1
|
Hélaine V, Gastaldi C, Lemaire M, Clapés P, Guérard-Hélaine C. Recent Advances in the Substrate Selectivity of Aldolases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Cédric Gastaldi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Hernández K, Gómez A, Joglar J, Bujons J, Parella T, Clapés P. 2-Keto-3-Deoxy-l-Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Karel Hernández
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ariadna Gómez
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jesús Joglar
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear; Facultat de Ciències; Universitat Autònoma de Barcelona; 08193 Cerdanyola del Vallès Barcelona Spain
| | - Pere Clapés
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
3
|
|
4
|
Cheriyan M, Walters MJ, Kang BD, Anzaldi LL, Toone EJ, Fierke CA. Directed evolution of a pyruvate aldolase to recognize a long chain acyl substrate. Bioorg Med Chem 2011; 19:6447-53. [PMID: 21944547 DOI: 10.1016/j.bmc.2011.08.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022]
Abstract
The use of biological catalysts for industrial scale synthetic chemistry is highly attractive, given their cost effectiveness, high specificity that obviates the need for protecting group chemistry, and the environmentally benign nature of enzymatic procedures. Here we evolve the naturally occurring 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolases from Thermatoga maritima and Escherichia coli, into enzymes that recognize a nonfunctionalized electrophilic substrate, 2-keto-4-hydroxyoctonoate (KHO). Using an in vivo selection based on pyruvate auxotrophy, mutations were identified that lower the K(M) value up to 100-fold in E. coli KDPG aldolase, and that enhance the efficiency of retro-aldol cleavage of KHO by increasing the value of k(cat)/K(M) up to 25-fold in T. maritima KDPG aldolase. These data indicate that numerous mutations distal from the active site contribute to enhanced 'uniform binding' of the substrates, which is the first step in the evolution of novel catalytic activity.
Collapse
Affiliation(s)
- Manoj Cheriyan
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Brovetto M, Gamenara D, Méndez PS, Seoane GA. C-C bond-forming lyases in organic synthesis. Chem Rev 2011; 111:4346-403. [PMID: 21417217 DOI: 10.1021/cr100299p] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Margarita Brovetto
- Grupo de Fisicoquímica Orgánica y Bioprocesos, Departamento de Química Orgánica, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Gral. Flores 2124, 11800 Montevideo, Uruguay
| | | | | | | |
Collapse
|
7
|
Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ. Characterization and crystal structure of Escherichia coli KDPGal aldolase. Bioorg Med Chem 2008; 16:710-20. [PMID: 17981470 PMCID: PMC3326530 DOI: 10.1016/j.bmc.2007.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/05/2007] [Accepted: 10/12/2007] [Indexed: 11/29/2022]
Abstract
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.
Collapse
Affiliation(s)
- Matthew J Walters
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cheriyan M, Toone EJ, Fierke CA. Mutagenesis of the phosphate-binding pocket of KDPG aldolase enhances selectivity for hydrophobic substrates. Protein Sci 2008; 16:2368-77. [PMID: 17962400 DOI: 10.1110/ps.073042907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Narrow substrate specificities often limit the use of enzymes in biocatalysis. To further the development of Escherichia coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase as a biocatalyst, the molecular determinants of substrate specificity were probed by mutagenesis. Our data demonstrate that S184 is located in the substrate-binding pocket and interacts with the phosphate moiety of KDPG, providing biochemical support for the binding model proposed on the basis of crystallographic data. An analysis of the substrate selectivity of the mutant enzymes indicates that alterations to the phosphate-binding site of KDPG aldolase changes the substrate selectivity. We report mutations that enhance catalysis of aldol cleavage of substrates lacking a phosphate moiety and demonstrate that electrophile reactivity correlates with the hydrophobicity of the substituted side chain. These mutations improve the selectivity for unnatural substrates as compared to KDPG by up to 2000-fold. Furthermore, the S184L KDPG aldolase mutant improves the catalytic efficiency for the synthesis of a precursor for nikkomycin by 40-fold, making it a useful biocatalyst for the preparation of fine chemicals.
Collapse
Affiliation(s)
- Manoj Cheriyan
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
9
|
Landa A, Minkkilä A, Blay G, Jørgensen KA. Bis(oxazoline) Lewis Acid Catalyzed Aldol Reactions of PyridineN-Oxide Aldehydes—Synthesis of Optically Active 2-(1-Hydroxyalkyl)pyridine Derivatives: Development, Scope, and Total Synthesis of an Indolizine Alkaloid. Chemistry 2006; 12:3472-83. [PMID: 16548019 DOI: 10.1002/chem.200501475] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new, short, and simplified procedure for the synthesis of optically active pyridine derivatives from pro-chiral pyridine-N-oxides is presented. The catalytic and asymmetric Mukaiyama aldol reaction between ketene silyl acetals and 1-oxypyridine-2-carbaldehyde derivatives catalyzed by chiral copper(II)-bis(oxazoline) complexes gave optically active 2-(hydroxyalkyl)- and 2-(anti-1,2-dihydroxyalkyl)pyridine derivatives in good yields and diastereoselectivities, and in excellent enantioselectivities-up to 99 % enantiomeric excess. As a synthetic application of the developed method, a full account for the asymmetric total synthesis of a nonnatural indolizine alkaloid is provided.
Collapse
Affiliation(s)
- Aitor Landa
- Danish National Research Foundation, Center for Catalysis, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
10
|
Samland AK, Sprenger GA. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments. Appl Microbiol Biotechnol 2006; 71:253-64. [PMID: 16614860 DOI: 10.1007/s00253-006-0422-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C-C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.
Collapse
Affiliation(s)
- Anne K Samland
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | |
Collapse
|
11
|
Mugford PF, Lait SM, Keay BA, Kazlauskas RJ. Enantiocomplementary Enzymatic Resolution of the Chiral Auxiliary: cis,cis-6-(2,2-Dimethylpropanamido)spiro[4.4]nonan-1-ol and the Molecular Basis for the High Enantioselectivity of Subtilisin Carlsberg. Chembiochem 2004; 5:980-7. [PMID: 15239056 DOI: 10.1002/cbic.200300909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
cis,cis-(+/-)-6-(2,2-Dimethylpropanamido)spiro[4.4]nonan-1-ol, 1, a chiral auxiliary for Diels-Alder additions, was resolved by enzyme-catalyzed hydrolysis of the corresponding butyrate and acrylate esters. Subtilisin Carlsberg protease and bovine cholesterol esterase both showed high enantioselectivity in this process, but favored opposite enantiomers. Subtilisin Carlsberg favored esters of (1S,5S,6S)-1, while bovine cholesterol esterase favored esters of (1R,5R,6R)-1, consistent with the approximately mirror-image arrangement of the active sites of subtilisins and lipases/esterases. A gram-scale resolution of 1-acrylate with subtilisin Carlsberg yielded (1S,5S,6S)-1 (1.1 g, 46 % yield, 99 % ee) and (1R,5R,6R)-1-acrylate (1.3 g, 44 % yield, 99 % ee) although the reaction was slow. The high enantioselectivity combined with the conformational rigidity of the substrate made this an ideal example to identify the molecular basis of the enantioselectivity of subtilisin Carlsberg toward secondary alcohols. When modeled, the favored (1S,5S,6S) enantiomer adopted a catalytically productive conformation with two longer-than-expected hydrogen bonds, consistent with the slow reaction rate. The unfavored (1R,5R,6R) enantiomer encountered severe steric interactions with catalytically essential residues in the model. It either distorted the catalytic histidine position or encountered severe steric strain with Asn155, an oxyanion-stabilizing residue.
Collapse
Affiliation(s)
- Paul F Mugford
- McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montréal, Québec, H3A 2K6, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
The competition between the Escherichia coli carbohydrate phosphotransferase system and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase for phosphoenolpyruvate limits the concentration and yield of natural products microbially synthesized via the shikimate pathway. To circumvent this competition for phosphoenolpyruvate, a shikimate pathway variant has been created. 2-Keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases encoded by Escherichia coli dgoA and Klebsiella pneumoniae dgoA are subjected to directed evolution. The evolved KDPGal aldolase isozymes exhibit 4-8-fold higher specific activities relative to that for native KDPGal aldolase with respect to catalyzing the condensation of pyruvate and d-erythrose 4-phosphate to produce DAHP. To probe the ability of the created shikimate pathway variant to support microbial growth and metabolism, growth rates and synthesis of 3-dehydroshikimate are examined for E. coli constructs that lack phosphoenolpruvate-based DAHP synthase activity and rely on evolved KDPGal aldolase for biosynthesis of shikimate pathway intermediates and products.
Collapse
Affiliation(s)
- Ningqing Ran
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
13
|
Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ. Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 2003; 278:34066-72. [PMID: 12824170 DOI: 10.1074/jbc.m305818200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic Archaeon Sulfolobus solfataricus metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate (KDG) aldolase then catalyzes the cleavage of 2-keto-3-deoxygluconate to glyceraldehyde and pyruvate. The gene encoding glucose dehydrogenase has been cloned and expressed in Escherichia coli to give a fully active enzyme, with properties indistinguishable from the enzyme purified from S. solfataricus cells. Kinetic analysis revealed the enzyme to have a high catalytic efficiency for both glucose and galactose. KDG aldolase from S. solfataricus has previously been cloned and expressed in E. coli. In the current work its stereoselectivity was investigated by aldol condensation reactions between D-glyceraldehyde and pyruvate; this revealed the enzyme to have an unexpected lack of facial selectivity, yielding approximately equal quantities of 2-keto-3-deoxygluconate and 2-keto-3-deoxygalactonate. The KDG aldolase-catalyzed cleavage reaction was also investigated, and a comparable catalytic efficiency was observed with both compounds. Our evidence suggests that the same enzymes are responsible for the catabolism of both glucose and galactose in this Archaeon. The physiological and evolutionary implications of this observation are discussed in terms of catalytic and metabolic promiscuity.
Collapse
Affiliation(s)
- Henry J Lamble
- Centre for Extremophile Research, the Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Griffiths JS, Wymer NJ, Njolito E, Niranjanakumari S, Fierke CA, Toone EJ. Cloning, isolation and characterization of the Thermotoga maritima KDPG aldolase. Bioorg Med Chem 2002; 10:545-50. [PMID: 11814840 DOI: 10.1016/s0968-0896(01)00307-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Thermotoga maritima aldolase gene has been cloned into a T7 expression vector and overexpressed in Escherichia coli. The preparation yields 470 UL(-1) of enzyme at a specific activity of 9.4 U mg(-1). During retroaldol cleavage of KDPG, the enzyme shows a k(cat) that decreases with decreasing temperature. A more than offsetting decrease in K(m) yields an enzyme that is more efficient at 40 degrees C than at 70 degrees C. The substrate specificity of the enzyme was evaluated in the synthetic direction with a range of aldehyde substrates. Although the protein shows considerable structural homology to KDPG aldolases from mesophilic sources, significant differences in substrate specificity exist. A preparative scale reaction between 2-pyridine carboxaldehyde and pyruvate provided product of the same absolute configuration as mesophilic enzymes, but with diminished stereoselectivity.
Collapse
|
15
|
Abstract
The hydratase-aldolase-catalyzed conversion of trans-o-hydroxybenzylidenepyruvate to salicylaldehyde and pyruvate is an intermediate reaction in the conversion of naphthalene to salicylate by bacteria. Here, a variety of aromatic aldehydes and some nonaromatic aldehydes together with pyruvate have been shown to be substrates for aldol condensations catalyzed by this enzyme in extracts of the recombinant strain Escherichia coli JM109(pRE701). Some of the products of these reactions were also compared as substrates in the opposite (hydration-aldol cleavage) reaction.
Collapse
Affiliation(s)
- R W Eaton
- Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|
16
|
Cotterill IC, Henderson DP, Shelton MC, Toone EJ. The synthetic utility of KDPGal aldolase. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1381-1177(98)00087-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|