1
|
Kuo JL, Lorenc C, Abuyuan JM, Norton JR. Catalysis of Radical Cyclizations from Alkyl Iodides under H 2: Evidence for Electron Transfer from [CpV(CO) 3H]<sup/>. J Am Chem Soc 2018; 140:4512-4516. [PMID: 29543448 PMCID: PMC6373875 DOI: 10.1021/jacs.8b02119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radical cyclizations are most often achieved with Bu3SnH in the presence of a radical initiator, but environmental considerations demand that alternative reagents be developed-ones that can serve as a synthetic equivalent to the hydrogen atom. We have revisited [CpV(CO)3H]-, a known replacement for Bu3SnH, and found that it can be used catalytically under H2 in the presence of a base. We have carried out tin-free catalytic radical cyclizations of alkyl iodide substrates. The reactions are atom-efficient, and the conditions are mild, with broad tolerance for functional groups. We have, for example, achieved the first 5-exo radical cyclization involving attack onto a vinyl chloride. We suggest that the radicals are generated by an initial electron transfer.
Collapse
Affiliation(s)
- Jonathan L Kuo
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| | - Chris Lorenc
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| | - Janine M Abuyuan
- Department of Chemistry , Barnard College , 3009 Broadway , New York , New York 10027
| | - Jack R Norton
- Department of Chemistry , Columbia University , 3000 Broadway , New York , New York 10027 , United States
| |
Collapse
|
2
|
El-Deeb IM, Rose FJ, Healy PC, von Itzstein M. A versatile synthesis of "tafuramycin A": a potent anticancer and parasite attenuating agent. Org Biomol Chem 2016; 12:4260-4. [PMID: 24838868 DOI: 10.1039/c4ob00842a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved and versatile synthesis of tafuramycin A, a potent anticancer and parasite-attenuating agent, is reported. The three major improvements that optimized yield, simplified purification and allowed the synthesis of more versatile duocarmycin analogues are: a first-time reported regioselective bromination using DMAP as catalyst; the control of the aryl radical alkene cyclization step to prevent the dechlorination side reaction; and the design of a new protection/deprotection method to avoid furan double bond reduction during the classical O-benzyl deprotection in the final step. This alternative protection/deprotection strategy provides ready access to duocarmycin seco-analogues that carry labile functionalities under reducing reaction conditions. Tafuramycin A (3) was prepared in either 8 steps from intermediate 6 or 7 steps from intermediate 17 in 52% or 37% yield respectively. Our strategy provides a significant improvement on the original procedure (11% overall yield) and greater versatility for analogue development.
Collapse
Affiliation(s)
- Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | | | | | | |
Collapse
|
3
|
Stephenson MJ, Howell LA, O'Connell MA, Fox KR, Adcock C, Kingston J, Sheldrake H, Pors K, Collingwood SP, Searcey M. Solid-Phase Synthesis of Duocarmycin Analogues and the Effect of C-Terminal Substitution on Biological Activity. J Org Chem 2015; 80:9454-67. [PMID: 26356089 DOI: 10.1021/acs.joc.5b01373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The duocarmycins are potent antitumor agents with potential for use in the development of antibody-drug conjugates (ADCs) as well as being clinical candidates in their own right. In this article, we describe the synthesis of a duocarmycin monomer (DSA) that is suitably protected for utilization in solid-phase synthesis. The synthesis was performed on a large scale, and the resulting racemic protected Fmoc-DSA subunit was separated by supercritical fluid chromatography (SFC) into the single enantiomers; its application to solid-phase synthesis methodology gave a series of monomeric and extended duocarmycin analogues with amino acid substituents. The DNA sequence selectivity was similar to that in previous reports for both the monomeric and extended compounds. Substitution at the C-terminus of duocarmycin caused a decrease in antiproliferative activity for all of the compounds studied. An extended compound containing an alanine at the C-terminus was converted to the primary amide or to an extended structure containing a terminal tertiary amine, but this had no beneficial effects on biological activity.
Collapse
Affiliation(s)
| | | | | | - Keith R Fox
- Centre for Biological Sciences, University of Southampton , Life Sciences Building 85, Southampton SO17 1BJ, United Kingdom
| | - Claire Adcock
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jenny Kingston
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Helen Sheldrake
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Klaus Pors
- Institute for Cancer Therapeutics, University of Bradford , Bradford, West Yorkshire BD7 1DP, United Kingdom
| | - Stephen P Collingwood
- Novartis Institutes for Biomedical Research, Novartis Pharmaceuticals UK Limited , Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | | |
Collapse
|
4
|
Patil PC, Lee M. An efficient synthesis of furano analogs of duocarmycin C1 and C2: seco-iso-cyclopropylfurano[e]indoline-trimethoxyindole and seco-cyclopropylfurano[f]quinoline-trimethoxyindole. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Controlling the radical 5-exo-trig cyclization, and selective synthesis of seco-iso-cyclopropylfurano[e]indoline (seco-iso-CFI) and seco-cyclopropylthiophene[e]indoline (seco-CTI) DNA alkylating subunit of the duocarmycins. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Abstract
Novel ethyl ester and methylamide of 5-[bis(2-chloroethyl)amino]-7-methoxybenzofuran-2-carboxylic acid as well as (2-hydroxy-1,1-dimethylethyl)amides of 5-bromo- and 5,7-dichlorobenzofuran-2-carboxylic acid were synthesized and characterized.
Collapse
|
7
|
Stevenson RJ, Denny WA, Tercel M, Pruijn FB, Ashoorzadeh A. Nitro seco analogues of the duocarmycins containing sulfonate leaving groups as hypoxia-activated prodrugs for cancer therapy. J Med Chem 2012; 55:2780-802. [PMID: 22339090 DOI: 10.1021/jm201717y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of 19 (5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl sulfonate prodrugs containing sulfonate leaving groups and 7-substituted electron-withdrawing groups is reported. These were designed to undergo hypoxia-selective metabolism to form potent DNA minor groove-alkylating agents. Analogues 17 and 24, containing the benzyl sulfonate leaving group and a neutral DNA minor groove-binding side chain, displayed hypoxic cytotoxicity ratios (HCRs) of >1000 in HT29 human cancer cells in vitro in an antiproliferative assay. Four analogues maintained large HCRs across a panel of eight human cancer cell lines. In a clonogenic assay, 19 showed an HCR of 4090 in HT29 cells. Ten soluble phosphate preprodrugs were also prepared and evaluated in vivo, alone and in combination with radiation in SiHa human tumor xenografts at a nontoxic dose. Compounds 34 and 39 displayed hypoxic log(10) cell kills (LCKs) of 1.78 and 2.71, respectively, equivalent or superior activity to previously reported chloride or bromide analogues, thus showing outstanding promise as hypoxia-activated prodrugs.
Collapse
Affiliation(s)
- Ralph J Stevenson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Adib M, Ansari S, Fatemi S, Bijanzadeh HR, Zhu LG. A multi-component synthesis of 3-aryl-1-(arylmethylideneamino)pyrrolidine-2,5-diones. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.01.108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Heteroaryl Radicals Review. ADVANCES IN HETEROCYCLIC CHEMISTRY 2010. [DOI: 10.1016/s0065-2725(10)10004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Milbank JBJ, Stevenson RJ, Ware DC, Chang JYC, Tercel M, Ahn GO, Wilson WR, Denny WA. Synthesis and evaluation of stable bidentate transition metal complexes of 1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) as hypoxia selective cytotoxins. J Med Chem 2009; 52:6822-34. [PMID: 19821576 DOI: 10.1021/jm9008746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of metal complexes were prepared as potential prodrugs of the extremely toxic DNA minor groove alkylator 1-(chloromethyl)-5-hydroxy-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) and close analogues. The pyrrolo[3,2-f]quinoline cytotoxins were prepared from 2-methoxy-4-nitroaniline in a nine-step synthesis involving a Skraup construction of a quinoline intermediate, its appropriate functionalization, and a final radical cyclization. The metal complexes were prepared from these and the labile metal complex synthons [Co(cyclen)(OTf)(2)](+), [Cr(acac)(2)(H(2)O)(2)](+), and [Co(2)(Me(2)dtc)(5)](+). The cobalt complexes were considerably more stable than the free effectors and showed significant attenuation of the cytotoxicity of the latter, with IC(50) ratios (complex/effector) of 50- to 150-fold, and substantial hypoxic cell selectivity, with IC(50) ratios (oxic/hypoxic cells) of 20- to 40-fold. The cobalt complexes were also efficiently activated by ionizing radiation, with G values for loss of the compound close to the theoretical value for one-electron reduction of 0.68 micromol/J. This work extends earlier observations that cobalt cyclen complexes are suitable for both the bioreductive and radiolytic release of potent pyrrolo[3,2-f]quinoline effectors.
Collapse
Affiliation(s)
- Jared B J Milbank
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tercel M, Atwell GJ, Yang S, Stevenson RJ, Botting KJ, Boyd M, Smith E, Anderson RF, Denny WA, Wilson WR, Pruijn FB. Hypoxia-Activated Prodrugs: Substituent Effects on the Properties of Nitro seco-1,2,9,9a-Tetrahydrocyclopropa[c]benz[e]indol-4-one (nitroCBI) Prodrugs of DNA Minor Groove Alkylating Agents. J Med Chem 2009; 52:7258-72. [DOI: 10.1021/jm901202b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Graham J. Atwell
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shangjin Yang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ralph J. Stevenson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - K. Jane Botting
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maruta Boyd
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Eileen Smith
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B. Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
MacMillan KS, Nguyen T, Nguyen T, Hwang I, Boger DL. Total synthesis and evaluation of iso-duocarmycin SA and iso-yatakemycin. J Am Chem Soc 2009; 131:1187-94. [PMID: 19154178 DOI: 10.1021/ja808108q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The total synthesis and evaluation of iso-duocarmycin SA (5) and iso-yatakemycin (6), representing key analogues of the corresponding natural products incorporating an isomeric alkylation subunit, are detailed. This pyrrole isomer of the natural alkylation subunit displayed an enhanced reaction regioselectivity and a 2-fold diminished stability. Although still exceptionally potent, the iso-duocarmycin SA derivatives and natural product analogues exhibited a corresponding approximate 3-5-fold reduction in cytotoxic activity [L1210 IC(50) for (+)-iso-duocarmycin SA = 50 pM and for (+)-iso-yatakemycin = 15 pM] consistent with their placement on a parabolic relationship correlating activity with reactivity. The DNA alkylation selectivity of the resulting key natural product analogues was unaltered by the structure modification in spite of the minor-groove presentation of a potential H-bond donor. Additionally, a unique ortho-spirocyclization with such derivatives was explored via the preparation, characterization, and evaluation of 34 that is incapable of the more conventional para-spirocyclization. Although 34 proved sufficiently stable for isolation and characterization, it displayed little stability in protic solvents (t(1/2) = 0.19 h at pH 3, t(1/2) = 0.20 h at pH 7), a pH-independent (H(+) independent) solvolysis rate profile at pH 3/4-7, and a much reduced cytotoxic potency, but a DNA alkylation selectivity and efficiency comparable to those of duocarmycin SA and iso-duocarmycin SA. The implications of these observations on the source of the DNA alkylation selectivity and catalysis for this class of natural products are discussed.
Collapse
Affiliation(s)
- Karen S MacMillan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Salicylaldehyde derivatives as new protein kinase CK2 inhibitors. Biochim Biophys Acta Gen Subj 2008; 1780:1412-20. [DOI: 10.1016/j.bbagen.2008.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 11/20/2022]
|
14
|
Fuwa H, Sasaki M. Synthesis of 2-Substituted Indoles and Indolines via Suzuki−Miyaura Coupling/5-endo-trig Cyclization Strategies. J Org Chem 2008; 74:212-21. [PMID: 19007181 DOI: 10.1021/jo801985a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruhiko Fuwa
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 1-1 Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan
| | - Makoto Sasaki
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 1-1 Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
15
|
Tietze L, Panknin O, Major F, Krewer B. Synthesis of a Novel Pentagastrin-Drug Conjugate for a Targeted Tumor Therapy. Chemistry 2008; 14:2811-8. [DOI: 10.1002/chem.200701521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Tichenor MS, MacMillan KS, Stover JS, Wolkenberg SE, Pavani MG, Zanella L, Zaid AN, Spalluto G, Rayl TJ, Hwang I, Baraldi PG, Boger DL. Rational design, synthesis, and evaluation of key analogues of CC-1065 and the duocarmycins. J Am Chem Soc 2007; 129:14092-9. [PMID: 17948994 DOI: 10.1021/ja073989z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and evaluation of a predictably more potent analogue of CC-1065 entailing the substitution replacement of a single skeleton atom in the alkylation subunit are disclosed and were conducted on the basis of design principles that emerged from a fundamental parabolic relationship between chemical reactivity and cytotoxic potency. Consistent with projections, the 7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one (MeCTI) alkylation subunit and its isomer 6-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-one (iso-MeCTI) were found to be 5-6 times more stable than the MeCPI alkylation subunit found in CC-1065 and slightly more stable than even the DSA alkylation subunit found in duocarmycin SA, placing it at the point of optimally balanced stability and reactivity for this class of antitumor agents. Their incorporation into the key analogues of the natural products provided derivatives that surpassed the potency of MeCPI derivatives (3-10-fold), matching or slightly exceeding the potency of the corresponding DSA derivatives, consistent with projections made on the basis of the parabolic relationship. Notable of these, MeCTI-TMI proved to be as potent as or slightly more potent than the natural product duocarmycin SA (DSA-TMI, IC50 = 5 vs 8 pM), and MeCTI-PDE2 proved to be 3-fold more potent than the natural product CC-1065 (MeCPI-PDE2, IC50 = 7 vs 20 pM). Both exhibited efficiencies of DNA alkylation that correlate with this enhanced potency without impacting the intrinsic selectivity characteristic of this class of antitumor agents.
Collapse
Affiliation(s)
- Mark S Tichenor
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fuwa H, Sasaki M. Strategies for the Synthesis of 2-Substituted Indoles and Indolines Starting from Acyclic α-Phosphoryloxy Enecarbamates. Org Lett 2007; 9:3347-50. [PMID: 17658837 DOI: 10.1021/ol071312a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strategies have been developed for the synthesis of 2-substituted indoles and indolines starting from acyclic alpha-phosphoryloxy enecarbamates. A highly chemoselective cross-coupling of N-(o-bromophenyl)-alpha-phosphoryloxyenecarbamates with boron nucleophiles enabled the efficient preparation of various N-(o-bromophenyl)enecarbamates, which served as useful precursors for subsequent Heck-type cyclization or 5-endo-trig aryl radical cyclization to furnish 2-substituted indoles or indolines, respectively.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 1-1 Tsutsumidori-amamiya, Sendai 981-8555, Japan.
| | | |
Collapse
|
18
|
Radical cyclization of 4-aryl-1-iodobutene derivatives to form dihydronaphthalene scaffold. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.02.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Tichenor MS, Trzupek JD, Kastrinsky DB, Shiga F, Hwang I, Boger DL. Asymmetric total synthesis of (+)- and ent-(-)-yatakemycin and duocarmycin SA: evaluation of yatakemycin key partial structures and its unnatural enantiomer. J Am Chem Soc 2006; 128:15683-96. [PMID: 17147378 PMCID: PMC2515590 DOI: 10.1021/ja064228j] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complementary to studies that provided the first yatakemycin total synthesis resulting in its structure revision and absolute stereochemistry assignment, a second-generation asymmetric total synthesis is disclosed herein. Since the individual yatakemycin subunits are identical to those of duocarmycin SA (alkylation subunit) or CC-1065 (central and right-hand subunits), the studies also provide an improvement in our earlier total synthesis of CC-1065 and, as detailed herein, have been extended to an asymmetric total synthesis of (+)-duocarmycin SA. Further extensions of the studies provided key yatakemycin partial structures and analogues for comparative assessments. This included the definition of the DNA selectivity (adenine central to a five-base-pair AT sequence, e.g., 5'-AAAAA), efficiency, relative rate, and reversibility of ent-(-)-yatakemycin and its comparison with the natural enantiomer (identical selectivity and efficiency), structural characterization of the adenine N3 adduct confirming the nature of the DNA reaction, and comparisons of the cytotoxic activity of the natural product (L1210, IC50 = 5 pM) with those of its unnatural enantiomer (IC50 = 5 pM) and a series of key partial structures including those that probe the role of the C-terminus thiomethyl ester. The only distinguishing features between the enantiomers is that ent-(-)-yatakemycin alkylates DNA at a slower rate (krel = 0.13) and is reversible, whereas (+)-yatakemycin is not. Nonetheless, even ent-(-)-yatakemycin alkylates DNA at a faster rate and with a greater thermodynamic stability than (+)-duocarmycin SA, illustrating the unique characteristics of such "sandwiched" agents.
Collapse
Affiliation(s)
- Mark S. Tichenor
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John D. Trzupek
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - David B. Kastrinsky
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Futoshi Shiga
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Inkyu Hwang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
20
|
Cacciari B, Romagnoli R, Baraldi PG, Ros TD, Spalluto G. CC-1065 and the duocarmycins: recent developments. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.12.1853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Parrish JP, Kastrinsky DB, Hwang I, Boger DL. Synthesis and Evaluation of Duocarmycin and CC-1065 Analogues Incorporating the 1,2,9,9a-Tetrahydrocyclopropa[c]benz[e]-3-azaindol-4-one (CBA) Alkylation Subunit. J Org Chem 2003; 68:8984-90. [PMID: 14604371 DOI: 10.1021/jo035119f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient eight-step synthesis (53% overall) and the evaluation of 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]-3-azaindol-4-one (CBA) and its derivatives containing an aza variant of the CC-1065/duocarmycin alkylation subunit are detailed. This unique deep-seated aza modification provided an unprecedented 2-aza-4,4-spirocyclopropacyclohexadienone that was characterized chemically and structurally (X-ray). CBA proved structurally identical with CBI, the carbon analogue, including the stereoelectronic alignment of the key cyclopropane, its bond lengths, and the bond length of the diagnostic C3a-N2 bond, reflecting the extent of vinylogous amide (amidine) conjugation. Despite these structural similarities, CBA and its derivatives were found to be much more reactive toward solvolysis and hydrolysis, much less effective DNA alkylating agents (1000-fold), and biologically much less potent (100- to 1000-fold) than the corresponding CBI derivatives.
Collapse
Affiliation(s)
- Jay P Parrish
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
22
|
Parrish JP, Kastrinsky DB, Boger DL. Synthesis and X-ray analysis of an unprecedented and stable 2-aza-4,4-spirocyclopropacyclohexadienone. Org Lett 2003; 5:2577-9. [PMID: 12841785 DOI: 10.1021/ol035000t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] An efficient eight-step synthesis (54% overall) and the subsequent X-ray characterization of 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]-3-azaindol-4-one (CBA) containing an aza variant of the CC-1065/duocarmycin alkylation subunit are detailed. Despite the unique deep-seated aza modification providing an unprecedented and stable 2-aza-4,4-spirocyclopropacyclohexadienone, CBA proved to be structurally identical with CBI, the carbon analogue, in terms of the stereoelectronic alignment of the key cyclopropane, its bond lengths, and the length of the diagnostic C3a-N2 bond reflecting the extent of vinylogous amide conjugation.
Collapse
Affiliation(s)
- Jay P Parrish
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
23
|
|
24
|
Howard TT, Lingerfelt BM, Purnell BL, Scott AE, Price CA, Townes HM, McNulty L, Handl HL, Summerville K, Hudson SJ, Bowen JP, Kiakos K, Hartley JA, Lee M. Novel furano analogues of duocarmycin C1 and C2: design, synthesis, and biological evaluation of seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) analogues. Bioorg Med Chem 2002; 10:2941-52. [PMID: 12110316 DOI: 10.1016/s0968-0896(02)00157-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The design, synthesis and biological evaluation of novel seco-iso-cyclopropylfurano[2,3-e]indoline (seco-iso-CFI) and the seco-cyclopropyltetrahydrofurano[2,3-f]quinoline (seco-CFQ) analogues of the duocarmycins are described. These novel analogues (4-7) were designed on the premise that the lone pair of electrons on the furano-oxygen atom could enter into conjugation with the isocyclopropylfurano[e]indolone (iso-CFI) alkylating moiety, formed from the loss of HCl in compounds 4-7. The seco-iso-CFI DNA alkylating pharmacophore was synthesized through a well precedented approach of 5-exo-trig aryl radical cyclization with a vinyl chloride. In our studies, in addition to the formation of the seco-iso-CFI product, an equal amount of an unexpected seco-CFQ product was also generated during the radical cyclization reaction. Like CC-1065 and adozelesin, using Taq DNA polymerase stop and thermal cleavage assays, the seco-iso-CFI compounds (4 and 6) and the seco-CFQ compounds (5 and 7) were shown to preferentially alkylate the adenine-N3 position within the minor groove of long stretches of A residues. A MM2 energy optimized molecular model of a 1:1 complex of compound 6 with DNA reveals that the iso-CFI compound fits snugly within the minor groove. Using a MTT based experiment, the cytotoxicity of compounds 4-7 were determined against the growth of murine leukemia (L1210), mastocytoma (P815) and melanoma (B16) cell lines. The concentrations of compounds required to inhibit the growth of these tumor cells by 50% is in the range of 10(-8)M. These compounds were also tested against a panel of human cancer cells by the National Cancer Institute, demonstrating that the compounds exhibited a high level of activity against selected solid tumors. At a concentration of 0.0084 microM (based on the IC(50) of compound 17 (seco-CBI-TMI) against the growth L1210 cells), while compounds 4 and 17 were toxic against murine bone marrow cells as judged by a colony forming study of freshly isolated murine progenitor hematopoeitic cells, compound 5, a seco-CFQ compound, was significantly less toxic. Flow cytometric analysis of P815 cells that had been incubated for 24h with compounds 4 and 5 at their cytotoxic IC(50) concentrations indicated the induction of apoptosis in a large percentage of cells, thereby suggesting that this might be the mechanism by which the iso-CFI compounds kill cells.
Collapse
Affiliation(s)
- Tiffany T Howard
- Department of Chemistry, Furman University, Greenville, SC 29613, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tietze L, Herzig T, Feuerstein T, Schuberth I. Synthesis and Biological Evaluation of Novel Analogues and Prodrugs of the Cytotoxic Antibiotic CC-1065 for Selective Cancer Therapy. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200205)2002:10<1634::aid-ejoc1634>3.0.co;2-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
C. Majumdar K, Kumar Basu P. Formation of Five- and Six-membered Heterocyclic Rings by Radical Cyclization. HETEROCYCLES 2002. [DOI: 10.3987/rev-02-557] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Boger DL, Hughes TV, Hedrick MP. Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa. J Org Chem 2001; 66:2207-16. [PMID: 11281757 DOI: 10.1021/jo001772g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (C5-CO2Me-CBI), a substituted CBI derivative bearing a C5 methoxycarbonyl group, and its corresponding 5-hydroxymethyl derivative are described in efforts to establish substituent electronic effects on the agents' functional reactivity and the resulting effect this has on their rate of DNA alkylation. Resolution of an immediate C5-CO2Me-CBI precursor and its incorporation into both enantiomers of 16 and 17, analogues of the duocarmycins, are also detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-C5-CO2Me-CBI (12) revealed that the introduction of a C5 methyl ester modestly slowed the rate of solvolysis (1.8x, pH 3) without altering the inherent reaction regioselectivity (>20:1). The comparison of the X-ray structures of the N-CO2Me derivatives of C5-CO2Me-CBI and CBI revealed correlations with the reaction regioselectivity and the relative reactivity of the compounds. The latter correlated well with the less reactive C5-CO2Me-CBI exhibiting a shortened N2-C2a bond length (1.386 vs 1.390 A) and smaller chi1 dihedral angle (8.1 degrees vs 21.2 degrees ) indicative of greater vinylogous amide conjugation and was accompanied by a diminished (cross-conjugated) cyclopropane conjugation (shorter bond lengths). Establishment of the DNA alkyation properties revealed that C5-CO2Me-CBI-based agents retained the identical alkylation selectivity of the natural products. More importantly, the C5 methyl ester was found to decrease the rate (0.77x) of DNA alkylation relative to CBI, consistent with its inherent lower reactivity. These results indicate that the previously observed increase in the rate of DNA alkylation for C7-substituted CBI analogues including CCBI (7-cyano-CBI) is contrary to expectations based on their inherent reactivities. Unlike 17, in which the C5 methyl ester does not bind in the minor groove, the C7 substituent lies in the minor groove extending the rigid length of the agents, further enhancing the DNA binding-induced conformational change responsible for activation toward nucleophilic attack and catalysis of the DNA alkylation reaction.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
28
|
Enjo J, Castedo L, Tojo G. Photochemistry of Tosylstilbenoids in the Preparation of Complex Heterocyclic Compounds. Synthesis of a Cyclopropafuroindolone Analogue of the DNA-Alkylating Section of the Antitumor Compound CC-1065. Org Lett 2001; 3:1343-5. [PMID: 11348230 DOI: 10.1021/ol015717l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction in text] A novel photocyclization of tosylstilbenoids is used in the preparation of a cyclopropafuroindolone analogue of the DNA-alkylating unit of the antitumor compound CC-1065.
Collapse
Affiliation(s)
- J Enjo
- Departamento de Química Orgánica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | | |
Collapse
|
29
|
Sparks SM, Shea KJ. Vinyl imidates in cycloaddition reactions: synthesis of (±)-alloyohimbane. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01093-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Jia G, Lown JW. Design, synthesis and cytotoxicity evaluation of 1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) dimers. Bioorg Med Chem 2000; 8:1607-17. [PMID: 10976508 DOI: 10.1016/s0968-0896(00)00088-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three types of 1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) dimers were designed, synthesized and evaluated in vitro by NCI against nine types of cancer cells. Biological results showed that the antitumor activities of these seco-CBI dimers were strongly related to the position and length of the linker and generally with potency increasing in the order of C7-C7 dimers (22i-iv) < C7-N3 dimers (28i-iv) < N3-N3 dimers (25i-iv). Compound 28iv showed significant activity against CCRT-CEM, HL-60 (TB), MOLT-4, and SR leukemia cell lines and the MCF 7 breast cancer cell line with GI50 values < 0.01 microM. N3-N3 dimer 25i displayed striking potency against leukemia, CNS cancer, melanoma and prostate cancer cell lines with GI50 values < 0.01 microM against all the cell lines and showed the highest overall potency of the agents examined (GMG=0.0120 microM).
Collapse
Affiliation(s)
- G Jia
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
31
|
Boger DL, Santillán A, Searcey M, Brunette SR, Wolkenberg SE, Hedrick MP, Jin Q. Synthesis and evaluation of 1,2,8, 8a-Tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one, the parent alkylation subunit of CC-1065 and the duocarmycins: impact of the alkylation subunit substituents and its implications for DNA alkylation catalysis. J Org Chem 2000; 65:4101-11. [PMID: 10866627 DOI: 10.1021/jo000297j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 1,2,8,8a-tetrahydrocyclopropa[c]pyrrolo[3, 2-e]indol-4(5H)-one (CPI), the parent CC-1065 and duocarmycin SA alkylation subunit, is detailed. The parent CPI alkylation subunit lacks the C7 methyl substituent of the CC-1065 alkylation subunit and the C6 methoxycarbonyl group of duocarmycin SA, and their examination permitted the establishment of the impact of these natural product substituents. The studies revealed a CPI stability comparable to the CC-1065 alkylation subunit but which was 6x more reactive than the (+)-duocarmycin SA alkylation subunit, and it displayed the inherent reaction regioselectivity (4:1) of the natural products. The single-crystal X-ray structure of (+)-N-BOC-CPI depicts a near identical stereoelectronic alignment of the cyclopropane accounting for the identical reaction regioselectivity and a slightly diminished vinylogous amide conjugation relative to (+)-N-BOC-DSA suggesting that the stability distinctions stem in part from this difference in the vinylogous amide as well as alterations in the electronic nature of the fused pyrrole. Establishment of the DNA binding properties revealed that the CPI-based agents retain the identical DNA alkylation selectivities of the natural products. More importantly, the C6 methoxycarbonyl group of duocarmycin SA was found to increase the rate (12-13x) and efficiency (10x) of DNA alkylation despite its intrinsic lower reactivity while the CC-1065 C7 methyl group was found to slow the DNA alkylation rate (4x) and lower the alkylation efficiency (ca. 4x). The greater DNA alkylation rate and efficiency for duocarmycin SA and related analogues containing the C6 methoxycarbonyl is proposed to be derived from the extended length that the rigid C6 methoxycarbonyl provides and the resulting increase in the DNA binding-induced conformational change which serves to deconjugate the vinylogous amide and activate the alkylation subunit for nucleophilic attack. The diminished properties resulting from the CC-1065 C7 methyl group may be attributed to the steric impediment this substituent introduces to DNA minor groove binding and alkylation. Consistent with this behavior, the duocarmycin SA C6 methoxycarbonyl group increases biological potency while the CC-1065 C7 methyl group diminishes it.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Boger DL, Boyce CW. Selective metal cation activation of a DNA alkylating agent: synthesis and evaluation of methyl 1,2,9, 9a-Tetrahydrocyclopropa[c]pyrido[3,2-e]indol-4-one-7-carboxylate (CPyI). J Org Chem 2000; 65:4088-100. [PMID: 10866626 DOI: 10.1021/jo000177b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of methyl 1,2,9,9a-tetrahydrocyclopropa[c]pyrido[3, 2-e]indol-4-one-7-carboxylate (CPyI) containing a one carbon expansion of the C ring pyrrole found in the duocarmycin SA alkylation subunit and its incorporation into analogues of the natural product are detailed. The unique 8-ketoquinoline structure of CPyI was expected to provide a tunable means to effect activation via selective metal cation complexation. The synthesis of CPyI was based on a modified Skraup quinoline synthesis followed by a 5-exo-trig aryl radical cyclization onto an unactivated alkene with subsequent TEMPO trap or 5-exo-trig aryl radical cyclization onto a vinyl chloride for synthesis of the immediate precursor. Closure of the activated cyclopropane, accomplished by an Ar-3' spirocyclization, provided the CPyI nucleus in 10 steps and excellent overall conversion (29%). The evaluation of the CPyI-based agents revealed an intrinsic stability comparable to that of CC-1065 and duocarmycin A but that it is more reactive than duocarmycin SA and the CBI-based agents (3-4x). A pH-rate profile of the addition of nucleophiles to CPyI demonstrated that an acid-catalyzed reaction is observed below pH 4 and that an uncatalyzed reaction predominates above pH 4. The expected predictable activation of CPyI by metal cations toward nucleophilic addition was found to directly correspond to established stabilities of the metal complexes with the addition product (Cu(2+) > Ni(2+) > Zn(2+) > Mn(2+) > Mg(2+)) and provides the opportunity to selectively activate the agents upon addition of the appropriate Lewis acid. This tunable metal cation activation of CPyI constitutes the first example of a new approach to in situ activation of a DNA binding agent complementary to the well-recognized methods of reductive, oxidative, or photochemical activation. Resolution and synthesis of a full set of natural product analogues and subsequent evaluation of their DNA alkylation properties revealed that the CPyI analogues retain identical DNA alkylation sequence selectivity and near-identical DNA alkylation efficiencies compared to the natural products. Consistent with past studies and even with the deep-seated structural change in the alkylation subunit, the agents were found to exhibit potent cytotoxic activity that directly correlates with their inherent reactivity.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
|
34
|
Boger DL, Santillán A, Searcey M, Jin Q. Synthesis and Evaluation of Duocarmycin and CC-1065 Analogues Containing Modifications in the Subunit Linking Amide. J Org Chem 1999; 64:5241-5244. [DOI: 10.1021/jo990452y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Alejandro Santillán
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Mark Searcey
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Qing Jin
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
35
|
Jia G, Iida H, Lown J. Design and Synthesis of 1,2,9,9a-Tetrahydrocyclo propa[c]benz[e]indole-4-one (CBI) Dimers. HETEROCYCL COMMUN 1999. [DOI: 10.1515/hc.1999.5.6.497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Nefzi A, Ostresh JM, Giulianotti M, Houghten RA. Efficient solid phase synthesis of 3,5-disubstituted hydantoins. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)01874-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Synthesis of CC-1065 and duocarmycin analogs via intramolecular aryl radical cyclization of a tethered vinyl chloride. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)00232-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Boger DL, Garbaccio RM, Jin Q. Synthesis and Evaluation of CC-1065 and Duocarmycin Analogues Incorporating the Iso-CI and Iso-CBI Alkylation Subunits: Impact of Relocation of the C-4 Carbonyl. J Org Chem 1997. [DOI: 10.1021/jo971686p] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Robert M. Garbaccio
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Qing Jin
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|