1
|
Kawka A, Koenig H, Pospieszny T. Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management. Bioorg Chem 2024; 153:107933. [PMID: 39509790 DOI: 10.1016/j.bioorg.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.
Collapse
Affiliation(s)
- Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Wang B, Zhang Y, He X. A useful strategy for synthesis of the disaccharide of OSW-1. RSC Adv 2023; 13:30985-30989. [PMID: 37876654 PMCID: PMC10591292 DOI: 10.1039/d3ra05748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
A flexible, efficient, and practical synthesis route was developed to synthesize an OSW-1 disaccharide. The synthesis took 13 steps from l-arabinose and d-xylose derivatives, and the overall yield was 7.2%. The region preferentially protects various d-xylose hydroxides because the TBS group selectively reacts with this hydroxide at low concentrations due to greater activity at the C-4 hydroxyl of d-xylose. Then, high efficiency selectively protects C-2 hydroxyl and C-3 hydroxyl of d-xylose, respectively. The first high yield of glycosylation on an OSW-1 synthesis disaccharide was achieved by taking sulfide donor 4 with β-PMP anomeric l-arabinose acceptor 12. The cytotoxicity reveals that the analogy has a high IC50 for a variety of cell types. This approach should provide a versatile way to modify OSW-1's disaccharide.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| | - Yan Zhang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| | - Xiangyan He
- Scientific Research and Education Centre, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| |
Collapse
|
3
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Aguilar-Barrientos JP, Moo-Puc RE, Villanueva-Toledo JR, Murillo F, Cáceres-Castillo D, Mirón-López G, De Los Santos MG, Sandoval-Ramírez J, Zeferino-Díaz R, Fernández-Herrera MA. Microwave-enhanced synthesis of 26-amino-22-oxocholestanes and their cytotoxic activity. Steroids 2022; 183:109030. [PMID: 35367251 DOI: 10.1016/j.steroids.2022.109030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
The synthesis of a series of 26-amino-22-oxocholestanes derived from diosgenin was accomplished via the substitution of an iodine atom at C-26 by primary and secondary amines. The reactions were conducted in refluxing acetonitrile and through microwave-assisted heating. The latter shows significant improvements in terms of reaction times going from hours to a few minutes or even seconds for completion. Only one of the selected amines, 4-aminourazole, did not yield the substitution product and the imine formation pathway was investigated instead, achieving the 26-iminourazole-22-oxocholestane. All the final products have been characterized and the cytotoxic activity of three of them has been evaluated in SiHa, MCF-7 and MDA tumor cell lines by the sulforhodamine B assay.
Collapse
Affiliation(s)
- Juan P Aguilar-Barrientos
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - Rosa E Moo-Puc
- Unidad de Investigacion Medica Yucatan, Unidad Medica de Alta Especialidad, Centro Medico Ignacio Garcia Tellez, Instituto Mexicano del Seguro Social (IMSS). Calle 41 No. 439 Col. Industrial, 97150, Merida, Yuc., Mexico
| | - Jairo R Villanueva-Toledo
- Catedras CONACYT-Fundacion IMSS, A.C., CONACYT. Avenida Insurgentes Sur 1582, Alcaldia Benito Juarez, Col. Credito Constructor, 03940 Ciudad de Mexico, Mexico
| | - Fernando Murillo
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - David Cáceres-Castillo
- Facultad de Quimica, Universidad Autonoma de Yucatan. Calle 43 No. 613 Col. Inalambrica, 97069 Merida, Yuc., Mexico
| | - Gumersindo Mirón-López
- Facultad de Quimica, Universidad Autonoma de Yucatan. Calle 43 No. 613 Col. Inalambrica, 97069 Merida, Yuc., Mexico
| | - María G De Los Santos
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., Mexico
| | - Reyna Zeferino-Díaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., Mexico; Area Académica de Quimica, ICBI. Universidad Autonoma del Estado de Hidalgo. Ciudad del Conocimiento, 42184, Pachuca de Soto, Hgo., Mexico.
| | - María A Fernández-Herrera
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico.
| |
Collapse
|
5
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Zhan Z, Liu Z, Lai J, Zhang C, Chen Y, Huang H. Anticancer Effects and Mechanisms of OSW-1 Isolated From Ornithogalum saundersiae: A Review. Front Oncol 2021; 11:747718. [PMID: 34631585 PMCID: PMC8496766 DOI: 10.3389/fonc.2021.747718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
For centuries, cancer has been a lingering dark cloud floating on people's heads. With rapid population growth and aging worldwide, cancer incidence and mortality are growing rapidly. Despite major advances in oncotherapy including surgery, radiation and chemical therapy, as well as immunotherapy and targeted therapy, cancer is expected be the leading cause of premature death in this century. Nowadays, natural compounds with potential anticancer effects have become an indispensable natural treasure for discovering clinically useful agents and made remarkable achievements in cancer chemotherapy. In this regards, OSW-1, which was isolated from the bulbs of Ornithogalum saundersiae in 1992, has exhibited powerful anticancer activities in various cancers. However, after almost three decades, OSW-1 is still far from becoming a real anticancer agent for its anticancer mechanisms remain unclear. Therefore, in this review we summarize the available evidence on the anticancer effects and mechanisms of OSW-1 in vitro and in vivo, and some insights for researchers who are interested in OSW-1 as a potential anticancer drug. We conclude that OSW-1 is a potential candidate for anticancer drugs and deserves further study.
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Watanabe B, Makino K, Mizutani M, Takaya H. Synthesis and structural confirmation of calibagenin and saxosterol. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
|
10
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Sun L, Zhu D, Beverborg LOG, Wang R, Dang Y, Ma M, Li W, Yu B. Synthesis and Antiproliferative Activities of
OSW
‐1 Analogues Bearing 2”‐
O
‐
p
‐Acylaminobenzoyl
Residues
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijun Sun
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai 200032 China
| | - Laura Olde Groote Beverborg
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai 200032 China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai 200032 China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai 200032 China
| | - Mingming Ma
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Ding X, Li Y, Li J, Yin Y. OSW-1 inhibits tumor growth and metastasis by NFATc2 on triple-negative breast cancer. Cancer Med 2020; 9:5558-5569. [PMID: 32515123 PMCID: PMC7402832 DOI: 10.1002/cam4.3196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
OSW‐1 is a natural compound extracted from the bulbs of Ornithogalum saundersiae in 1992. It has been shown strong antitumor activities in various cancer cells. However, the effects of OSW‐1 on tumor growth and metastasis in breast cancer are still poorly understood. In our research, we showed that OSW‐1 had a strong anticancer effect on breast cancer cells, but lower toxicity to normal cells. Accordingly, it also revealed significant inhibition of tumor growth by OSW‐1 in xenograft model. In addition, we performed Annexin V/PI‐labeled flow cytometric assay and TUNEL assay and showed that OSW‐1 inhibited tumor growth by inducing apoptosis. Furthermore, we carried out transwell assays and found that OSW‐1 significantly repressed the migratory and invasive capabilities of triple‐negative breast cancer (TNBC) cells via mediating epithelial‐mesenchymal transition. Besides, OSW‐1 also could inhibit metastasis in an orthotopic model and resulted in a longer survival compared with control group. Finally, we performed RNA‐sequencing and cellular functions to investigate the molecular mechanism of how OSW‐1 inhibits TNBC, and identified NFATc2 may as a pivotal factor for OSW‐1‐mediated effects on cell death, tumor growth, invasion, and migration.
Collapse
Affiliation(s)
- Xiaorong Ding
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yumei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Liu W, Li P, Mei Y. Discovery of SBF1 as an allosteric inhibitor targeting the PIF-pocket of 3-phosphoinositide-dependent protein kinase-1. J Mol Model 2019; 25:187. [PMID: 31197600 DOI: 10.1007/s00894-019-4069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK1) plays a crucial role in the signal transduction of massive growth-related protein kinases. In this work, a computational study has been performed to investigate the binding pose of the hydrolyzed product of SBF1 (SBF1-) with PDK1. The binding pose was predicted by Vina and was further refined in a molecular dynamics simulation. For comparison, four published low molecular weight compounds (PS48, PS171, PS182, and PS210) binding with PDK1 were also studied. SBF1- was anchored in the PIF-pocket of PDK1 with salt bridge interaction using its carboxylate moiety, which is a common feature among the known ligands. Hydrogen bonds to THR148 and vdW interactions with GLN150 also have contributions to the association affinity. The allosteric regulation on PDK1 via the binding of SBF1- was further addressed. The binding affinity of SBF1- in complex with PDK1 is comparable to those of PS171 and PS182, with an estimated IC50 in a range from 2.0 to 10.0 μ molar. Comparison between the free energy profiles with the presence or absence of SBF1- in the binding pocket indicates that the binding of SBF1- enhances the hinge motion and suppresses the fluctuation of the end-to-end distance in α B of PDK1. These results demonstrate that SBF1- is a promising allosteric regulator of PDK1 targeting the PIF-binding pocket and can serve as a new scaffold template for the design of new drugs targeting PDK1.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
14
|
Structures and Biological Activities of Plant Glycosides: Cholestane Glycosides from Ornithogalum Saundersiae, O. Thyrsoides and Galtonia Candicans, and Their Cytotoxic and Antitumor Activities. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Systematic phytochemical screening of higher pants using a cytotoxicity-guided fractionation procedure resulted in the isolation from the bulbs of Ornithogalum saundersiae (Liliaceae) an acylated cholestane diglycoside, 17α-hydroxy-16β-[(O-(2-O-p-methoxybenzoyl-β-D-xylopyranosyl)-(1→3)-2-O-acetyl-α-L-arabinopyranosyl)oxy]cholest-5-en-22-one, tentatively named OSW-1. In vitro cytotoxic and in vivo antitumor screening of OSW-1 revealed that it is a possible candidate as a novel anticancer agent. Furthermore, more than 20 OSW-1-related compounds were isolated, not only from the bulbs of O. saundersiae, but also from those of O. thyrsoides and Galtonia candicans, which are taxonomically related to O. saundersiae. In vitro cytotoxic evaluation of all the isolated compounds and their semi-synthetic analogues allowed the structure-activity relationships of the OSW-1 derivatives to be established. In addition, these three plants were found to produce a series of novel cholestane glycosides with a new rearranged side-chain moiety, 24(23→22)abeo-cholestane, some of which showed potent cytotoxic activity against HL-60 leukemia cells.
Collapse
|
15
|
|
16
|
Sun L, Wang R, Wang X, Dang Y, Li W, Yu B. Synthesis and antiproliferative activities of OSW-1 analogues bearing 2-acylamino-xylose residues. Org Chem Front 2019. [DOI: 10.1039/c9qo00462a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized 38 OSW-1 analogues with 2-acylamino xylose residues and found that the antitumor activities could be greatly enhanced.
Collapse
Affiliation(s)
- Lijun Sun
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
- State Key Laboratory of Bio-organic and Natural Products Chemistry
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine
- the Ministry of Education
- Department of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Fudan University
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine
- the Ministry of Education
- Department of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Fudan University
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine
- the Ministry of Education
- Department of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Fudan University
| | - Wei Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
17
|
Liu M, Kong JQ. The enzymatic biosynthesis of acylated steroidal glycosides and their cytotoxic activity. Acta Pharm Sin B 2018; 8:981-994. [PMID: 30505666 PMCID: PMC6251810 DOI: 10.1016/j.apsb.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Herein we describe the discovery and functional characterization of a steroidal glycosyltransferase (SGT) from Ornithogalum saundersiae and a steroidal glycoside acyltransferase (SGA) from Escherichia coli and their application in the biosynthesis of acylated steroidal glycosides (ASGs). Initially, an SGT gene, designated as OsSGT1, was isolated from O. saundersiae. OsSGT1-containing cell free extract was then used as the biocatalyst to react with 49 structurally diverse drug-like compounds. The recombinant OsSGT1 was shown to be active against both 3β- and 17β-hydroxyl steroids. Unexpectedly, in an effort to identify OsSGT1, we found the bacteria lacA gene in lac operon actually encoded an SGA, specifically catalyzing the acetylations of sugar moieties of steroid 17β-glucosides. Finally, a novel enzymatic two-step synthesis of two ASGs, acetylated testosterone-17-O-β-glucosides (AT-17β-Gs) and acetylated estradiol-17-O-β-glucosides (AE-17β-Gs), from the abundantly available free steroids using OsSGT1 and EcSGA1 as the biocatalysts was developed. The two-step process is characterized by EcSGA1-catalyzed regioselective acylations of all hydroxyl groups on the sugar unit of unprotected steroidal glycosides (SGs) in the late stage, thereby significantly streamlining the synthetic route towards ASGs and thus forming four monoacylates. The improved cytotoxic activities of 3′-acetylated testosterone17-O-β-glucoside towards seven human tumor cell lines were thus observable.
Collapse
Key Words
- 6′-AE-17β-G, 6′-acetylated estradiol 17-O-β-glucoside
- 6′-AT-17β-G, 6′-acetylated testosterone 17-O-β-glucoside
- AE-17β-G, acetylated estradiol-17-O-β-glucoside
- ASGs, acylated steroidal glycosides
- AT-17β-G, acetylated testosterone-17-O-β-glucoside
- Acylated steroidal glyco sides
- E-17β-G, estradiol-17-O-β-glucoside
- EcSGA1, E. coli steroidal glucoside acetyltransferase
- HPLC—SPE—NMR, high-performance liquid chromatography–solid phase extraction–NMR spectroscopy
- IPTG, isopropyl-β-D-thiogalactoside
- LacA
- ORF, open reading frame
- Ornithogalum saunder siae
- PSBD, putative steroid-binding domain
- PSPG, plant secondary product glycosyltranferase box
- RIN, RNA integrity number
- RP-HPLC, reversed phase high-performance liquid chromatography
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SGAs, steroidal glycoside acyltransferases
- SGEs, steroidal glycoside esters
- SGTs, steroidal glycosyltransferases
- SGs, steroidal glycosides
- Steroidal glycoside acyl transferase
- Steroidal glycosyltrans ferase
- T-17β-G, testosterone-17-O-β-glucoside
- UDP-Ara, UDP-l-arabinose
- UDP-Gal, UDP-D-galactose
- UDP-GalA, UDP-D-Galacturonic acid
- UDP-Glc, UDP-D-glucose
- UDP-GlcA, UDP-D-glucuronic acid
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-Xyl, UDP-D-xylose
- UTR, untranslated region
Collapse
|
18
|
Manhas S, Taylor MS. Boronic Acids as Phase-Transfer Reagents for Fischer Glycosidations in Low-Polarity Solvents. J Org Chem 2017; 82:11406-11417. [DOI: 10.1021/acs.joc.7b01880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sanjay Manhas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
19
|
Sakurai K, Hiraizumi M, Isogai N, Komatsu R, Shibata T, Ohta Y. Synthesis of a fluorescent photoaffinity probe of OSW-1 by site-selective acylation of an inactive congener and biological evaluation. Chem Commun (Camb) 2017; 53:517-520. [PMID: 27909709 DOI: 10.1039/c6cc08955k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel fluorescent photoaffinity probe of OSW-1 was prepared in two steps from a naturally occurring inactive congener by a sequential site-selective acylation strategy using Me2SnCl2. It displayed highly potent anticancer activity and a similar intracellular localization property to that of a fluorescently-tagged OSW-1, thereby demonstrating its potential utility in live cell studies.
Collapse
Affiliation(s)
- K Sakurai
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - M Hiraizumi
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - N Isogai
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - R Komatsu
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - T Shibata
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - Y Ohta
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
20
|
Zhang Y, Fang F, Fan K, Zhang Y, Zhang J, Guo H, Yu P, Ma J. Effective cytotoxic activity of OSW-1 on colon cancer by inducing apoptosis in vitro and in vivo. Oncol Rep 2017; 37:3509-3519. [PMID: 28440433 DOI: 10.3892/or.2017.5582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
As a natural compound, Ornithogalum caudatum Ait is primarily used as an anti-inflammatory and antitumor agent in Chinese folk medicine. In 1992, OSW-1 was isolated from this compound, which is a new member of cholestane saponin family. In numerous recent studies, OSW-1 has been shown to have powerful cytotoxic anticancer effects against various malignant cells. However, the therapeutic efficacy of OSW-1 on colon cancer and the underlying mechanism are not understood. To explore the mechanism underlying OSW-1 in antitumor therapy, a therapeutic function analysis of OSW-1 on colon cancer was performed in vitro and in vivo. It was shown that with low toxicity on normal colonic cells, OSW-1 suppresses colon cancer cells in vitro and this inhibition was via the intrinsic apoptotic pathway, which increased cellular calcium, changed mitochondrial membrane potential, disrupted mitochondrial morphology, and led to the release of cytochrome c and the activation of caspase-3. Furthermore, in a nude mouse model, OSW-1 had a powerful effect on suppressing colon tumor proliferation without significant side effects through the apoptosis pathway. Taken together, these results demonstrate that OSW-1 is a potential drug for colon cancer treatment.
Collapse
Affiliation(s)
- Yanhong Zhang
- Graduate School of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Fengqi Fang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Kai Fan
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yanli Zhang
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Huishu Guo
- Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peiyao Yu
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianmei Ma
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
21
|
Wu JJ, Shi Y, Tian WS. Synthesis of the aglycon of aspafiliosides E and F via a spiroketal-forming cascade. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Liu X, Liang J, Jin J, Li H, Mei B, Jin X. OSW-1 Induced Apoptosis in Hepatocellular Carcinoma through Generation of ROS, Cytochrome C and Noxa Activation Independent of p53 with Non-Activation of Caspase-3. Chin Med 2017. [DOI: 10.4236/cm.2017.81001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Liu C, Wang AP, Jin L, Guo Y, Li Y, Zhao Z, Lei P. Synthesis, conformational analysis and SAR research of OSW-1 analogues. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Kuczynska K, Cmoch P, Rárová L, Oklešťková J, Korda A, Pakulski Z, Strnad M. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers. Carbohydr Res 2016; 423:49-69. [PMID: 26878488 DOI: 10.1016/j.carres.2016.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
A series of lupane-type saponins bearing OSW-1 disaccharide unit as well as its regio- and stereoisomers were prepared and used for the structure-activity relationships (SAR) study. Unexpected preference for 1→4-linked regioisomers and an unusual inversion of the conformation of the sugar rings were noted. Cytotoxic activity of new lupane compounds was evaluated in vitro and revealed that some saponins exhibited an interesting bioactivity profile against human cancer cell lines. Influence of the protecting groups on the cytotoxicity was investigated. These results open the way to the synthesis of various lupane-type triterpene and saponin derivatives as potential anticancer compounds.
Collapse
Affiliation(s)
- Kinga Kuczynska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Oklešťková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Anna Korda
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
25
|
Marques ARA, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, Ghauharali-van der Vlugt K, Meijer R, Giraldo P, Alfonso P, Irún P, Dahl M, Karlsson S, Pavlova EV, Cox TM, Scheij S, Verhoek M, Ottenhoff R, van Roomen CPAA, Pannu NS, van Eijk M, Dekker N, Boot RG, Overkleeft HS, Blommaart E, Hirabayashi Y, Aerts JM. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. J Lipid Res 2016; 57:451-63. [PMID: 26724485 PMCID: PMC4766994 DOI: 10.1194/jlr.m064923] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
The membrane lipid glucosylceramide (GlcCer) is continuously formed and degraded. Cells express two GlcCer-degrading β-glucosidases, glucocerebrosidase (GBA) and GBA2, located in and outside the lysosome, respectively. Here we demonstrate that through transglucosylation both GBA and GBA2 are able to catalyze in vitro the transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa. Furthermore, the natural occurrence of 1-O-cholesteryl-β-D-glucopyranoside (GlcChol) in mouse tissues and human plasma is demonstrated using LC-MS/MS and 13C6-labeled GlcChol as internal standard. In cells, the inhibition of GBA increases GlcChol, whereas inhibition of GBA2 decreases glucosylated sterol. Similarly, in GBA2-deficient mice, GlcChol is reduced. Depletion of GlcCer by inhibition of GlcCer synthase decreases GlcChol in cells and likewise in plasma of inhibitor-treated Gaucher disease patients. In tissues of mice with Niemann-Pick type C disease, a condition characterized by intralysosomal accumulation of cholesterol, marked elevations in GlcChol occur as well. When lysosomal accumulation of cholesterol is induced in cultured cells, GlcChol is formed via lysosomal GBA. This illustrates that reversible transglucosylation reactions are highly dependent on local availability of suitable acceptors. In conclusion, mammalian tissues contain GlcChol formed by transglucosylation through β-glucosidases using GlcCer as donor. Our findings reveal a novel metabolic function for GlcCer.
Collapse
Affiliation(s)
- André R A Marques
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | - Patrick Wisse
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Paulo Gaspar
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rianne Meijer
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Pilar Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Traslacional, Zaragoza, Spain
| | - Pilar Alfonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Traslacional, Zaragoza, Spain
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad de Investigación Traslacional, Zaragoza, Spain
| | - Maria Dahl
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Elena V Pavlova
- Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Saskia Scheij
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Marri Verhoek
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Navraj S Pannu
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marco van Eijk
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Nick Dekker
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Rolf G Boot
- Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Edward Blommaart
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Johannes M Aerts
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands Departments of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
26
|
Wu JJ, Shi Y, Tian WS. Synthesis of the aglycon of aspafiliosides E and F based on cascade reactions. Chem Commun (Camb) 2016; 52:1942-4. [DOI: 10.1039/c5cc08856a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe an efficient synthesis of C17α-OH-tigogenin, which is the aglycon of aspafiliosides E and F. The synthesis features three cascade processes, which involve the iodo-lactonization of furostan-26-acid, a cascade hydrolysis/intramolecular SN2 process, and a cascade intramolecular redox-ketalization process.
Collapse
Affiliation(s)
- Jing-Jing Wu
- The Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Yong Shi
- The Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Wei-Sheng Tian
- The Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
27
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
28
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
29
|
Pakulski Z, Cmoch P. Study on the synthesis of regio- and stereoisomers of the disaccharide unit of the OSW-1 saponin. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Zeferino-Diaz R, Hilario-Martinez JC, Rodriguez-Acosta M, Sandoval-Ramirez J, Fernandez-Herrera MA. 22-Oxocholestanes as plant growth promoters. Steroids 2015; 98:126-31. [PMID: 25795152 DOI: 10.1016/j.steroids.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/20/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters.
Collapse
Affiliation(s)
- Reyna Zeferino-Diaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - J Ciciolil Hilario-Martinez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Maricela Rodriguez-Acosta
- Escuela de Biologia-Licenciatura Multidisciplinaria en Biotecnologia, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico; Herbario y Jardin Botanico, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico.
| | - Jesus Sandoval-Ramirez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico
| | - Maria A Fernandez-Herrera
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex, 97310 Merida, Yuc., Mexico.
| |
Collapse
|
31
|
Sakurai K, Takeshita T, Hiraizumi M, Yamada R. Synthesis of OSW-1 Derivatives by Site-Selective Acylation and Their Biological Evaluation. Org Lett 2014; 16:6318-21. [DOI: 10.1021/ol503044j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kaori Sakurai
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Tomoya Takeshita
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Masato Hiraizumi
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| | - Rika Yamada
- Tokyo University of Agriculture and Technology, Department of Biotechnology
and Life Science, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
32
|
Czajkowska-Szczykowska D, Jastrzebska I, Santillan R, Morzycki JW. The synthesis of disteroidal macrocyclic molecular rotors by an RCM approach. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Valiullina ZR, Khasanova LS, Gimalova FA, Selezneva NK, Spirikhin LV, Miftakhov MS. Synthesis of vespertilin conjugates with OSW-1 disaccharide blocks. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014100194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
|
35
|
Kongkathip B, Kongkathip N, Rujirawanich J. New Strategy for Synthesis of the Disaccharide Moiety of the Highly Potent Anticancer Natural Product OSW-1. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.891747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Boonsong Kongkathip
- a Natural Products and Organic Synthesis Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Kasetsart University , Chatuchak , Bangkok , Thailand
| | - Ngampong Kongkathip
- a Natural Products and Organic Synthesis Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Kasetsart University , Chatuchak , Bangkok , Thailand
| | - Janjira Rujirawanich
- a Natural Products and Organic Synthesis Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Kasetsart University , Chatuchak , Bangkok , Thailand
| |
Collapse
|
36
|
Shingate BB, Hazra BG. A Concise Account of Various Approaches for Stereoselective Construction of the C-20(H) Stereogenic Center in Steroid Side Chain. Chem Rev 2014; 114:6349-82. [DOI: 10.1021/cr4004083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bapurao B. Shingate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, India
- Division
of Organic Chemistry, National Chemical Laboratory, Pune 411 008, India
| | - Braja G. Hazra
- Division
of Organic Chemistry, National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
37
|
Tomkiel AM, Kowalski J, Płoszyńska J, Siergiejczyk L, Lotowski Z, Sobkowiak A, Morzycki JW. Electrochemical synthesis of glycoconjugates from activated sterol derivatives. Steroids 2014; 82:60-7. [PMID: 24486463 DOI: 10.1016/j.steroids.2014.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Abstract
Several derivatives of cholesterol and other 3β-hydroxy-Δ(5)-steroids were prepared and tested as sterol donors in electrochemical reactions with sugar alcohols. The reactions afforded glycoconjugates with sugar linked to a steroid moiety by an ether bond. Readily available sterol diphenylphosphates yielding up to 54% of the desired glycoconjugate were found to be the best sterol donors.
Collapse
Affiliation(s)
- Aneta M Tomkiel
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Jan Kowalski
- Faculty of Chemistry, Rzeszów University of Technology, P.O. Box 85, 35-959 Rzeszów, Poland
| | - Jolanta Płoszyńska
- Faculty of Chemistry, Rzeszów University of Technology, P.O. Box 85, 35-959 Rzeszów, Poland
| | - Leszek Siergiejczyk
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Zenon Lotowski
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Andrzej Sobkowiak
- Faculty of Chemistry, Rzeszów University of Technology, P.O. Box 85, 35-959 Rzeszów, Poland
| | - Jacek W Morzycki
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland.
| |
Collapse
|
38
|
Yamada R, Takeshita T, Hiraizumi M, Shinohe D, Ohta Y, Sakurai K. Fluorescent analog of OSW-1 and its cellular localization. Bioorg Med Chem Lett 2014; 24:1839-42. [PMID: 24613377 DOI: 10.1016/j.bmcl.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
OSW-1 is a steroidal saponin, which has emerged as an attractive anticancer agent with highly cancer cell selective activity. A fluorescent analog was prepared from the natural product to analyze its cellular uptake and localization. We found that the fluorescent analog is rapidly internalized into cells and is primarily distributed in endoplasmic reticulum and Golgi apparatus.
Collapse
Affiliation(s)
- Rika Yamada
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Tomoya Takeshita
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Masato Hiraizumi
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Daisuke Shinohe
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoshihiro Ohta
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan
| | - Kaori Sakurai
- Tokyo University of Agriculture and Technology, School of Engineering, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
39
|
Wang ZB, Chen X, Wang W, Cheng KD, Kong JQ. Transcriptome-wide identification and characterization of Ornithogalum saundersiae phenylalanine ammonia lyase gene family. RSC Adv 2014. [DOI: 10.1039/c4ra03385j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcriptome-wide identification and characterization ofOrnithogalum saundersiaephenylalanine ammonia lyase gene family.
Collapse
Affiliation(s)
- Zhi-Biao Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Xi Chen
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Wei Wang
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Ke-Di Cheng
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| | - Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products)
- Beijing, China
| |
Collapse
|
40
|
Wang HL, Qin N, Liu J, Jin MN, Zhang X, Jin MH, Kong D, Jiang SD, Duan HQ. Synthesis and Antimetastatic Effects ofE-Salignone Amide Derivatives. Drug Dev Res 2013; 75:76-87. [DOI: 10.1002/ddr.21157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/08/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Hong-Ling Wang
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Nan Qin
- Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
| | - Jia Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Mei-Na Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xiang Zhang
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Mei-Hua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Dexin Kong
- Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Shen-De Jiang
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Hong-Quan Duan
- Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| |
Collapse
|
41
|
Minato D, Li B, Zhou D, Shigeta Y, Toyooka N, Sakurai H, Sugimoto K, Nemoto H, Matsuya Y. Synthesis and antitumor activity of des-AB analogue of steroidal saponin OSW-1. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
JIN JICHUN, JIN XINGLIN, ZHANG XIAN, PIAO YINGSHI, LIU SHUANGPING. Effect of OSW-1 on microRNA expression profiles of hepatoma cells and functions of novel microRNAs. Mol Med Rep 2013; 7:1831-7. [DOI: 10.3892/mmr.2013.1428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/03/2013] [Indexed: 11/06/2022] Open
|
43
|
Tang Y, Li N, Duan JA, Tao W. Structure, Bioactivity, and Chemical Synthesis of OSW-1 and Other Steroidal Glycosides in the Genus Ornithogalum. Chem Rev 2013; 113:5480-514. [DOI: 10.1021/cr300072s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuping Tang
- Jiangsu Key Laboratory for High Technology of TCM Formulae
Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Nianguang Li
- Jiangsu Key Laboratory for High Technology of TCM Formulae
Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology of TCM Formulae
Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Weiwei Tao
- Jiangsu Key Laboratory for High Technology of TCM Formulae
Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
44
|
Challinor VL, De Voss JJ. Open-chain steroidal glycosides, a diverse class of plant saponins. Nat Prod Rep 2013; 30:429-54. [PMID: 23377502 DOI: 10.1039/c3np20105h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saponins are an important class of plant natural products that consist of a triterpenoid or steroidal skeleton that is glycosylated by varying numbers of sugar units attached at different positions. Steroidal saponins are usually divided into two broad structural classes, namely spirostanol and furostanol saponins. A third, previously unrecognized structural class of plant saponins, the open-chain steroidal saponins, is introduced in this review; these possess an acyclic sidechain in place of the heterocyclic ring/s present in spirostanols and furostanols. Open-chain steroidal saponins are numerous and structurally diverse, with over 150 unique representatives reported from terrestrial plants. Despite this, they have to date been largely overlooked in reviews of plant natural products. This review catalogs the structural diversity of open-chain steroidal saponins isolated from terrestrial plants and discusses aspects of their structure elucidation, biological activities, biosynthesis, and distribution in the plant kingdom. It is intended that this review will provide a point of reference for those working with open-chain steroidal saponins and result in their recognition and inclusion in future reviews of plant saponins.
Collapse
Affiliation(s)
- Victoria L Challinor
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
| | | |
Collapse
|
45
|
Iglesias-Arteaga MA, Morzycki JW. Cephalostatins and ritterazines. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2013; 72:153-279. [PMID: 24712099 DOI: 10.1016/b978-0-12-407774-4.00002-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article is a tribute to the numerous chemists whose relentless effort for the last quarter of a century resulted in the isolation, identification, and finally the chemical synthesis of a family of bis-steroidal pyrazine alkaloids of marine origin. In the task of defeating cancer, the search for bioactive substances among the naturally occurring compounds is, without any doubt, a preferential approach. The remarkable contribution of Petitt, Fusetani, and their coworkers allowed to discover this family of marine alkaloids that emerge as potential therapeutic anticancer agents, although there is still a long way to go. The challenging and dangerous task of collecting living organisms from deep-waters was followed by a laborious isolation, elucidation of the complicated structures and biological tests. The outcome of this paramount effort was the identification of 45 compounds that stand, to date, as some of the most potent anticancer agents. The intriguing structures of the isolated alkaloids drew the attention of synthetic chemists, valiant enough to undertake the challenging task of synthesizing some of the most active members of the family. Fuchs, Heathcock, Winterfeldt, Suarez, Shair, and their associates pioneered in the establishment of feasible synthetic routes for the preparation of some of the naturally occurring compounds and a large number of synthetic analogs, allowing to establish SAR criteria that have guided the design of new synthetic analogs. Numerous analogs have been prepared to investigate the mechanism of action of bis-steroidal pyrazines, e.g. cephalostatin analogs bearing a strained spiroketal moiety. However, the mechanism of action and the biological target of these compounds remain far from being understood. Therefore, the rational design of simpler, yet highly active analogs seems at the current stage elusive. It is still 1 to clear why these compounds need to be dimeric to show high biological activity. Furthermore, it is not known whether the central pyrazine ring is simply a linker or has some additional function. This could be tested by examining the biological activity of steroidal dimers with other linkers, e.g. with a benzene ring. Such analogs have been actually prepared but without functional groups necessary for biological activity. The clinical trials of cephalostatins have got stuck due to a shortage of material. There is an urgent need to provide highly active, yet not too complex analogs, which could be available in substantial amounts for advanced pharmacological studies.
Collapse
|
46
|
Liu Q, Yu Y, Wang P, Li Y. Synthesis of analogues of linckoside B, a new neuritogenic steroid glycoside. NEW J CHEM 2013. [DOI: 10.1039/c3nj00514c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Garcia-Prieto C, Riaz Ahmed KB, Chen Z, Zhou Y, Hammoudi N, Kang Y, Lou C, Mei Y, Jin Z, Huang P. Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J Biol Chem 2012; 288:3240-50. [PMID: 23250754 DOI: 10.1074/jbc.m112.384776] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
3β,16β,17α-Trihydroxycholest-5-en-22-one 16-O-(2-O-4-methoxybenzoyl-β-D-xylopyranosyl)-(1→3)-2-O-acetyl-α-L-arabinopyranoside (OSW-1) is a natural product with potent antitumor activity against various types of cancer cells, but the exact mechanisms of action remain to be defined. In this study, we showed that OSW-1 effectively killed leukemia cells at subnanomolar concentrations through a unique mechanism by causing a time-dependent elevation of cytosolic Ca(2+) prior to induction of apoptosis. A mechanistic study revealed that this compound inhibited the sodium-calcium exchanger 1 on the plasma membrane, leading to an increase in cytosolic Ca(2+) and a decrease in cytosolic Na(+). The elevated cytosolic Ca(2+) caused mitochondrial calcium overload and resulted in a loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-3. Furthermore, OSW-1 also caused a Ca(2+)-dependent cleavage of the survival factor GRP78. Inhibition of Ca(2+) entry into the mitochondria by the uniporter inhibitor RU360 or by cyclosporin A significantly prevented the OSW-1-induced cell death, indicating the important role of mitochondria in mediating the cytotoxic activity. The extremely potent activity of OSW-1 against leukemia cells and its unique mechanism of action suggest that this compound may be potentially useful in the treatment of leukemia.
Collapse
Affiliation(s)
- Celia Garcia-Prieto
- Department of Translational Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Czajkowska-Szczykowska D, Rodríguez-Molina B, Magaña-Vergara NE, Santillan R, Morzycki JW, Garcia-Garibay MA. Macrocyclic Molecular Rotors with Bridged Steroidal Frameworks. J Org Chem 2012; 77:9970-8. [DOI: 10.1021/jo3020402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Braulio Rodríguez-Molina
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, California 90095, United States
| | - Nancy E. Magaña-Vergara
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000 Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000 Mexico
| | - Jacek W. Morzycki
- Institute of Chemistry, University of Białystok, Piłsudskiego 11/4,
15-443 Białystok, Poland
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Khasanova LS, Gimalova FA, Valiullina ZR, Selezneva NK, Ganieva RM, Spirikhin LV, Miftakhov MS. New disaccharide blocks for OSW-1 and its analogs. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012090163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Yu B, Sun J, Yang X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc Chem Res 2012; 45:1227-36. [PMID: 22493991 DOI: 10.1021/ar200296m] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylation of proteins and lipids is critical to many life processes. Secondary metabolites (or natural products), such as flavonoids, steroids, triterpenes, and antibiotics, are also frequently modified with saccharides. The resulting glycosides include diverse structures and functions, and some of them have pharmacological significance. The saccharide portions of the glycosides often have specific structural characteristics that depend on the aglycones. These molecules also form heterogeneous "glycoform" mixtures where molecules have similar glycosidic linkages but the saccharides vary in the length and type of monosaccharide unit. Thus, it is difficult to purify homogeneous glycosides in appreciable amounts from natural sources. Chemical synthesis provides a feasible access to the homogeneous glycosides and their congeners. Synthesis of a glycoside involves the synthesis of the aglycone, the saccharide, the connection of these two parts, and the overall manipulation of protecting groups. However, most synthetic efforts to date have focused on the aglycones, treating the attachment of saccharides onto the aglycones as a dispensable topic. The synthesis of the aglycone and the synthesis of the saccharide belong to two independent categories of chemistry, and different types of the aglycones and saccharides pose as specific synthetic subjects in their own disciplines. The only reaction that integrates the broad chemistry of glycoside synthesis is the glycosidic bond formation between the saccharide and the aglycone. Focusing on this glycosylation reaction in this Account, we string together our experience with the synthesis of the naturally occurring glycosides. We briefly describe the synthesis of 18 glycosides, including glycolipids, phenolic glycosides, steroid glycosides, and triterpene glycosides. Each molecule represents a prototypical structure of a family of the natural glycosides with interesting biological activities, and we emphasize the general tactics for the synthesis of these diverse structures. We provide a rationale for four tactics for the synthesis of glycosides, based on the stage at which the glycosidic bond is formed between the saccharide and the aglycone. This choice of tactic determines the success or failure of a synthesis, and the flexibility and the overall efficiency of the synthesis as well. Toward the synthesis of heterogeneous glycoform mixtures, we discuss successive and random glycosylation reactions. Finally, we have developed two new glycosylation protocols that address the challenges in the glycosylation of aglycones that are poorly nucleophilic, extremely acid labile, or extremely electrophilic. One of these new protocols takes advantage of glycosyl trifluoroacetimidate donors, and a second protocol uses gold(I)-catalyzed glycosylation with glycosyl ortho-alkynylbenzoate donors.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
| | - Jiansong Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
| | - Xiaoyu Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
| |
Collapse
|