700054 Kolkata India
| |
Collapse
|
11
|
|
12
|
Matsubara H, Kawamoto T, Fukuyama T, Ryu I. Applications of Radical Carbonylation and Amine Addition Chemistry: 1,4-Hydrogen Transfer of 1-Hydroxylallyl Radicals. Acc Chem Res 2018; 51:2023-2035. [PMID: 30137961 DOI: 10.1021/acs.accounts.8b00278] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1,4-Hydrogen transfer from the 1-hydroxyallyl radical to give the enoxyl (α-keto) radical is an exothermic process with a high activation energy based on DFT calculations. The lack of experimental examples of such 1,4-H shift reactions lies in the difficulty of generating the 1-hydroxyallyl radical. We have shown that radical carbonylation of alkenyl radicals with CO followed by nucleophilic trapping of the carbonyl portion of the resulting radical by amines gives rise to 1-amino-substituted 1-hydroxyallyl radicals in situ. At the outset of this chemistry, we examined intramolecular trapping reactions via radical carbonylation of alkynylamines mediated by tributyltin hydride. Consequently, α-methylene lactams were obtained, for which the initially formed 1-amino-substituted 1-hydroxyallyl radical underwent a 1,4-H shift followed by subsequent β-scission, which led to the expulsion of a tributyltin radical. A competing pathway of the 1,4-H shift of 1-amino-substituted 1-hydroxyallyl radicals involving hydrogen abstraction was observed, which led to the formation of α-stannylmethylene lactams as a major byproduct. However, in contrast, when intermolecular trapping of α-ketenyl radicals by amines was carried out, the 1,4-H shift from the 1-amino-substituted 1-hydroxyallyl radical became the major pathway, which gave good yields of α,β-unsaturated amides. Thus, we were able to develop three-component reactions comprising terminal alkynes, CO, and amines that led to α,β-unsaturated amides via the 1,4-H shift reaction. DFT calculations support the observation that the 1,4-H shift is more facile when 1-hydroxyallyl radicals have both 1-amino and 3-tin substituents. The choice of substituents on the amine nitrogen is also important, since N-C bond cleavage via an SH2-type reaction can become a competing pathway. Such an unusual SH2-type reaction at the amine nitrogen is favored when the leaving alkyl radicals are stable, such as PhC(•)H(CH3) and t-Bu•. Interestingly, even nucleophilic attack of tertiary amines onto α-ketenyl radicals causes cleavage of the C-N bond. For this reaction, DFT calculations predict an indirect homolytic substitution mechanism involving expulsion of alkyl radicals through the zwitterionic radical intermediate arising from nucleophilic amine addition onto the α-ketenyl radical. In contrast, the carbonylation of aryl radicals, generated from aryl iodides, in the presence of amines gave aromatic carboxylic amides in good yields. It is proposed that radical anions originating from acyl radicals and amines undergo electron transfer to aryl iodides to give aminocarbonylation products.
Collapse
Affiliation(s)
- Hiroshi Matsubara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takuji Kawamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300, ROC
| |
Collapse
|
13
|
Stateman LM, Nakafuku KM, Nagib DA. Remote C-H Functionalization via Selective Hydrogen Atom Transfer. SYNTHESIS-STUTTGART 2018; 50:1569-1586. [PMID: 29755145 PMCID: PMC5940016 DOI: 10.1055/s-0036-1591930] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The selective functionalization of remote C-H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C-H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena.
Collapse
Affiliation(s)
- Leah M Stateman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Kohki M Nakafuku
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
14
|
Krylov VB, Paulovičová L, Paulovičová E, Tsvetkov YE, Nifantiev NE. Recent advances in the synthesis of fungal antigenic oligosaccharides. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe driving force for the constant improvement and development of new synthetic methodologies in carbohydrate chemistry is a growing demand for biologically important oligosaccharide ligands and neoglycoconjugates thereof for numerous biochemical investigations such as cell-to-pathogen interactions, immune response, cell adhesion, etc. Here we report our syntheses of the spacer-armed antigenic oligosaccharides related to three groups of the polysaccharides of the fungal cell-wall including α- and β-mannan, α- and β-glucan and galactomannan chains, which include new rationally designed synthetic blocks, efficient solutions for the stereoselective construction of glycoside bonds, and novel strategy for preparation of furanoside-containing oligosaccharides based on recently discovered pyranoside-into-furanoside (PIF) rearrangement.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovakia Slovak Academy of Sciences, Dubravská cesta 9, 84538 Bratislava, Slovakia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia,
| |
Collapse
|
15
|
Li L, Ye L, Ni SF, Li ZL, Chen S, Du YM, Li XH, Dang L, Liu XY. Phosphine-catalyzed remote α-C–H bond activation of alcohols or amines triggered by the radical trifluoromethylation of alkenes: reaction development and mechanistic insights. Org Chem Front 2017. [DOI: 10.1039/c7qo00500h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient radical protocol for concomitant functionalization of both alkenes and remote α-C–H bonds of alcohols or amines via 1,5(6,7)-HAT was realized in a highly controlled site-selective manner.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Liu Ye
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
- State Key Laboratory and Institute of Elemento-Organic Chemistry
| | - Shao-Fei Ni
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Zhong-Liang Li
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Su Chen
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Yi-Meng Du
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Xiao-Hua Li
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Guangdong 515063
- P. R. China
| | - Xin-Yuan Liu
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- P. R. China
| |
Collapse
|
16
|
Blockwise synthesis of a pentasaccharide structurally related to the mannan fragment from the Candida albicans cell wall corresponding to the antigenic factor 6. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Lai YC, Luo CH, Chou HC, Yang CJ, Lu L, Chen CS. Conversion of β-glycopyranoside to α-glycopyranoside by photo-activated radical reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Affiliation(s)
- Tobias Gylling Frihed
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mikael Bols
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | | |
Collapse
|
19
|
Fascione MA, Brabham R, Turnbull WB. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis. Chemistry 2016; 22:3916-28. [PMID: 26744250 PMCID: PMC4794778 DOI: 10.1002/chem.201503504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/04/2022]
Abstract
The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β-mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α-glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide-based carbohydrate synthesis.
Collapse
Affiliation(s)
- Martin A Fascione
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK.
| | - Robin Brabham
- York Structural Biology Lab, Department of Chemistry, University of York, Heslington Road, York, YO10 5DD, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Nguyen H, Zhu D, Li X, Zhu J. Stereoselective Construction of β‐Mannopyranosides by Anomeric
O
‐Alkylation: Synthesis of the Trisaccharide Core of
N
‐linked Glycans. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hai Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Danyang Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| | - Xiaohua Li
- Department of Natural Sciences University of Michigan-Dearborn Dearborn MI 48128 USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering The University of Toledo Toledo OH 43606 USA
| |
Collapse
|
21
|
Nguyen H, Zhu D, Li X, Zhu J. Stereoselective Construction of β-Mannopyranosides by Anomeric O-Alkylation: Synthesis of the Trisaccharide Core of N-linked Glycans. Angew Chem Int Ed Engl 2016; 55:4767-71. [PMID: 26948686 DOI: 10.1002/anie.201600488] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/07/2023]
Abstract
A new and efficient approach for direct and stereoselective synthesis of β-mannopyranosides by anomeric O-alkylation has been developed. This anomeric O-alkylation of mannopyranose-derived lactols is proposed to occur under synergistic control of a kinetic anomeric effect and metal chelation. The presence of a conformationally flexible C6 oxygen atom in the sugar-derived lactol donors is required for this anomeric O-alkylation to be efficient, probably because of its chelation with cesium ion. In contrast, the presence of a C2 oxygen atom plays a minor role. This glycosylation method has been successfully utilized for the synthesis of the trisaccharide core of complex N-linked glycans.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606, USA
| | - Danyang Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606, USA
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
22
|
Karelin AA, Tsvetkov YE, Paulovičová E, Paulovičová L, Nifantiev NE. A Blockwise Approach to the Synthesis of (1→2)-Linked Oligosaccharides Corresponding to Fragments of the Acid-Stable β-Mannan from theCandida albicansCell Wall. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Fujii S, Nakano M, Yamaoka Y, Takasu K, Yamada KI, Tomioka K. Contiguous radical pivaloyloxymethylation–directed C(sp 3 )–H iodination of N -tosyl cycloalkanecarbaldimine. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Zhu Y, Yu B. Highly Stereoselective β-Mannopyranosylation via the 1-α-Glycosyloxy-isochromenylium-4-gold(I) Intermediates. Chemistry 2015; 21:8771-80. [DOI: 10.1002/chem.201500648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 01/02/2023]
|
25
|
Moya-López JF, Elhalem E, Recio R, Álvarez E, Fernández I, Khiar N. Studies on the diastereoselective oxidation of 1-thio-β-D-glucopyranosides: synthesis of the usually less favoured R(S) sulfoxide as a single diastereoisomer. Org Biomol Chem 2015; 13:1904-14. [PMID: 25519807 DOI: 10.1039/c4ob02030h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed study on the diastereoselective oxidation of 1-thio-β-D-glucopyranosides is reported. It has been shown that the sense and the degree of stereochemical outcome of the oxidation are highly dependent on the substituent of the sulfur and on the protective group of the C2-OH. In the case of thioglycosides with a bulky aglycone, the mesylation of C2-OH has a significant effect on the stereochemical outcome of the oxidation, affording the usually less favoured RS sulfoxide as a single diastereoisomer. The absolute configuration of the final sulfinyl glycosides was ascertained by NMR analysis and corroborated by X-ray crystallography.
Collapse
Affiliation(s)
- Juan Francisco Moya-López
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, c/. Américo Vespucio, 49., Isla de la Cartuja, 41092 Sevilla, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Nechab M, Mondal S, Bertrand MP. 1,n-Hydrogen-Atom Transfer (HAT) Reactions in Whichn≠5: An Updated Inventory. Chemistry 2014; 20:16034-59. [DOI: 10.1002/chem.201403951] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Kaneko M, Herzon SB. Scope and limitations of 2-deoxy- and 2,6-dideoxyglycosyl bromides as donors for the synthesis of β-2-deoxy- and β-2,6-dideoxyglycosides. Org Lett 2014; 16:2776-9. [PMID: 24786757 PMCID: PMC4033630 DOI: 10.1021/ol501101f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/30/2022]
Abstract
It is shown that 2-deoxy- and 2,6-dideoxyglycosyl bromides can be prepared in high yield (72-94%) and engaged in glycosylation reactions with β:α selectivities ≥6:1. Yields of product are 44-90%. Fully armed 2-deoxyglycoside donors are viable, while 2,6-dideoxyglycosides require one electron-withdrawing substituent for high efficiency and β-selectivity. Equatorial C-3 ester protecting groups decrease β-selectivity, and donors bearing an axial C-3 substituent are not suitable. The method is compatible with azide-containing donors and acid-sensitive functional groups.
Collapse
Affiliation(s)
- Miho Kaneko
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B. Herzon
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
León EI, Martín Á, Pérez-Martín I, Quintanal LM, Suárez E. C-C Bond Formation by Sequential Intramolecular Hydrogen Atom Transfer/Intermolecular Radical Allylation Reaction in Carbohydrate Systems. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Crich D. Methodology development and physical organic chemistry: a powerful combination for the advancement of glycochemistry. J Org Chem 2011; 76:9193-209. [PMID: 21919522 PMCID: PMC3215858 DOI: 10.1021/jo2017026] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This Perspective outlines work in the Crich group on the diastereoselective synthesis of the so-called difficult classes of glycosidic bond: the 2-deoxy-β-glycopyranosides, the β-mannopyranosides, the α-sialosides, the α-glucopyranosides, and the β-arabinofuranosides with an emphasis on the critical interplay between mechanism and methodology development.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
30
|
Muranaka K, Ichikawa S, Matsuda A. Development of the Carboxamide Protecting Group, 4-(tert-Butyldimethylsiloxy)-2-methoxybenzyl. J Org Chem 2011; 76:9278-93. [DOI: 10.1021/jo201495w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiro Muranaka
- Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
31
|
Ryu I, Fukuyama T, Tojino M, Uenoyama Y, Yonamine Y, Terasoma N, Matsubara H. Radical carbonylation of ω-alkynylamines leading to α-methylene lactams. Synthetic scope and the mechanistic insights. Org Biomol Chem 2011; 9:3780-6. [DOI: 10.1039/c1ob05145h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Crich D, Sharma I. Influence of the O3 protecting group on stereoselectivity in the preparation of C-mannopyranosides with 4,6-O-benzylidene protected donors. J Org Chem 2010; 75:8383-91. [PMID: 21070063 DOI: 10.1021/jo101453y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-C-Glucopyranosides and mannopyranosides are obtained in 65-85% yields from 4,6-O-benzylidene-protected glucosyl and mannosyl thioglycosides bearing ester functionality at the 3-O-position by a coupling reaction with C-nucleophiles on activation with diphenyl sulfoxide, 2,4,6-tri-tert-butylpyrimidine, and trifluoromethanesulfonic anhydride.
Collapse
Affiliation(s)
- David Crich
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
33
|
Jalsa NK, Singh G. A unique approach to the synthesis of a dengue vaccine and the novel tetrasaccharide that results. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Francisco C, Herrera A, Kennedy A, Martín A, Melián D, Pérez-Martín I, Quintanal L, Suárez E. Intramolecular 1,8-Hydrogen-Atom Transfer Reactions in (1→4)-O-Disaccharide Systems: Conformational and Stereochemical Requirements. Chemistry 2008; 14:10369-81. [DOI: 10.1002/chem.200801414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
El Ashry ESH, Rashed N, Ibrahim ESI. Challenges in the stereocontrolled syntheses of β-rhamnosides. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Martín A, Pérez-Martín I, Quintanal LM, Suárez E. Stereoselective synthesis of C-ketosides by sequential intramolecular hydrogen atom transfer–intermolecular allylation reaction. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.06.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
|
38
|
van den Bos LJ, Codée JDC, Litjens REJN, Dinkelaar J, Overkleeft HS, van der Marel GA. Uronic Acids in Oligosaccharide Synthesis. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700101] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leendert J. van den Bos
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Remy E. J. N. Litjens
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jasper Dinkelaar
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
39
|
Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-glycosides. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.05.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
|
41
|
van den Bos LJ, Duivenvoorden BA, de Koning MC, Filippov DV, Overkleeft HS, van der Marel GA. Study of the Glycosidation Properties of 1-Thiomannosazidopyranosides and 1-Thiomannosaziduronic Acid Esters. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600759] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Ryu I, Uenoyama Y, Matsubara H. Carbonylative Approaches to α,β-Unsaturated Acyl Radicals and α-Ketenyl Radicals. Their Structure and Applications in Synthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1476] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Alkyne Carbonylation by Radicals: Tin‐Radical‐Catalyzed Synthesis of α‐Methylene Amides from 1‐Alkynes, Carbon Monoxide, and Amines. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461954] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshitaka Uenoyama
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599‐8531, Japan, Fax: (+81) 72‐254‐9695
| | - Takahide Fukuyama
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599‐8531, Japan, Fax: (+81) 72‐254‐9695
| | - Osamu Nobuta
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599‐8531, Japan, Fax: (+81) 72‐254‐9695
| | - Hiroshi Matsubara
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599‐8531, Japan, Fax: (+81) 72‐254‐9695
| | - Ilhyong Ryu
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599‐8531, Japan, Fax: (+81) 72‐254‐9695
| |
Collapse
|
44
|
Uenoyama Y, Fukuyama T, Nobuta O, Matsubara H, Ryu I. Alkyne Carbonylation by Radicals: Tin‐Radical‐Catalyzed Synthesis of α‐Methylene Amides from 1‐Alkynes, Carbon Monoxide, and Amines. Angew Chem Int Ed Engl 2005; 44:1075-1078. [PMID: 15666423 DOI: 10.1002/anie.200461954] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshitaka Uenoyama
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: (+81) 72-254-9695
| | - Takahide Fukuyama
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: (+81) 72-254-9695
| | - Osamu Nobuta
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: (+81) 72-254-9695
| | - Hiroshi Matsubara
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: (+81) 72-254-9695
| | - Ilhyong Ryu
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: (+81) 72-254-9695
| |
Collapse
|
45
|
Tojino M, Uenoyama Y, Fukuyama T, Ryu I. Intramolecular nucleophilic carbonyl trapping of α-ketenyl radicals by an amino group. Chem Commun (Camb) 2004:2482-3. [PMID: 15514826 DOI: 10.1039/b408746a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-radical carbonylation of omega-alkynylamines with tributyltin hydride gives a mixture of alpha-methylene lactams and alpha-stannylmethylene lactams. Nucleophilic addition of an internal amino group to the carbonyl group of alpha-ketenyl radicals is proposed as the cyclization step. The subsequent unusual 1,4-H shift from the resulting 1-hydroxyallyl radical, followed by elimination of the beta-tributyltin radical leads to the formation of alpha-methylene lactams.
Collapse
Affiliation(s)
- Mami Tojino
- Department of Chemistry, Faculty of Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | | | |
Collapse
|
46
|
Gómez AM, Casillas M, Valverde S, López J. Stereocontrolled entry to β-C-glycosides and bis-C,C-glycosides from C-glycals: preparation of a highly functionalized triene from d-mannose. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0957-4166(01)00363-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Praly JP. Structure of anomeric glycosyl radicals and their transformations under reductive conditions. Adv Carbohydr Chem Biochem 2001; 56:65-151. [PMID: 11039110 DOI: 10.1016/s0065-2318(01)56003-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J P Praly
- Unité Mixte de Recherche CNRS-Université Claude-Bernard no. 5622, ESCPE-Lyon, Villeurbanne, France
| |
Collapse
|
48
|
Singh G, Vankayalapati H. A new glycosylation strategy for the synthesis of mannopyranosides. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00487-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Crich D, Dai Z. Direct synthesis of β-mannosides. Synthesis of β-D-xyl-(1→2)-β-D-man-(1→4)-α-D-Glc-OMe: A trisaccharide component of the Hyriopsis schlegelii glycosphingolipid. Formation of an orthoester from a xylopyranosyl sulfoxide. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(98)01202-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Beckwith ALJ, Page DM. Formation of Some Oxygen-Containing Heterocycles by Radical Cyclization: The Stereochemical Influence of Anomeric Effects. J Org Chem 1998. [DOI: 10.1021/jo980359u] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Athelstan L. J. Beckwith
- Research School of Chemistry, and Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Dennis M. Page
- Research School of Chemistry, and Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|