1
|
Dangerfield TL, Johnson KA. Design and interpretation of experiments to establish enzyme pathway and define the role of conformational changes in enzyme specificity. Methods Enzymol 2023; 685:461-492. [PMID: 37245912 DOI: 10.1016/bs.mie.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the experimental methods and analysis to define the role of enzyme conformational changes in specificity based on published studies using DNA polymerases as an ideal model system. Rather than give details of how to perform transient-state and single-turnover kinetic experiments, we focus on the rationale of the experimental design and interpretation. We show how initial experiments to measure kcat and kcat/Km can accurately quantify specificity but do not define its underlying mechanistic basis. We describe methods to fluorescently label enzymes to monitor conformational changes and to correlate fluorescence signals with rapid-chemical-quench flow assays to define the steps in the pathway. Measurements of the rate of product release and of the kinetics of the reverse reaction complete the kinetic and thermodynamic description of the full reaction pathway. This analysis showed that the substrate-induced change in enzyme structure from an open to a closed state was much faster than rate-limiting chemical bond formation. However, because the reverse of the conformational change was much slower than chemistry, specificity is governed solely by the product of the binding constant for the initial weak substrate binding and the rate constant for the conformational change (kcat/Km=K1k2) so that the specificity constant does not include kcat. The enzyme conformational change leads to a closed complex in which the substrate is bound tightly and is committed to the forward reaction. In contrast, an incorrect substrate is bound weakly, and the rate of chemistry is slow, so the mismatch is released from the enzyme rapidly. Thus, the substrate-induced-fit is the major determinant of specificity. The methods outlined here should be applicable to other enzyme systems.
Collapse
Affiliation(s)
- Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
2
|
Berdis A. Nucleobase-modified nucleosides and nucleotides: Applications in biochemistry, synthetic biology, and drug discovery. Front Chem 2022; 10:1051525. [PMID: 36531317 PMCID: PMC9748101 DOI: 10.3389/fchem.2022.1051525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
. DNA is often referred to as the "molecule of life" since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, recent chemical and biochemical studies using nucleobase-modified nucleotides that contain "non-hydrogen bonding" functional groups have challenged many of the dogmatic views for the necessity of hydrogen-bonding interactions for DNA stability and function. Based on years of exciting research, this area has expanded tremendously and is thus too expansive to provide a comprehensive review on the topic. As such, this review article provides an opinion highlighting how nucleobase-modified nucleotides are being applied in diverse biomedical fields, focusing on three exciting areas of research. The first section addresses how these analogs are used as mechanistic probes for DNA polymerase activity and fidelity during replication. This section outlines the synthetic logic and medicinal chemistry approaches used to replace hydrogen-bonding functional groups to examine the contributions of shape/size, nucleobase hydrophobicity, and pi-electron interactions. The second section extends these mechanistic studies to provide insight into how nucleobase-modified nucleosides are used in synthetic biology. One example is through expansion of the genetic code in which changing the composition of DNA makes it possible to site-specifically incorporate unnatural amino acids bearing unique functional groups into enzymes and receptors. The final section describes results of pre-clinical studies using nucleobase-modified nucleosides as potential therapeutic agents against diseases such as cancer.
Collapse
Affiliation(s)
- Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
3
|
Highly sensitive molecularly imprinted polymer-based electrochemical sensor for voltammetric determination of Adenine and Guanine in real samples using gold screen-printed electrode. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Dahlmann HA, Berger FD, Kung RW, Wyss LA, Gubler I, McKeague M, Wetmore SD, Sturla SJ. Fluorescent Nucleobase Analogues with Extended Pi Surfaces Stabilize DNA Duplexes Containing O
6
-Alkylguanine Adducts. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heidi A. Dahlmann
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Florence D. Berger
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Ryan W. Kung
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge Alberta T1K 3M4 Canada
| | - Laura A. Wyss
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Irina Gubler
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Maureen McKeague
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge Alberta T1K 3M4 Canada
| | - Shana J. Sturla
- Department of Health Sciences and Technology; ETH Zürich; Schmelzbergstrasse 9 8092 Zürich Switzerland
| |
Collapse
|
5
|
Trantakis IA, Nilforoushan A, Dahlmann HA, Stäuble CK, Sturla SJ. In-Gene Quantification of O(6)-Methylguanine with Elongated Nucleoside Analogues on Gold Nanoprobes. J Am Chem Soc 2016; 138:8497-504. [PMID: 27314828 PMCID: PMC5726487 DOI: 10.1021/jacs.6b03599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of DNA to chemicals can result in the formation of DNA adducts, a molecular initiating event in genotoxin-induced carcinogenesis. O(6)-Methylguanine (O(6)-MeG) is a highly mutagenic DNA adduct that forms in human genomic DNA upon reaction with methylating agents of dietary, environmental, or endogenous origin. In this work, we report the design and synthesis of novel non-natural nucleoside analogues 1'-β-[1-naphtho[2,3-d]imidazol-2(3H)-one)]-2'-deoxy-d-ribofuranose and 1'-β-[1-naphtho[2,3-d]imidazole]-2'-deoxy-d-ribofuranose and their use for quantifying O(6)-MeG within mutational hotspots of the human KRAS gene. The novel nucleoside analogues were incorporated into oligonucleotides conjugated to gold nanoparticles to comprise a DNA hybridization probe system for detecting O(6)-MeG in a sequence-specific manner on the basis of colorimetric readout of the nanoparticles. The concept described herein is unique in utilizing new nucleoside analogues with elongated hydrophobic surfaces to successfully measure in-gene abundance of O(6)-MeG in mixtures with competing unmodified DNA.
Collapse
Affiliation(s)
- Ioannis A. Trantakis
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Heidi A. Dahlmann
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Celine K. Stäuble
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Matsuura MF, Shaw RW, Moses JD, Kim HJ, Kim MJ, Kim MS, Hoshika S, Karalkar N, Benner SA. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase. ACS Synth Biol 2016; 5:234-40. [PMID: 26829203 DOI: 10.1021/acssynbio.5b00172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One frontier in synthetic biology seeks to move artificially expanded genetic information systems (AEGIS) into natural living cells and to arrange the metabolism of those cells to allow them to replicate plasmids built from these unnatural genetic systems. In addition to requiring polymerases that replicate AEGIS oligonucleotides, such cells require metabolic pathways that biosynthesize the triphosphates of AEGIS nucleosides, the substrates for those polymerases. Such pathways generally require nucleoside and nucleotide kinases to phosphorylate AEGIS nucleosides and nucleotides on the path to these triphosphates. Thus, constructing such pathways focuses on engineering natural nucleoside and nucleotide kinases, which often do not accept the unnatural AEGIS biosynthetic intermediates. This, in turn, requires assays that allow the enzyme engineer to follow the kinase reaction, assays that are easily confused by ATPase and other spurious activities that might arise through "site-directed damage" of the natural kinases being engineered. This article introduces three assays that can detect the formation of both natural and unnatural deoxyribonucleoside triphosphates, assessing their value as polymerase substrates at the same time as monitoring the progress of kinase engineering. Here, we focus on two complementary AEGIS nucleoside diphosphates, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one. These assays provide new ways to detect the formation of unnatural deoxyribonucleoside triphosphates in vitro and to confirm their incorporation into DNA. Thus, these assays can be used with other unnatural nucleotides.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Nilesh Karalkar
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
7
|
Abstract
All biological information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
Collapse
Affiliation(s)
- Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA).
| |
Collapse
|
8
|
|
9
|
Hernandez AR, Shao Y, Hoshika S, Yang Z, Shelke SA, Herrou J, Kim HJ, Kim MJ, Piccirilli JA, Benner SA. A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair. Angew Chem Int Ed Engl 2015. [PMID: 26223188 DOI: 10.1002/anie.201504731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As one of its goals, synthetic biology seeks to increase the number of building blocks in nucleic acids. While efforts towards this goal are well advanced for DNA, they have hardly begun for RNA. Herein, we present a crystal structure for an RNA riboswitch where a stem C:G pair has been replaced by a pair between two components of an artificially expanded genetic-information system (AEGIS), Z and P, (6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one). The structure shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details of its interaction with a hypoxanthine ligand. This was confirmed in solution by in-line probing, which also measured a 3.7 nM affinity of the riboswitch for guanine. These data show that the Z:P pair mimics the natural Watson-Crick geometry in RNA in the first example of a crystal structure of an RNA molecule that contains an orthogonal added nucleobase pair.
Collapse
Affiliation(s)
- Armando R Hernandez
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA)
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA)
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL 32615 (USA)
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL 32615 (USA)
| | - Sandip A Shelke
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA)
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA)
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL 32615 (USA)
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL 32615 (USA)
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA).
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL 32615 (USA).
| |
Collapse
|
10
|
Hernandez AR, Shao Y, Hoshika S, Yang Z, Shelke SA, Herrou J, Kim HJ, Kim MJ, Piccirilli JA, Benner SA. A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jiménez E, Cansiz S, Teng IT, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff DL, Huang Z, Tan W, Benner SA. Evolution of functional six-nucleotide DNA. J Am Chem Soc 2015; 137:6734-7. [PMID: 25966323 DOI: 10.1021/jacs.5b02251] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.
Collapse
Affiliation(s)
- Liqin Zhang
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Zunyi Yang
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Kwame Sefah
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin M Bradley
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Shuichi Hoshika
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Myong-Jung Kim
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Hyo-Joong Kim
- §Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| | - Guizhi Zhu
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States.,∥Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Elizabeth Jiménez
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Sena Cansiz
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - I-Ting Teng
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Carole Champanhac
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher McLendon
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Chen Liu
- ⊥Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Wen Zhang
- #Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,∇SeNA Research, Inc., Atlanta, Georgia 30303, United States
| | - Dietlind L Gerloff
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States
| | - Zhen Huang
- #Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,∇SeNA Research, Inc., Atlanta, Georgia 30303, United States
| | - Weihong Tan
- †Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611, United States.,∥Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Steven A Benner
- ‡Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, United States.,§Firebird Biomolecular Sciences LLC, Alachua, Florida 32615, United States
| |
Collapse
|
12
|
Copper(II) and manganese(II) picrate complexes with the V-shaped ligand 1,3-bis(1-methylbenzimidazol-2-yl)-2-thiapropane: preparation, structure, DNA-binding properties and antioxidant activities. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9880-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wu H, Kong J, Zhang Y, Shi F, Bai Y, Wang X. A Six-Coordinate Picrate Nickel(II) Complex Based on the V-Shaped Ligand 1,3-Bis (1-Benzylbenzimidazol-2-yl)-2-Thiapropane: Synthesis, Crystal Structure, Biological Activities. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2013.829836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Huilu Wu
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Jin Kong
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Yanhui Zhang
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Furong Shi
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Yuchen Bai
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| | - Xiaoli Wang
- a School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou , Gansu , 730070 , P. R. China
| |
Collapse
|
14
|
Abstract
Pseudopolyrotaxanes (PPR) consisting ofα-cyclodextrin rings and polyethylene glycol axes with end thymine groups have been synthesized and characterized successfully. Fluorescein (Fl) as a model drug was conjugated to the hydroxyl functional groups of cyclodextrin rings of PPR via ester bonds and PPR-Fl as the primary drug delivery system was obtained. Finally PPR-Fl was capped by hydrogen bonds between end thymine groups and a suitable complementary molecule such as polycitric acid, citric acid, or adenine. The aim of this work was to control the release of the fluorescein-cyclodextrin (Fl-CD) conjugates, as the secondary drug delivery systems, from PPR-Fl by controlling the noncovalent interactions between stoppers and thymine end groups. It was found that the rate of release of the Fl-CD from PPR-Fl could be controlled by pH and the ratio of citric acid or adenine to the PPR-Fl.
Collapse
|
15
|
Liang F, Liu YZ, Zhang P. Universal base analogues and their applications in DNA sequencing technology. RSC Adv 2013. [DOI: 10.1039/c3ra41492b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Khakshoor O, Wheeler SE, Houk KN, Kool ET. Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs. J Am Chem Soc 2012; 134:3154-63. [PMID: 22300089 DOI: 10.1021/ja210475a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions between F and natural bases in nucleic acid duplexes and in a DNA polymerase active site. Since F is widely used to measure electrostatic contributions to pairing and replication, it is important to quantify the impact of this isostere on DNA stability. Here, we studied the pairing stability and selectivity of this compound and a closely related variant, dichlorotoluene deoxyriboside (L), in DNA, using both experimental and computational approaches. We measured the thermodynamics of duplex formation in three sequence contexts and with all possible pairing partners by thermal melting studies using the van't Hoff approach, and for selected cases by isothermal titration calorimetry (ITC). Experimental results showed that internal F-A pairing in DNA is destabilizing by 3.8 kcal/mol (van't Hoff, 37 °C) as compared with T-A pairing. At the end of a duplex, base-base interactions are considerably smaller; however, the net F-A interaction remains repulsive while T-A pairing is attractive. As for selectivity, F is found to be slightly selective for adenine over C, G, T by 0.5 kcal mol, as compared with thymine's selectivity of 2.4 kcal/mol. Interestingly, dichlorotoluene in DNA is slightly less destabilizing and slightly more selective than F, despite the lack of strongly electronegative fluorine atoms. Experimental data were complemented by computational results, evaluated at the M06-2X/6-31+G(d) and MP2/cc-pVTZ levels of theory. These computations suggest that the pairing energy of F to A is ~28% of that of T-A, and most of this interaction does not arise from the F···HN interaction, but rather from the CH···N interaction. The nucleobase analogue shows no inherent selectivity for adenine over other bases, and L-A pairing energies are slightly weaker than for F-A. Overall, the results are consistent with a small favorable noncovalent interaction of F with A offset by a large desolvation cost for the polar partner. We discuss the findings in light of recent structural studies and of DNA replication experiments involving these analogues.
Collapse
Affiliation(s)
- Omid Khakshoor
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
17
|
Sigel A, Operschall BP, Sigel H. Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 2011; 26:3864-9. [PMID: 21458254 DOI: 10.1016/j.bios.2011.02.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022]
Abstract
For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime.
Collapse
|
19
|
Johnson KA. The kinetic and chemical mechanism of high-fidelity DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1041-8. [PMID: 20079883 DOI: 10.1016/j.bbapap.2010.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/15/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
This review summarizes our current understanding of the structural, kinetic and thermodynamic basis for the extraordinary accuracy of high-fidelity DNA polymerases. High-fidelity DNA polymerases, such as the enzyme responsible for the replication of bacteriophage T7 DNA, discriminate against similar substrates with an accuracy that approaches one error in a million base pairs while copying DNA at a rate of approximately 300 base pairs per second. When the polymerase does make an error, it stalls, giving time for the slower proofreading exonuclease to remove the mismatch so that the overall error frequency approaches one in a billion. Structural analysis reveals a large change in conformation after nucleotide binding from an open to a closed state. Kinetic analysis has shown that the substrate-induced structural change plays a key role in the discrimination between correct and incorrect base pairs by governing whether a nucleotide will be retained and incorporated or rapidly released.
Collapse
Affiliation(s)
- Kenneth A Johnson
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Dahlmann HA, Vaidyanathan VG, Sturla SJ. Investigating the biochemical impact of DNA damage with structure-based probes: abasic sites, photodimers, alkylation adducts, and oxidative lesions. Biochemistry 2009; 48:9347-59. [PMID: 19757831 PMCID: PMC2789562 DOI: 10.1021/bi901059k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA sustains a wide variety of damage, such as the formation of abasic sites, pyrimidine dimers, alkylation adducts, or oxidative lesions, upon exposure to UV radiation, alkylating agents, or oxidative conditions. Since these forms of damage may be acutely toxic or mutagenic and potentially carcinogenic, it is of interest to gain insight into how their structures impact biochemical processing of DNA, such as synthesis, transcription, and repair. Lesion-specific molecular probes have been used to study polymerase-mediated translesion DNA synthesis of abasic sites and TT dimers, while other probes have been developed for specifically investigating the alkylation adduct O(6)-Bn-G and the oxidative lesion 8-oxo-G. In this review, recent examples of lesion-specific molecular probes are surveyed; their specificities of incorporation opposite target lesions compared to unmodified nucleotides are discussed, and limitations of their applications under physiologically relevant conditions are assessed.
Collapse
Affiliation(s)
| | | | - Shana J. Sturla
- To whom correspondence should be addressed: ; Phone: 612-626-0496; Fax: 612-624-0139
| |
Collapse
|
21
|
Abstract
As the focus of synthesis increasingly shifts from its historical emphasis on molecular structure to function, improved strategies are clearly required for the generation of molecules with defined physical, chemical, and biological properties. In contrast, living organisms are remarkably adept at producing molecules and molecular assemblies with an impressive array of functions - from enzymes and antibodies to the photosynthetic center. Thus, the marriage of Nature's synthetic strategies, molecules, and biosynthetic machinery with more traditional synthetic approaches might enable the generation of molecules with properties difficult to achieve by chemical strategies alone. Here we illustrate the potential of this approach and overview some opportunities and challenges in the coming years.
Collapse
Affiliation(s)
- Xu Wu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | |
Collapse
|
22
|
Bergstrom DE. Unnatural nucleosides with unusual base pairing properties. ACTA ACUST UNITED AC 2009; Chapter 1:1.4.1-1.4.32. [PMID: 19488968 DOI: 10.1002/0471142700.nc0104s37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic modified nucleosides designed to pair in unusual ways with natural nucleobases have many potential applications in biology and biotechnology. This overview lays the foundation for future protocol units on synthesis and application of unnatural bases, with particular emphasis on unnatural base analogs that mimic natural bases in size, shape, and biochemical processing. Topics covered include base pairs with alternative H-bonding schemes, dimensionally expanded base pairs, hydrophobic base pairs, metal-ligated bases, degenerate bases, universal nucleosides, and triplex constituents.
Collapse
|
23
|
Loakes D, Holliger P. Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chem Commun (Camb) 2009:4619-31. [PMID: 19641798 DOI: 10.1039/b903307f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA is not only a repository of genetic information for life, it is also a unique polymer with remarkable properties: it associates according to well-defined rules, it can be assembled into diverse nanostructures of defined geometry, it can be evolved to bind ligands and catalyse chemical reactions and it can serve as a supramolecular scaffold to arrange chemical groups in space. However, its chemical makeup is rather uniform and the physicochemical properties of the four canonical bases only span a narrow range. Much wider chemical diversity is accessible through solid-phase synthesis but oligomers are limited to <100 nucleotides and variations in chemistry can usually not be replicated and thus are not amenable to evolution. Recent advances in nucleic acid chemistry and polymerase engineering promise to bring the synthesis, replication and ultimately evolution of nucleic acid polymers with greatly expanded chemical diversity within our reach.
Collapse
Affiliation(s)
- David Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, Cambridgeshire, UKCB2 0QH
| | | |
Collapse
|
24
|
Sigel H, Operschall BP, Griesser R. Xanthosine 5'-monophosphate (XMP). Acid-base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009; 38:2465-94. [PMID: 19623361 DOI: 10.1039/b902181g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
25
|
Barszcz B, Jabłońska-Wawrzycka A, Stadnicka K, Jezierska J. Coordination chemistry of 2-hydroxymethylbenzimidazole complexes with copper(II) and cadmium(II) ions: Similarities and differences. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.07.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Johar Z, Zahn A, Leumann CJ, Jaun B. Solution structure of a DNA duplex containing a biphenyl pair. Chemistry 2008; 14:1080-6. [PMID: 18038386 DOI: 10.1002/chem.200701304] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogen-bonding and stacking interactions between nucleobases are considered to be the major noncovalent interactions that stabilize the DNA and RNA double helices. In recent work we found that one or multiple biphenyl pairs, devoid of any potential for hydrogen bond formation, can be introduced into a DNA double helix without loss of duplex stability. We hypothesized that interstrand stacking interactions of the biphenyl residues maintain duplex stability. Here we present an NMR structure of the decamer duplex d(GTGACXGCAG) d(CTGCYGTCAC) that contains one such X/Y biaryl pair. X represents a 3'',5''-dinitrobiphenyl- and Y a 3'',4''-dimethoxybiphenyl C-nucleoside unit. The experimentally determined solution structure shows a B-DNA duplex with a slight kink at the site of modification. The biphenyl groups are intercalated side by side as a pair between the natural base pairs and are stacked head to tail in van der Waals contact with each other. The first phenyl rings of the biphenyl units each show tight intrastrand stacking to their natural base neighbors on the 3'-side, thus strongly favoring one of two possible interstrand intercalation structures. In order to accommodate the biphenyl units in the duplex the helical pitch is widened while the helical twist at the site of modification is reduced. Interestingly, the biphenyl rings are not static in the duplex but are in dynamic motion even at 294 K.
Collapse
Affiliation(s)
- Zeena Johar
- Laboratory of Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
27
|
Zahn A, Leumann C. Recognition Properties of Donor- and Acceptor-Modified Biphenyl-DNA. Chemistry 2008; 14:1087-94. [DOI: 10.1002/chem.200701345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Srivastava R, Bhargava A, Singh RK. Synthesis and antimicrobial activity of some novel nucleoside analogues of adenosine and 1,3-dideazaadenosine. Bioorg Med Chem Lett 2007; 17:6239-44. [PMID: 17890082 DOI: 10.1016/j.bmcl.2007.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 11/21/2022]
Abstract
A number of nucleoside analogues have been synthesized and evaluated for their antibacterial and antifungal activities against Staphylococcus aureus, Group D Streptococcus, Pseudomonas aeruginosa, Proteus spp., Salmonella spp., Aspergillus fumigatus, Penicillium marneffei, Candida albicans, Cryptococcus neoformans, and Mucor spp. The compounds 1, 4, and 6 emerged as potent antibacterial agents with MIC values of 0.75, 0.38, and 0.19 microM, respectively, against group D Streptococcus. Further, the results suggest that the molecules 4, 6, and 7 would be potent antifungal agents as they show substantial degree of inhibition toward the growth of pathogenic fungi with MICs of 0.75, 0.38, and 0.38 microM, respectively.
Collapse
Affiliation(s)
- Richa Srivastava
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211 002, India
| | | | | |
Collapse
|
29
|
Sigel H, Massoud SS, Song B, Griesser R, Knobloch B, Operschall BP. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Chemistry 2007; 12:8106-22. [PMID: 16888737 DOI: 10.1002/chem.200600160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Lee HR, Helquist SA, Kool ET, Johnson KA. Importance of hydrogen bonding for efficiency and specificity of the human mitochondrial DNA polymerase. J Biol Chem 2007; 283:14402-10. [PMID: 17650502 PMCID: PMC2386926 DOI: 10.1074/jbc.m705007200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To assess the contribution to discrimination afforded by base pair hydrogen bonding during DNA replication by the human mitochondrial DNA polymerase, we examined nucleoside mimics lacking hydrogen bond forming capability but retaining the overall steric shape of the natural nucleotide. We employed oligonucleotide templates containing either a deoxyadenosine shape mimic (dQ) or a deoxythymidine shape mimic (dF). Additionally, the nucleoside triphosphate analogs difluorotoluene deoxynucleoside triphosphate, 9-methyl-1-H-imidazo[(4,5)-b]pyridine deoxyribose triphosphate, and 4-methylbenzimidazole deoxyribose triphosphate (dZTP; another dATP shape mimic) were assayed. We used pre-steady state methods to determine the kinetic parameters governing nucleotide incorporation, k(pol) and K(d). In general, the loss of hydrogen bonding potential led to 2-3 kcal/mol reduction in ground state binding free energy, whereas effects on the maximum rate of polymerization were quite variable, ranging from negligible (dATP:dF) to nearly 4 kcal/mol (dZTP:dT). Although we observed only a 46-fold reduction in discrimination when dF was present in the template, there was a complete elimination of discrimination when dQ was present in the template. Our data with dF indicate that hydrogen bonding contributes 2.2 kcal/mol toward the efficiency of incorporation, whereas data with dQ (which may overestimate the effect due to poor steric mimicry) suggest a contribution of up to 6.8 kcal/mol. Taken together, the data suggest that sterics are necessary but not sufficient to achieve optimal efficiency and fidelity for DNA polymerase. Base pair hydrogen bonding contributes at least a third of the energy underlying nucleoside incorporation efficiency and specificity.
Collapse
Affiliation(s)
- Harold R Lee
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
31
|
Lee HR, Helquist SA, Kool ET, Johnson KA. Base pair hydrogen bonds are essential for proofreading selectivity by the human mitochondrial DNA polymerase. J Biol Chem 2007; 283:14411-6. [PMID: 17650503 PMCID: PMC2386942 DOI: 10.1074/jbc.m705006200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the role of Watson-Crick hydrogen bonding in the 3'-terminal base pair on the 3'-5' exonuclease activity of the human mitochondrial DNA polymerase. Nonpolar nucleoside analogs of thymidine (dF) and deoxyadenosine (dQ) were used to eliminate hydrogen bonds while maintaining base pair size and shape. Exonuclease reactions were examined using pre-steady state kinetic methods. The time dependence of removal of natural nucleotides from the primer terminus paired opposite the nonpolar analogs dF and dQ were best fit to a double exponential function. The double exponential kinetics as well as the rates of excision (3-6 s(-1) fast phase, 0.16-0.3 s(-1) slow phase) are comparable with those observed during mismatch removal of natural nucleotides even when the analog was involved in a sterically correct base pair. Additionally, incorporation of the next correct base beyond a nonpolar analog was slow (0.04-0.22 s(-1)), so that more than 95% of terminal base pairs were removed rather than extended. The polymerase responds to all 3'-terminal base pairs containing a nonpolar analog as if it were a mismatch regardless of the identity of the paired base, and kinetic partitioning between polymerase and exonuclease sites failed to discriminate between correct and incorrect base pairs. Thus, sterics alone are insufficient, whereas hydrogen bond formation is essential for proper proofreading selectivity by the mitochondrial polymerase. The enzyme may use the alignment and prevention of fraying provided by proper hydrogen bonding and minor groove hydrogen bonding interactions as critical criteria for correct base pair recognition.
Collapse
Affiliation(s)
- Harold R Lee
- Department of Chemistry and Biochemistry, Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
32
|
Taniguchi Y, Kool ET. Nonpolar isosteres of damaged DNA bases: effective mimicry of mutagenic properties of 8-oxopurines. J Am Chem Soc 2007; 129:8836-44. [PMID: 17592846 DOI: 10.1021/ja071970q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial fraction of mutations that arise in the cell comes from oxidative damage to DNA bases. Oxidation of purine bases at the 8-position, yielding 8-oxo-G and 8-oxo-A, results in conformational changes (from anti to syn) that cause miscoding during DNA replication. Here we describe the synthesis and biophysical and biochemical properties of low-polarity shape mimics of 8-oxopurines, and we report that these new analogues exhibit remarkable mimicry of the mutagenic properties of the natural damaged bases. A 2-chloro-4-fluoroindole nucleoside (1) was designed as an isosteric analogue of 8-oxo-dG, and a 2-chloro-4-methylbenzimidazole nucleoside (2) as a mimic of 8-oxo-dA. The nucleosides were prepared by reaction of the parent heterocycles with Hoffer's chlorodeoxyribose derivative. Structural studies of the free nucleosides 1 and 2 revealed that both bases are oriented syn, thus mimicking the conformation of the oxopurine nucleosides. Suitably protected phosphoramidite derivatives were prepared for incorporation into synthetic DNAs, to be used as probes of DNA damage responses, and 5'-triphosphate derivatives (3 and 4) were synthesized as analogues of damaged nucleotides in the cellular nucleotide pool. Base pairing studies in 12-mer duplexes showed that 1 and 2 have low affinity for polar pairing partners, consistent with previous nonpolar DNA base analogues. However, both compounds pair with small but significant selectivity for purine partners, consistent with the idea that the syn purine geometry leads to pyrimidine-like shapes. Steady-state kinetics studies of 1 and 2 were carried out with the Klenow fragment of Escherichia coli DNA Pol I (exo-) in single-nucleotide insertions. In the DNA template, the analogues successfully mimicked the mutagenic behavior of oxopurines, with 1 being paired selectively with adenine and 2 pairing selectively with guanine. The compounds showed similar mutagenic behavior as nucleoside triphosphate analogues, being preferentially inserted opposite mutagenic purine partners. The results suggest that much of the mutagenicity of oxopurines arises from their shapes in the syn conformation rather than from electrostatic and hydrogen-bonding effects. The new analogues are expected to be generally useful as mechanistic probes of cellular responses to DNA damage.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
33
|
Gong J, Sturla SJ. A synthetic nucleoside probe that discerns a DNA adduct from unmodified DNA. J Am Chem Soc 2007; 129:4882-3. [PMID: 17402738 DOI: 10.1021/ja070688g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiachang Gong
- Department of Medicinal Chemistry and The Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
34
|
Abstract
We prepared and investigated oligonucleotide duplexes of the sequence d(GATGAC(X)nGCTAG).d(CTAGC(Y)nGTCATC), in which X and Y designate biphenyl- (bph) and pentafluorobiphenyl- ((5F)bph) C-nucleotides, respectively, and n varies from 0-4. These hydrophobic base substitutes are expected to adopt a zipperlike, interstrand stacking motif, in which not only bph/bph or (5F)bph/(5F)bph homo pairs, but also (5F)bph/bph mixed pairs can be formed. By performing UV-melting curve analysis we found that incorporation of a single (5F)bph/(5F)bph pair leads to a duplex that is essentially as stable as the unmodified duplex (n=0), and 2.4 K more stable than the duplex with the nonfluorinated bph/bph pair. The T(m) of the mixed bph/(5F)bph pair was in between the T(m) values of the respective homo pairs. Additional, unnatural aromatic pairs increased the T(m) by +3.0-4.4 K/couple, irrespective of the nature of the aromatic residue. A thermodynamic analysis using isothermal titration calorimetry (ITC) of a series of duplexes with n=3 revealed lower (less negative) duplex formation enthalpies (DeltaH) in the (5F)bph/(5F)bph case than in the bph/bph case, and confirmed the higher thermodynamic stability (DeltaG) of the fluorinated duplex, suggesting it to be of entropic origin. Our data are compatible with a model in which the stacking of (5F)bph versus bph is dominated by dehydration of the aromatic units upon duplex formation. They do not support a model in which van der Waals dispersive forces (induced dipoles) or electrostatic (quadrupole) interactions play a dominant role.
Collapse
Affiliation(s)
- Alain Zahn
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
35
|
Brotschi C, Mathis G, Leumann CJ. Bipyridyl- and biphenyl-DNA: a recognition motif based on interstrand aromatic stacking. Chemistry 2006; 11:1911-23. [PMID: 15685710 DOI: 10.1002/chem.200400858] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The synthesis and incorporation into oligonucleotides of C-nucleosides containing the two aromatic, non-hydrogen-bonding nucleobase substitutes biphenyl (I) and bipyridyl (Y) are described. Their homo- and hetero-recognition properties in different sequential arrangements were then investigated via UV-melting curve analysis, gel mobility assays, CD- and NMR spectroscopy. An NMR analysis of a dodecamer duplex containing one biphenyl pair in the center, as well as CD data on duplexes with multiple insertions provide further evidence for the zipper-like interstrand stacking motif that we proposed earlier based on molecular modeling. UV-thermal melting experiments with duplexes containing one to up to seven I- or Y base pairs revealed a constant increase in T(m) in the case of I and a constant decrease for Y. Mixed I/Y base pairs lead to stabilities in between the homoseries. Insertion of alternating I/abasic site- or Y/abasic site pairs strongly decreases the thermal stability of duplexes. Asymmetric distribution of I- or Y residues on either strand of the duplex were also investigated in this context. Duplexes with three natural base pairs at both ends and 50 % of I pairs in the center are still readily formed, while duplexes with blunt ended I pairs tend to aggregate unspecifically. Duplexes with one natural overhang at the end of a I-I base pair tract can both aggregate or form ordered duplexes, depending on the nature of the natural bases in the overhang.
Collapse
Affiliation(s)
- Christine Brotschi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|
36
|
|
37
|
Oostenbrink C, van Gunsteren WF. Efficient calculation of many stacking and pairing free energies in DNA from a few molecular dynamics simulations. Chemistry 2006; 11:4340-8. [PMID: 15880545 DOI: 10.1002/chem.200401120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Through the use of the one-step perturbation approach, 130 free energies of base stacking and 1024 free energies of base pairing in DNA have been calculated from only five simulations of a nonphysical reference state. From analysis of a diverse set of 23 natural and unnatural bases, it appears that stacking free energies and stacking conformations play an important role in pairing of DNA nucleotides. On the one hand, favourable pairing free energies were found for bases that do not have the possibility to form canonical hydrogen bonds, while on the other hand, good hydrogen-bonding possibilities do not guarantee a favourable pairing free energy if the stacking of the bases dictates an unfavourable conformation. In this application, the one-step perturbation approach yields a wealth of both energetic and structural information at minimal computational cost.
Collapse
Affiliation(s)
- Chris Oostenbrink
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland
| | | |
Collapse
|
38
|
Adelfinskaya O, Wu W, Davisson VJ, Davisson VJ, Bergstrom DE. Synthesis and structural analysis of oxadiazole carboxamide deoxyribonucleoside analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1919-45. [PMID: 16438058 DOI: 10.1080/15257770500269267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two novel C-linked oxadiazole carboxamide nucleosides 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-5-carboxamide (1) and 5-(2'-deoxy-3',5'-beta-D-erythro-pentofuranosyl)-1,2,4-oxadiazole-3-carboxamide (2) were successfully synthesized and characterized by X-ray crystallography. The crystallographic analysis shows that both unnatural nucleoside analogs 1 and 2 adapt the C2'-endo ("south") conformation. The orientation of the oxadiazole carboxamide nucleobase moiety was determined as anti (conformer A) and high anti (conformer B) in the case of the nucleoside analog 1 whereas the syn conformation is adapted by the unnatural nucleoside 2. Furthermore, nucleoside analogs 1 and 2 were converted with high efficiency to corresponding nucleoside triphosphates through the combination chemo-enzymatic approach. Oxadiazole carboxamide deoxyribonucleoside analogs represent valuable tools to study DNA polymerase recognition, fidelity of nucleotide incorporation, and extension.
Collapse
|
39
|
Ji Q, Li J, Ding F, Han J, Pang M, Liu S, Meng J. Regio- and stereocontrolled synthesis and conformational analysis of benzimidazole nucleosides. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Pope MA, David SS. DNA damage recognition and repair by the murine MutY homologue. DNA Repair (Amst) 2005; 4:91-102. [PMID: 15533841 DOI: 10.1016/j.dnarep.2004.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Accepted: 08/18/2004] [Indexed: 11/29/2022]
Abstract
E. coli MutY excises adenine from duplex DNA when it is mispaired with the mutagenic oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). While E. coli MutY has been extensively studied, a detailed kinetic analysis of a mammalian MutY homologue has been inhibited by poor overexpression in bacterial hosts. This current work is the first detailed study of substrate recognition and repair of mismatched DNA by a mammalian adenine glycosylase, the murine MutY homologue (mMYH). Similar to E. coli MutY, the processing of OG:A substrates by mMYH is biphasic, indicating that product release is rate-limiting. Surprisingly, the intrinsic rates of adenine removal from both OG:A and G:A substrates by mMYH are diminished ( approximately 10-fold) compared to E. coli MutY. However, similar to E. coli MutY, the rate of adenine removal is approximately nine-fold faster with an OG:A- than a G:A-containing substrate. Interestingly, the rate of removal of 2-hydroxyadenine mispaired with OG or G in duplex DNA by mMYH was similar to the rate of adenine removal from the analogous context. In contrast, 2-hydroxyadenine removal by E. coli MutY was significantly reduced compared to adenine removal opposite both OG and G. Furthermore, dissociation constant measurements with duplexes containing noncleavable 2'-deoxyadenosine analogues indicate that mMYH is less sensitive to the structure of the base mispaired with OG or G than MutY. Though in many respects the catalytic behavior of mMYH is similar to E. coli MutY, the subtle differences may translate into differences in their in vivo functions.
Collapse
Affiliation(s)
- Mary Ann Pope
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
41
|
Matsuda S, Romesberg FE. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs. J Am Chem Soc 2004; 126:14419-27. [PMID: 15521761 DOI: 10.1021/ja047291m] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of an effort to expand the genetic alphabet, we have evaluated a large number of predominantly hydrophobic unnatural base pairs. We now report the synthesis and stability of unnatural base pairs formed between simple phenyl rings modified at different positions with methyl groups. Surprisingly, several of the unnatural base pairs are virtually as stable as a natural base pair in the same sequence context. The results show that neither hydrogen-bonding nor large aromatic surface area are required for base pair stability within duplex DNA and that interstrand interactions between small aromatic rings may be optimized for both stability and selectivity. These smaller nucleobases are not expected to induce the distortions in duplex DNA or at the primer terminus that seem to limit replication of larger unnatural base pairs, and they therefore represent a promising approach to the expansion of the genetic alphabet.
Collapse
Affiliation(s)
- Shigeo Matsuda
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Shionoya M, Tanaka K. Artificial metallo-DNA: a bio-inspired approach to metal array programming. Curr Opin Chem Biol 2004; 8:592-7. [PMID: 15556401 DOI: 10.1016/j.cbpa.2004.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure of DNA is such that the multi-array of functionalized units with desired numbers and sequences within the DNA is possible. In particular, to replace DNA bases, which are biologically important elements for gene expression, by alternative bases would provide powerful tools for programming molecular arrays in a pre-designed manner. This review focuses on recent chemical approaches to self-assembled metal arrays within DNA with metal-mediated base pairing.
Collapse
Affiliation(s)
- Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
43
|
Abstract
Recent developments in the design and construction of unusual analogs of the natural nucleic acid bases have reached a milestone with the report (in this issue of Chemistry & Biology) of a new orthogonal base pair that allows site-specific introduction of a photo-crosslinkable modified base into an RNA molecule by T7 RNA polymerase-mediated transcription of DNA containing the base-pairing partner.
Collapse
Affiliation(s)
- Donald E Bergstrom
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
44
|
Stivers JT. Site-specific DNA damage recognition by enzyme-induced base flipping. ACTA ACUST UNITED AC 2004; 77:37-65. [PMID: 15196890 DOI: 10.1016/s0079-6603(04)77002-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
45
|
Rappaport HP. The fidelity of replication of the three-base-pair set adenine/thymine, hypoxanthine/cytosine and 6-thiopurine/5-methyl-2-pyrimidinone with T7 DNA polymerase. Biochem J 2004; 381:709-17. [PMID: 15078225 PMCID: PMC1133880 DOI: 10.1042/bj20031776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/06/2004] [Accepted: 04/13/2004] [Indexed: 11/17/2022]
Abstract
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs T(H) (5-methyl-2-pyrimidinone)/H(S) (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3'-->5' exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3'-->5' exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3'-->5' exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3'-->5' exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair T(H)/H(S) was 0.1 times that of A/T for T(H) in the template and 0.01 times that of A/T for H(S) in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or T(H) opposite a template hypoxanthine, 2x10(-6); H(S) opposite a template cytosine, <3x10(-4). The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template T(H), showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication.
Collapse
|
46
|
Girniene J, Apremont G, Tatibouët A, Sackus A, Rollin P. Small libraries of fused quinazolinone-sugars. Access to quinazolinedione nucleosides. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Sánchez-Moreno MJ, Fernández-Botello A, Gómez-Coca RB, Griesser R, Ochocki J, Kotynski A, Niclós-Gutiérrez J, Moreno V, Sigel H. Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.⊥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorg Chem 2004; 43:1311-22. [PMID: 14966966 DOI: 10.1021/ic030175k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acidity constants of the 2-fold protonated (1H-benzimidazol-2-yl-methyl)phosphonate, H2(Bimp)(+/-), are given, and the stability constants of the M(H;Bimp)+ and M(Bimp) complexes with the metal ions M2+ = Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Cu2+, Zn2+, or Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log KM(M(Bi-R)) versus pKH(H(Bi-R)) for benzimidazole-type ligands, Bi-R, where R represents a residue which does not affect metal ion binding, proves that the primary binding site in the M(H;Bimp)+ complexes is (mostly) N3 and that the proton is located at the phosphonate group; outersphere interactions seem to be important, and the degree of chelate formation is above 60% for all metal ion complexes studied, except for Zn(H;Bimp)+. A similar evaluation based on log KM(M(R-PO3)) versus pKH(H(R-PO3)) straight-line plots for simple phosph(on)ate ligands, R-, where R represents a residue which cannot participate in the coordination process, reveals that the primary binding site in the M(Bimp) complexes is (mostly) the phosphonate group with all metal ions studied. In this case, the formation degree of the chelates varies more widely in dependence on the kind of metal ion involved, i.e., from 17 +/- 11% to nearly 100% for Ba(Bimp) and Cu(Bimp), respectively. For all the M(H;Bimp)+ and M(Bimp) systems, the intramolecular equilibria between the isomeric complexes are evaluated in a quantitative manner. The fact that for Bimp2- the metal ion affinity of the two binding sites, N3 and PO3(2-), can be calculated independently, i.e., the corresponding micro stability constants become known, allows us to present for the first time a method for the quantification of the chelate effect solely based on comparisons of stability constants which carry the same dimensions. This effect is often ill defined in textbooks because equilibrium constants of different dimensions are compared, which is avoided in the present case. For the M(Bimp) complexes, it is shown that the chelate effect is close to zero for Ba(Bimp) whereas for Cu(Bimp) it amounts to about four log units. This method is also applicable to other chelating systems. Finally, considering that benzimidazole as well as phosphonate derivatives are employed as therapeutic agents, the potential biological properties of Bimp, especially regarding nucleic acid polymerases, are briefly discussed.
Collapse
Affiliation(s)
- María José Sánchez-Moreno
- Inorganic Chemistry, Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Francis AW, Helquist SA, Kool ET, David SS. Probing the Requirements for Recognition and Catalysis in Fpg and MutY with Nonpolar Adenine Isosteres. J Am Chem Soc 2003; 125:16235-42. [PMID: 14692765 DOI: 10.1021/ja0374426] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli DNA repair enzymes Fpg and MutY are involved in the prevention of mutations resulting from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA. The nonpolar isosteres of 2'-deoxyadenosine, 4-methylbenzimidazole beta-deoxynucleoside (B), and 9-methyl-1H-imidazo[4,5-b]pyridine beta-deoxynucleoside (Q), were used to examine the importance of hydrogen bonding within the context of DNA repair. Specifically, the rate of base removal under single-turnover conditions by the MutY and Fpg glycosylases from duplexes containing OG:B and OG:Q mismatches, relative to OG:A mismatches, was evalulated. The reaction of Fpg revealed a 5- and 10-fold increase in rate of removal of OG from duplexes containing OG:B and OG:Q base pairs, respectively, relative to an OG:A mispair. These results suggest that the lack of the ability to hydrogen bond to the opposite base facilitates removal of OG. In contrast, adenine removal catalyzed by MutY was much more efficient from an OG:A mispair-containing duplex (k2 = 12 +/- 2 min(-1)) compared to the removal of B from an OG:B duplex (k(obs) < 0.002 min(-1)). Surprisingly, MutY was able to catalyze base removal from the OG:Q-containing substrate (k2 = 1.2 +/- 0.2 min(-1)). Importantly, the B and Q analogues are not deleterious to high-affinity DNA binding by MutY. In addition, the B and Q analogues are more susceptible to acid-catalyzed depurination illustrating that the enzyme-catalyzed mechanism is distinct from the nonenzymatic mechanism. Taken together, these results point to the importance of both N7 and N3 in the mechanism of adenine excision catalyzed by MutY.
Collapse
Affiliation(s)
- Anthony W Francis
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, USA
| | | | | | | |
Collapse
|
49
|
Paul N, Nashine VC, Hoops G, Zhang P, Zhou J, Bergstrom DE, Davisson VJ. DNA Polymerase Template Interactions Probed by Degenerate Isosteric Nucleobase Analogs. ACTA ACUST UNITED AC 2003; 10:815-25. [PMID: 14522052 DOI: 10.1016/j.chembiol.2003.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of novel artificial nucleobases and detailed X-ray crystal structures for primer/template/DNA polymerase complexes provide opportunities to assess DNA-protein interactions that dictate specificity. Recent results have shown that base pair shape recognition in the context of DNA polymerase must be considered a significant component. The isosteric azole carboxamide nucleobases (compounds 1-5; ) differ only in the number and placement of nitrogen atoms within a common shape and therefore present unique electronic distributions that are shown to dictate the selectivity of template-directed nucleotide incorporation by DNA polymerases. The results demonstrate how nucleoside triphosphate substrate selection by DNA polymerase is a complex phenomenon involving electrostatic interactions in addition to hydrogen bonding and shape recognition. These azole nucleobase analogs offer unique molecular tools for probing nonbonded interactions dictating substrate selection and fidelity of DNA polymerases.
Collapse
Affiliation(s)
- Natasha Paul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kool ET. Roles of Watson-Crick and minor groove hydrogen bonds in DNA replication. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:93-102. [PMID: 12760024 DOI: 10.1101/sqb.2000.65.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- E T Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|