1
|
|
2
|
Chang CA, Lee HY, Lin SL, Meng CN, Wu TT. Dinuclear Lanthanide(III)-m-ODO2A-dimer Macrocyclic Complexes: Solution Speciation, DFT Calculations, Luminescence Properties, and Promoted Nitrophenyl-Phosphate Hydrolysis Rates. Chemistry 2018; 24:6442-6457. [PMID: 29479746 DOI: 10.1002/chem.201800037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/24/2022]
Abstract
Potentiometric speciation studies, mass spectrometry, and DFT calculations helped to predict the various structural possibilities of the dinuclear trivalent lanthanide ion (LnIII , Ln=La, Eu, Tb, Yb, Y) complexes of a novel macrocyclic ligand, m-ODO2A-dimer (H4 L), to correlate with their luminescence properties and the promoted BNPP and HPNP phosphodiester bond hydrolysis reaction rates. The stability constants of the dinuclear Ln2 (m-ODO2A-dimer) complexes and various hydrolytic species confirmed by mass spectrometry were determined. DFT calculations revealed that the Y2 LH-1 and the Y2 LH-2 species tended to form structures with the respective closed- and open-form conformations. Luminescence lifetime data for the heterodimetallic TbEuL system confirmed the fluorescence resonance energy transfer from the TbIII to EuIII ion. The internuclear distance RTbEu values were estimated to be in the range of 9.4-11.3 Å (pH 6.7-10.6), which were comparable to those of the DFT calculated open-form conformations. Multiple linear regression analysis of the kobs data was performed using the equation: kobs,corr. =kobs -kobs,OH =kLn2LHM->1 [Ln2 LH-1 ]+kLn2LH-2 [Ln2 LH-2 ] for the observed Ln2 L-promoted BNPP/HPNP hydrolysis reactions in solution pH from 7 to 10.5 (Ln=Eu, Yb). The results showed that the second-order rate constants for the Eu2 LH-2 and Yb2 LH-2 species were about 50-400 times more reactive than the structural analogous Zn2 (m-12 N3 O-dimer) system.
Collapse
Affiliation(s)
- C Allen Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, Taiwan), 112, Republic of China.,Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan, Republic of China.,Molecular Imaging Research Center (MIRC), National Yang-Ming University, Taipei, 112, Taiwan, Republic of China.,Department of Biological Science and Technology, National Chiao Tung University, No. 75 Po-Ai Street, Hsinchu, Taiwan, 30039, Republic of China
| | - Hwa-Yu Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, Taiwan), 112, Republic of China
| | - Syue-Liang Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan, Republic of China
| | - Ching-Ning Meng
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, Taiwan), 112, Republic of China
| | - Tsung-Ta Wu
- Department of Biological Science and Technology, National Chiao Tung University, No. 75 Po-Ai Street, Hsinchu, Taiwan, 30039, Republic of China
| |
Collapse
|
3
|
Kuzuya A, Machida K, Shi Y, Tanaka K, Komiyama M. Site-Selective RNA Activation by Acridine-Modified Oligodeoxynucleotides in Metal-Ion Catalyzed Hydrolysis: A Comprehensive Study. ACS OMEGA 2017; 2:5370-5377. [PMID: 31457805 PMCID: PMC6644747 DOI: 10.1021/acsomega.7b00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 06/10/2023]
Abstract
Various types of acridine were conjugated to DNA and used for site-selective RNA scission together with another unmodified DNA and a Lu(III) ion. The target phosphodiester linkage in the substrate RNA was selectively and efficiently activated, and was hydrolyzed by the free Lu(III) ion. Among the investigated 14 conjugates, the conjugate bearing 9-amino-2-isopropoxy-6-nitroacridine was the best RNA-activator. Systematic evaluation of the RNA-activating ability of the acridines showed that (1) the acridines act as an acid catalyst within the RNA activation, (2) the amino-group at the 9-position of acridine is essential to modulate the acidity of acridine, (3) the electron-withdrawing group at the 3-position further enhances the acid catalysis, and (4) the substituent at the 2-position sterically modulates the orientation of acridine-intercalation favorably for the catalysis. Moreover, it is revealed that the opposite base of acridine does not inhibit direct interaction of acridine with the target phosphodiester linkage.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Department
of Chemistry and Materials Engineering, Kansai University, 3-3-35
Yamate, Suita, Osaka 564-8680, Japan
| | - Kenzo Machida
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yun Shi
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Keita Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Makoto Komiyama
- International
Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
SYNTHESIS AND AGGREGATION BEHAVIOR OF MANNOSE-TERMINATED POLYLYSINE. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Patel S, Rana J, Roy J, Huang H. Cleavage of pyrene-stabilized RNA bulge loops by trans-(±)-cyclohexane-1,2-diamine. Chem Cent J 2012; 6:3. [PMID: 22244351 PMCID: PMC3319420 DOI: 10.1186/1752-153x-6-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
Chemical agents that cleave HIV genome can be potentially used for anti-HIV therapy. In this report, the cleavage of the upper stem-loop region of HIV-1 TAR RNA was studied in a variety of buffers containing organic catalysts. trans-(±)-Cyclohexane-1,2-diamine was found to cleave the RNA with the highest activity (31%, 37°C, 18 h). Cleavage of the RNA in trans-(±)-cyclohexane-1,2-diamine buffer was also studied when the RNA was hybridized with complementary DNAs. A pyrene-modified C3 spacer was incorporated to the DNA strand to facilitate the formation of a RNA bulge loop in the RNA/DNA duplex. In contrast, unmodified DNAs cannot efficiently generate RNA bulge loops, regardless of the DNA sequences. The results showed that the pyrene-stablized RNA bulge loops were efficiently and site-specifically cleaved by trans-(±)-cyclohexane-1,2-diamine.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin L, King Blvd, Newark, NJ, 07102, USA.
| | | | | | | |
Collapse
|
6
|
Beloglazova NG, Fabani MM, Polushin NN, Sil'nikov VV, Vlassov VV, Bichenkova EV, Zenkova MA. Site-selective artificial ribonucleases: oligonucleotide conjugates containing multiple imidazole residues in the catalytic domain. J Nucleic Acids 2011; 2011:748632. [PMID: 21961054 PMCID: PMC3180074 DOI: 10.4061/2011/748632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/05/2011] [Indexed: 12/05/2022] Open
Abstract
Design of site-selective artificial ribonucleases (aRNases) is one of the most challenging tasks in RNA targeting. Here, we designed and studied oligonucleotide-based aRNases containing multiple imidazole residues in the catalytic part and systematically varied structure of cleaving constructs. We demonstrated that the ribonuclease activity of the conjugates is strongly affected by the number of imidazole residues in the catalytic part, the length of a linker between the catalytic imidazole groups of the construct and the oligonucleotide, and the type of anchor group, connecting linker structure and the oligonucleotide. Molecular modeling of the most active aRNases showed that preferable orientation(s) of cleaving constructs strongly depend on the structure of the anchor group and length of the linker. The inclusion of deoxyribothymidine anchor group significantly reduced the probability of cleaving groups to locate near the cleavage site, presumably due to a stacking interaction with the neighbouring nucleotide residue. Altogether the obtained results show that dynamics factors play an important role in site-specific RNA cleavage. Remarkably high cleavage activity was displayed by the conjugates with the most flexible and extended cleaving construct, which presumably provides a better opportunity for imidazole residues to be correctly positioned in the vicinity of scissile phosphodiester bond.
Collapse
Affiliation(s)
- Natalia G Beloglazova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
7
|
Thomas JM, Yoon JK, Perrin DM. Investigation of the catalytic mechanism of a synthetic DNAzyme with protein-like functionality: an RNaseA mimic? J Am Chem Soc 2010; 131:5648-58. [PMID: 20560639 DOI: 10.1021/ja900125n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protein enzyme ribonuclease A (RNaseA) cleaves RNA with catalytic perfection, although with little sequence specificity, by a divalent metal ion (M(2+))-independent mechanism in which a pair of imidazoles provides general acid and base catalysis, while a cationic amine provides electrostatic stabilization of the transition state. Synthetic imitation of this remarkable organo-catalyst ("RNaseA mimicry") has been a longstanding goal in biomimetic chemistry. The 9(25)-11 DNAzyme contains synthetically modified nucleotides presenting both imidazole and cationic amine side chains, and catalyzes RNA cleavage with turnover in the absence of M(2+) similarly to RNaseA. Nevertheless, the catalytic roles, if any, of the "protein-like" functional groups have not been defined, and hence the question remains whether 9(25)-11 engages any of these functionalities to mimic aspects of the mechanism of RNaseA. To address this question, we report a mechanistic investigation of 9(25)-11 catalysis wherein we have employed a variety of experiments, such as DNAzyme functional group deletion, mechanism-based affinity labeling, and bridging and nonbridging phosphorothioate substitution of the scissile phosphate. Several striking parallels exist between the results presented here for 9(25)-11 and the results of analogous experiments applied previously to RNaseA. Specifically, our results implicate two particular imidazoles in general acid and base catalysis and suggest that a specific cationic amine stabilizes the transition state via diastereoselective interaction with the scissile phosphate. Overall, 9(25)-11 appears to meet the minimal criteria of an RNaseA mimic; this demonstrates how added synthetic functionality can expand the mechanistic repertoire available to a synthetic DNA-based catalyst.
Collapse
Affiliation(s)
- Jason M Thomas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | |
Collapse
|
8
|
Razkin J, Lindgren J, Nilsson H, Baltzer L. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs. Chembiochem 2008; 9:1975-84. [PMID: 18600814 DOI: 10.1002/cbic.200800057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HJ1, a 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle, successfully catalyzes the cleavage of "early stage" DNA model substrates in an aqueous solution at pH 7.0, with a rate enhancement in the hydrolysis of heptyl 4-nitrophenyl phosphate of over three orders of magnitude over that of the imidazole-catalyzed reaction, k(2)(HJ1)/k(2)(Im) = 3135. The second-order rate constant, k(2)(HJ1) was determined to be 1.58x10(-4) M(-1) s(-1). The catalyst successfully assembles residues that in a single elementary reaction step are capable of general-acid and general-base catalysis as well as transition state stabilization and proximity effects. The reactivity achieved with the HJ1 polypeptide, rationally designed to catalyze the hydrolysis of phosphodiesters, is based on two histidine residues flanked by four arginines and two adjacent tyrosine residues, all located on the surface of a helix-loop-helix motif. The introduction of Tyr residues close to the catalytic site improves efficiency, in the cleavage of activated aryl alkyl phosphates as well as less activated dialkyl phosphates. HJ1 is also effective in the cleavage of an RNA-mimic substrate, uridine-3'-2,2,2-trichloroethyl phosphate (leaving group pK(a) = 12.3) with a second-order rate constant of 8.23x10(-4) M(-1) s(-1) in aqueous solution at pH 7.0, some 500 times faster than the reaction catalyzed by imidazole, k(2)(HJ1)/k(2)(Im) = 496.
Collapse
Affiliation(s)
- Jesus Razkin
- Department of Applied Chemistry, Public University of Navarra, 31006 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
9
|
Razkin J, Nilsson H, Baltzer L. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide. J Am Chem Soc 2007; 129:14752-8. [PMID: 17985898 DOI: 10.1021/ja075478i] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle has been designed to catalyze the hydrolysis of phosphodiesters. The active site on the surface of the folded catalyst is composed of two histidine and four arginine residues, with the capacity to provide general acid, general base, and/or nucleophilic catalysis as well as transition state stabilization. Uridine 3'-2,2,2 trichloroethylphosphate (2) is a mimic of RNA with a leaving group pKa of 12.3. Its hydrolysis is energetically less favorable than that of commonly used model substrates with p-nitrophenyl leaving groups and therefore a more realistic model for the design of catalysts capable of cleaving RNA. The second-order rate constant for the hydrolysis of 2 at pH 7.0 by the polypeptide catalyst was 418 x 10(-6) M-1 s-1, and that of the imidazole catalyzed reaction was 1.66 x 10(-6) M-1 s-1. The pH dependence suggested that catalysis is due to the unprotonated form of a residue with a pKa of around 5.3, and the observed kinetic solvent isotope effect of 1.9 showed that there is significant hydrogen bonding in the transition state, consistent with general acid-base catalysis. The rate constant ratio k2(Pep)/k2(Im) of 252 is probably due to a combination of nucleophilic and general acid-base catalysis, as well as transition state stabilization. Substrate binding was weak since no sign of saturation kinetics was observed for substrate concentrations in the range from 5 to 40 mM. The results provide a platform for the further development of catalysts for RNA cleavage with a potential role in the development of drugs.
Collapse
Affiliation(s)
- Jesus Razkin
- Department of Applied Chemistry, Public University of Navarra, 31006 Pamplona, Navarra, Spain.
| | | | | |
Collapse
|
10
|
Kalek M, Madsen AS, Wengel J. Effective modulation of DNA duplex stability by reversible transition metal complex formation in the minor groove. J Am Chem Soc 2007; 129:9392-400. [PMID: 17616191 DOI: 10.1021/ja071076z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe the reversible changing of DNA duplex thermal stability by exploiting transition metal complexation phenomena. A terpyridine ligand was conjugated to the N2'-atoms of 2'-amino-2'-deoxyuridine and its locked counterpart 2'-amino-LNA, and these metal-complexing monomers were incorporated into oligodeoxyribonucleotides. Upon addition of varying amounts of transition metal ions, the thermal stability of DNA duplexes containing these terpyridine-functionalized units in different constitutions was affected to different degrees (DeltaTm values = -15.5 to +49.0 degrees C, relative to the unmodified duplex). The most pronounced effects were observed when two complexing monomers were positioned in opposite strands. Addition of 1 equiv of Ni2+ to such a system induced extraordinary duplex stabilization. Molecular modeling studies suggest, as an explanation for this phenomenon, formation of nickel-mediated interstrand linkages in the minor groove. Addition of an excess of metal ions resulted in largely decreased Tm values. Alternating addition of metal ions and EDTA demonstrated reversibility of metal ion-induced changes in hybridization strength, proving that the described approach provides an efficient method for duplex stability modulation.
Collapse
Affiliation(s)
- Marcin Kalek
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
11
|
Kamei T, Kudo M, Akiyama H, Wada M, Nagasawa J, Funahashi M, Tamaoki N, Uyeda TQP. Visible-Light Photoresponsivity of a 4-(Dimethylamino)azobenzene Unit Incorporated into Single-Stranded DNA: Demonstration of a Large Spectral Change Accompanying Isomerization in DMSO and Detection of Rapid (Z)-to-(E) Isomerization in Aqueous Solution. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Holmes SC, Gait MJ. Syntheses and Oligonucleotide Incorporation of Nucleoside Analogues Containing Pendant Imidazolyl or Amino Functionalities - The Search for Sequence-Specific Artificial Ribonucleases. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Abstract
Mimicking the action of enzymes by simpler and more robust man-made catalysts has long inspired bioorganic chemists. During the past decade, mimics for RNA-cleaving enzymes, ribonucleases, or, more precisely, mimics of ribozymes that cleave RNA in sequence-selective rather than base-selective manner, have received special attention. These artificial ribonucleases are typically oligonucleotides (or their structural analogs) that bear a catalytically active conjugate group and catalyze sequence-selective hydrolysis of RNA phosphodiester bonds.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | |
Collapse
|
14
|
Chang CA, Wu BH, Kuan BY. Macrocyclic Lanthanide Complexes as Artificial Nucleases and Ribonucleases: Effects of pH, Metal Ionic Radii, Number of Coordinated Water Molecules, Charge, and Concentrations of the Metal Complexes. Inorg Chem 2005; 44:6646-54. [PMID: 16156622 DOI: 10.1021/ic0485458] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have been interested in the design, synthesis, and characterization of artificial nucleases and ribonucleases by employing macrocyclic lanthanide complexes because their high thermodynamic stability, low kinetic lability, high coordination number, and charge density (Lewis acidity) allow more design flexibility and stability. In this paper, we report the study of the use of the europium(III) complex, EuDO2A+ (DO2A is 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) and other lanthanide complexes (i.e., LaDO2A+, YbDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA where K21DA is 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid, EDDA is ethylenediamine-N,N'-diacetic acid, and HEDTA is N-hydroxyethyl-ethylenediamine-N,N',N'-triacetic acid), as potential catalysts for the hydrolysis of the phosphodiester bond of BNPP (sodium bis(4-nitrophenyl)-phosphate). For the pH range 7.0-11.0 studied, EuDO2A+ promotes BNPP hydrolysis with the quickest rates among LaDO2A+, EuDO2A+, and YbDO2A+. This indicates that charge density is not the only factor affecting the reaction rates. Among the four complexes, EuDO2A+, EuK21DA+, EuEDDA+, and EuHEDTA, with their respective number of inner-sphere coordinated water molecules three, two, five, and three, EuEDDA+, with the greatest number of inner-sphere coordinated water molecules and a positive charge, promotes BNPP hydrolysis more efficiently at pH below 8.4, and the observed rate trend is EuEDDA+ > EuDO2A+ > EuK21DA+ > EuHEDTA. At pH > 8.4, the EuEDDA+ solution becomes misty and precipitates form. At pH 11.0, the hydrolysis rate of BNPP in the presence of EuDO2A+ is 100 times faster than that of EuHEDTA, presumably because the positively charged EuDO2A+ is more favorable for binding with the negatively charged phosphodiester compounds. The logarithmic hydrolysis constants (pKh) were determined, and are reported in the parentheses, by fitting the kinetic k(obs) data vs pH for EuDO2A+ (8.4), LaDO2A+ (8.4), YbDO2A+ (9.4), EuK21DA+ (7.8), EuEDDA+ (9.0), and EuHEDTA (10.1). The preliminary rate constant-[EuDO2A+] data at pH 9.35 were fitted to a monomer-dimer reaction model, and the dimer rate constant is 400 times greater than that of the monomer. The fact that YbDO2A+ catalyzes BNPP less effectively than EuDO2A+ is tentatively explained by the formation of an inactive dimer, [Yb(DO2A)(OH)]2, with no coordination unsaturation for BNPP substrate binding.
Collapse
Affiliation(s)
- C Allen Chang
- Dept. of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu, Taiwan 30039, R.O.C
| | | | | |
Collapse
|
15
|
Shi Y, Machida K, Kuzuya A, Komiyama M. Design of phosphoramidite monomer for optimal incorporation of functional intercalator to main chain of oligonucleotide. Bioconjug Chem 2005; 16:306-11. [PMID: 15769083 DOI: 10.1021/bc049698m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chirally pure phosphoramidite monomers bearing 9-amino-6-chloro-2-methoxyacridine were synthesized from D- or L-threoninol and omega-aminocarboxylic acid, and incorporated into oligonucleotides. These acridine-DNA conjugates formed stable duplexes with complementary RNA because of intercalation of the acridine to DNA/RNA heteroduplexes. The stability of duplexes was not very dependent on either the chirality of the central carbon bearing the acridine or the length of the side chain. However, the ability for site-selective activation of the phosphodiester linkage in front of the acridine, which induced Lu(III)-promoted RNA scission, was strongly dependent on these two factors. The largest activation was achieved when the monomer unit was prepared from L-threoninol and 4-aminobutyric acid and the acridine was bound to the amino group. By attaching the more acidic 9-amino-2-methoxy-6-nitroacridine to this optimized scaffold, a quite effective acridine-DNA conjugate for site-selective RNA scission was obtained.
Collapse
Affiliation(s)
- Yun Shi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | |
Collapse
|
16
|
Niittymäki T, Lönnberg H. Sequence-selective cleavage of oligoribonucleotides by 3d transition metal complexes of 1,5,9-triazacyclododecane-functionalized 2'-O-methyl oligoribonucleotides. Bioconjug Chem 2005; 15:1275-80. [PMID: 15546193 DOI: 10.1021/bc0498323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2'-O-Methyl oligoribonucleotides bearing a 3'-[2,6-dioxo-3,7-diaza-10-(1,5,9-triazacyclododec-3-yl)decyl phospate conjugate group have been shown to cleave in slight excess of Zn(2+) ions complementary oligoribonucleotides at the 5'-side of the last base-paired nucleotide. The cleavage obeys first-order kinetics and exhibits turnover. The acceleration compared to the monomeric Zn(2+) 1,5,9-triazacyclododecane chelate is more than 100-fold. In addition, 2'-O-methyl oligoribonucleotides having the 1,5,9-triazacyclododec-3-yl group tethered to the anomeric carbon of an intrachain 2-deoxy-beta-d-erythro-pentofuranosyl group via a 2-oxo-3-azahexyl, 2,6-dioxo-3,7-diazadecyl, or 2,9-dioxo-3,10-diazatridecyl linker have been studied as cleaving agents. These cleave as zinc chelates a tri- and pentaadenyl bulge opposite to the conjugate group approximately 50 times as fast as the monomeric chelate and show turnover. The cleavage rate is rather insensitive to the length of linker. Interestingly, a triuridyl bulge remains virtually intact in striking contrast to a triadenyl bulge. Evidently binding of the zinc chelate to a uracil base prevents its catalytic action. Replacement of Zn(2+) with Cu(2+) or Ni(2+) retards the cleaving activity of all the cleaving agents tested.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
17
|
Nakano SI, Uotani Y, Uenishi K, Fujii M, Sugimoto N. Site-Selective RNA Cleavage by DNA Bearing a Base Pair-Mimic Nucleoside. J Am Chem Soc 2004; 127:518-9. [PMID: 15643864 DOI: 10.1021/ja045445s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have synthesized the deoxyadenosine derivative tethering a phenyl group (X), which mimics the Watson-Crick A/T base pair. The RNA/DNA hybrid duplexes containing X in the middle of the DNA sequence showed a similar thermal stability regardless of the ribonucleotide species (A, G, C, or U) opposite to X, probably because of the phenyl group stacking inside of the duplex accompanied by the opposite ribonucleotide base flipped in an extrahelical position. The RNA strand hybridized with the DNA strand bearing X was cleaved on the 3'-side of the ribonucleotide opposite to X in the presence of MgCl2, and the RNA sequence to be cleaved was not restricted. The site-specific RNA hydrolysis suggests that the DNA strand bearing X has the advantage of the site-selective base flipping in the target sequence and the development of a "universal deoxyribozyme" to exclusively cleave a target RNA sequence.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Frontier Institute for Biomolecular Engineering Research and Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | | | |
Collapse
|
18
|
Shi Y, Niikura F, Kuzuya A, Komiyama M. Noncovalent Combination of Oligoamine and Oligonucleotide as Totally Organic Site-selective RNA Cutter. CHEM LETT 2004. [DOI: 10.1246/cl.2004.1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Kuzuya A, Mizoguchi R, Sasayama T, Zhou JM, Komiyama M. Selective activation of two sites in RNA by acridine-bearing oligonucleotides for clipping of designated RNA fragments. J Am Chem Soc 2004; 126:1430-6. [PMID: 14759201 DOI: 10.1021/ja0389568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial enzymes for selective scission of RNA at two designated sites, which are valuable for advanced RNA science, have been prepared by combining lanthanide(III) ion with an oligonucleotide bearing two acridine groups. When these modified oligonucleotides form heteroduplexes with substrate RNA, the two phosphodiester linkages in front of the acridines are selectively activated and preferentially hydrolyzed by lanthanide ion. This two-site RNA scission does not require any specific RNA sequence at the scission sites, and the length of clipped RNA fragment is easily and precisely controllable by changing the distance between two acridine groups in the modified oligonucleotide. The two-site scission is also successful even when the substrate RNA has higher-order structures. By using these two-site RNA cutters, RNA fragments of predetermined length were obtained from long RNA substrates and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Single nucleotide polymorphisms in homozygous and heterozygous samples were accurately and easily detected in terms of the difference in mass number. Multiplex analyses of in vitro transcripts from human genome were also successful.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan
| | | | | | | | | |
Collapse
|
20
|
Niittymäki T, Kaukinen U, Virta P, Mikkola S, Lönnberg H. Preparation of azacrown-functionalized 2'-O-methyl oligoribonucleotides, potential artificial RNases. Bioconjug Chem 2004; 15:174-84. [PMID: 14733598 DOI: 10.1021/bc034166b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved synthesis for 3-(3-aminopropyl)- and 3-(3-mercaptopropyl)-1,5,9-triazacyclododecane has been developed and alternative methods for their conjugation to oligonucleotides have been described. Accordingly, the 3-aminopropyl azacrown and its N-(3-aminopropanoyl)-3-aminopropyl analogue have been tethered to the 3'-terminus of a 2'-O-methyloligoribonucleotide by aminolytic cleavage of the thioester linker utilized for the chain assembly. Studies on a monomeric model compound verify that the reaction proceeds solely by the attack of the primary amino group. 5'-Conjugation has been achieved by introducing a 2-benzylthio-2-oxoethyl group to the 5'-terminus as a phosphoramidite reagent and cleaving the thioester bond with the 3-aminopropyl azacrown. For intrachain conjugation, a phosphoramidite reagent derived from 1-deoxy-1-(2-benzylthio-2-oxoethyl)-beta-d-erythro-pentofuranose has been inserted in a desired position within the chain and subjected to on-support aminolysis with the 3-aminopropyl azacrown or its N-(3-aminopropanoyl)-3-aminopropyl and N-(6-aminohexanoyl)-3-aminopropyl analogues. The 3-mercaptopropyl-derivatized azacrown has been tetherd by a disulfide bond to a 3'-(3-mercaptoalkyl)phosphate-tailed oligonucleotide. The 3'- and intrachain-tethered conjugates have been shown to cleave as their Zn(II) chelate complementary oligoribonucleotide sequences.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
21
|
Shi Y, Kuzuya A, Komiyama M. Stereochemically Pure Acridine-modified DNA for Site-selective Activation and Scission of RNA. CHEM LETT 2003. [DOI: 10.1246/cl.2003.464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Whitney A, Gavory G, Balasubramanian S. Site-specific cleavage of human telomerase RNA using PNA-neocuproine.Zn(II) derivatives. Chem Commun (Camb) 2003:36-7. [PMID: 12610953 DOI: 10.1039/b210135a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the synthesis of a novel PNA based neocuproine.Zn RNA cleaving agent; we demonstrate that such agents sequence specifically cleave a synthetic RNA target and in particular the RNA component of human telomerase.
Collapse
Affiliation(s)
- Andrew Whitney
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | |
Collapse
|
23
|
Kuzuya A, Mizoguchi R, Morisawa F, Machida K, Komiyama M. Metal ion-induced site-selective RNA hydrolysis by use of acridine-bearing oligonucleotide as cofactor. J Am Chem Soc 2002; 124:6887-94. [PMID: 12059210 DOI: 10.1021/ja025653p] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New types of noncovalent ribozyme-mimics for site-selective RNA scission are prepared by combining metal ions with oligonucleotides bearing an acridine. Lanthanide(III) ions and various divalent metal ions (Zn(II), Mn(II), Cu(II), Ni(II), Co(II), Mg(II), and Ca(II)) are employed without being bound to any sequence-recognizing moiety. The modified oligonucleotide forms a heteroduplex with the substrate RNA, and selectively activates the phosphodiester linkages in front of the acridine. As a result, these linkages are preferentially hydrolyzed over the others, even though the metal ions are not fixed anywhere. The scission is efficient under physiological conditions, irrespective of the sequence at the target site. Site-selective RNA scission is also successful with the combination of an oligonucleotide bearing an acridine at its terminus, another unmodified oligonucleotide, and the metal ion. In a proposed mechanism, the acridine pushes the unpaired ribonucleotide out of the heteroduplex and changes the conformation of RNA at the target site for the sequence-selective activation.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- M Komiyama
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | | | | |
Collapse
|
25
|
Kuzuya A, Machida K, Mizoguchi R, Komiyama M. Conjugation of various acridines to DNA for site-selective RNA scission by lanthanide ion. Bioconjug Chem 2002; 13:365-9. [PMID: 11906275 DOI: 10.1021/bc015573v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three types of DNA conjugates having 9-acridinecarboxamide, 9-aminoacridine, and 9-amino-6-chloro-2-methoxyacridine at the 5'-ends were synthesized and used for site-selective RNA scission together with another unmodified DNA and Lu(III) ion. The target phosphodiester linkages in the substrate RNA were selectively and efficiently activated and were hydrolyzed by free Lu(III) ion. The conjugate bearing 9-amino-6-chloro-2-methoxyacridine was the most active. However, its duplex with the substrate RNA was almost as stable as that of the 9-aminoacridine-bearing conjugate, which was much less active for the RNA activation. The 9-acridinecarboxamide-bearing conjugate was only marginally active. The substituents on the acridine groups in these conjugates positively participate in the present RNA activation, probably by fixing the orientation of the acridine rings.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904 Japan
| | | | | | | |
Collapse
|
26
|
Ushijima K, Shirakawa M, Kagoshima K, Park WS, Miyano-Kurosaki N, Takaku H. Anti-HIV-1 activity of an antisense phosphorothioate oligonucleotide bearing imidazole and primary amine groups. Bioorg Med Chem 2001; 9:2165-9. [PMID: 11504653 DOI: 10.1016/s0968-0896(01)00126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that RNA cleaving reagents with imidazole and primary amine groups on the 5'-end of antisense oligodeoxyribonucleotides could site-specifically cleave CpA as the target sequence of the substrate tRNA in vitro. In this study, a RNA cleaving reagent, composed of imidazole and primary amine groups on an antisense phosphorothioate oligonucleotide (Im-anti-s-ODN), was synthesized and evaluated for anti-HIV-1 activity in MT-4 cells. The sequence of the Im-anti-s-ODN was designed to be complementary to the HIV-1 gag-mRNA and to bind adjacent to the CpA cleavage site position. Im-anti-s-ODN encapsulated with the transfection reagent, DMRIE-C, had higher anti-HIV-1 activity than the unmodified antisense phosphorothioate oligonucleotide (anti-s-ODN) at a 2 microM concentration. Furthermore, the Im-anti-ODN encapsulated with DMRIE-C conferred sequence-specific inhibition.
Collapse
Affiliation(s)
- K Ushijima
- Department of Industrial Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Wan R, Zhao G, Chen J, Zhao Y. Research progresses of artificial nucleic acid cleavage agents. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf03183520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Mikkola S, Oivanen M, Neuvonen K, Piitari S, Ketomäki K, Lönnberg H. Cleavage of the phosphodiester bond of uridylyl-(3',5')-8-carboxymethylaminoadenosine by hydronium, hydroxide and zinc(II) ions: a model study aimed at elucidating the potential of a carboxylate function as an intramolecular catalyst. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1675-92. [PMID: 11200265 DOI: 10.1080/15257770008045452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Uridylyl-(3',5')-8-carboxymethylaminoadenosine has been synthesised, and its transesterification to uridine 2',3'-cyclic phosphate in the presence and absence of Zn2+ ion has been studied. The results show that a carboxylate function in the vicinity of the phosphodiester bond accelerates the metal ion promoted cleavage but not the metal ion independent reaction. Under acidic conditions, the predominant reaction is the cleavage of the side chain, giving the 8-amino derivative.
Collapse
Affiliation(s)
- S Mikkola
- Department of Chemistry, University of Turku, Finland.
| | | | | | | | | | | |
Collapse
|
29
|
Beloglazova NG, Sil'nikov VN, Zenkova MA, Vlassov VV. Cleavage of yeast tRNAPhe with complementary oligonucleotide conjugated to a small ribonuclease mimic. FEBS Lett 2000; 481:277-80. [PMID: 11007978 DOI: 10.1016/s0014-5793(00)02029-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An oligonucleotide conjugate bearing a chemical construct mimicking the catalytic center of ribonuclease A has been designed and studied. The conjugate efficiently cleaves yeast tRNAPhe at a single site adjacent to the target complementary sequence.
Collapse
Affiliation(s)
- N G Beloglazova
- Institute of Bioorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | | | | | | |
Collapse
|
30
|
Asanuma H, Liang X, Komiyama M. meta-Aminoazobenzene as a thermo-insensitive photo-regulator of DNA-duplex formation. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(99)02233-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Asanuma H, Yoshida T, Ito T, Komiyama M. Photo-responsive oligonucleotides carrying azobenzene at the 2′-position of uridine. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01547-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Kuzuya A, Akai M, Komiyama M. Non-Covalent Combinations of Lanthanide(III) Ion and Two DNA Oligomers for Sequence-Selective RNA Scission. CHEM LETT 1999. [DOI: 10.1246/cl.1999.1035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Matsuda S, Ishikubo A, Kuzuya A, Yashiro M, Komiyama M. Konjugate eines zweikernigen Zink(II)-Komplexes mit DNA-Oligomeren als sequenzselektive künstliche Ribonucleasen. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981204)110:23<3477::aid-ange3477>3.0.co;2-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Abstract
Synthesis of artificial enzymes for catalyzing phosphoester hydrolysis has been attracting interest for a long time. The remarkable discovery that lanthanide ions catalyze the hydrolysis of DNA and RNA spurred the trend. Currently, progress is being made, mainly in the preparation of homogeneous catalysts, the promotion of catalytic activity by using acid/base cooperation within catalysts, the detailed understanding of the reaction mechanisms involved, and the design of artificial enzymes expressing high specificity and catalytic turn-over.
Collapse
Affiliation(s)
- M Komiyama
- Department of Chemistry and Biotechnology Graduate School of Engineering University of Tokyo Hongo Tokyo 113-8656 Japan.
| | | |
Collapse
|
35
|
Asanuma H, Ito T, Komiyama M. Photo-responsive oligonucleotides carrying azobenzene in the side-chains. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)02022-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Trawick BN, Daniher AT, Bashkin JK. Inorganic Mimics of Ribonucleases and Ribozymes: From Random Cleavage to Sequence-Specific Chemistry to Catalytic Antisense Drugs. Chem Rev 1998; 98:939-960. [PMID: 11848920 DOI: 10.1021/cr960422k] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bobby N. Trawick
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
37
|
Oivanen M, Kuusela S, Lönnberg H. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds of RNA by Brønsted Acids and Bases. Chem Rev 1998; 98:961-990. [PMID: 11848921 DOI: 10.1021/cr960425x] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikko Oivanen
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
38
|
Lin P, Ganesan A. Solid-phase synthesis of peptidomimetic oligomers with a phosphodiester backbone. Bioorg Med Chem Lett 1998; 8:511-4. [PMID: 9871608 DOI: 10.1016/s0960-894x(98)00064-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An unnatural biopolymer is described in which amino acid side-chains are presented along a negatively charged phosphodiester backbone. For this purpose, a series of phosphoramidite monomers was prepared from chiral 1,2-diols. These were efficiently converted into oligomers using standard coupling conditions on an automated DNA synthesizer.
Collapse
Affiliation(s)
- P Lin
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | |
Collapse
|