1
|
Morán‐Lalangui M, Coutinho A, Prieto M, Fedorov A, Pérez‐Gil J, Loura LMS, García‐Álvarez B. Exploring protein-protein interactions and oligomerization state of pulmonary surfactant protein C (SP-C) through FRET and fluorescence self-quenching. Protein Sci 2024; 33:e4835. [PMID: 37984447 PMCID: PMC10731621 DOI: 10.1002/pro.4835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.
Collapse
Affiliation(s)
- Mishelle Morán‐Lalangui
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Ana Coutinho
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
- Department of Chemistry and BiochemistryFaculty of Sciences, University of LisbonLisbonPortugal
| | - Manuel Prieto
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Alexander Fedorov
- iBB Institute for Bioengineering and Bioscience, IST, Universidade de LisboaLisbonPortugal
- Associate Lab i4HB, Institute for Health and Bioeconomy at IST, Universidade de LisboaLisbonPortugal
| | - Jesús Pérez‐Gil
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
| | - Luís M. S. Loura
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences (CQC‐IMS)University of CoimbraCoimbraPortugal
- CNC Centre for Neuroscience and Cell Biology, University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Begoña García‐Álvarez
- Department of Biochemistry and Molecular BiologyFaculty of Biology, Complutense UniversityMadridSpain
- Research Institute “Hospital 12 de Octubre (imas12)”MadridSpain
- Department of Biochemistry and Molecular BiologyFaculty of Chemistry, Complutense UniversityMadridSpain
| |
Collapse
|
2
|
Wei X, Liu N, Song J, Ren C, Tang X, Jiang W. Effect of silica nanoparticles on cell membrane fluidity: The role of temperature and membrane composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156552. [PMID: 35688239 DOI: 10.1016/j.scitotenv.2022.156552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The increasing production and application of silica nanoparticles (SiO2 NPs) raise public concern regarding their environmental and health risks. The fluidity of the cell membrane is essential for supporting membrane proteins and regulating membrane transport. Changes in membrane fluidity inevitably influence the physiological activities of cells and even cause biological effects. In this study, the effect of SiO2 NPs on membrane fluidity was studied at 25 °C and 37 °C, and the role of membrane components in SiO2 NP-membrane interactions was investigated using giant plasma membrane vesicles (GPMVs) isolated from RBL-2H3 cells. SiO2 NPs cause a more serious membrane fluidity decrease at 37 °C than at 25 °C, which is revealed by the shift of Laurdan fluorescence emission and further quantified via forster resonance energy transfer (FRET) experiments. In addition, after the removal of 75 % cholesterol from the membrane, SiO2 NPs caused a greater extent of membrane gelation. These results indicate that SiO2 NPs prefer to interact with membranes that are more dynamic and less densely packed. Moreover, fluorescent experiments confirmed that the existence of phosphatidyl ethanolamine (PE) and phosphoinositide (PI) can mitigate NP-induced membrane gelation. Molecular dynamics simulation further demonstrated that SiO2 NPs form hydrogen bonds with the terminal of PE or PI but with the -PO4-- group in the middle of phosphatidylcholine (PC). The bonding that occurs in the terminal gives less restriction of phospholipid movement and a weaker effect on membrane fluidity. This research provides both evidence and mechanisms of SiO2 NP-induced membrane fluidity changes, which are helpful for understanding cell membrane damage and the biological effects of NPs.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Song
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chao Ren
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Mejía L, Hadad C. Effect of the Euclidean dimensionality on the energy transfer up-conversion luminescence. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Cabré EJ, Martínez-Calle M, Prieto M, Fedorov A, Olmeda B, Loura LMS, Pérez-Gil J. Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. J Biol Chem 2018; 293:9399-9411. [PMID: 29700110 DOI: 10.1074/jbc.ra117.000222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system.
Collapse
Affiliation(s)
- Elisa J Cabré
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain
| | - Marta Martínez-Calle
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Manuel Prieto
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Alexander Fedorov
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Bárbara Olmeda
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Luís M S Loura
- the Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal, and .,the Centro de Química de Coimbra, University of Coimbra, Coimbra 3004-535, Portugal
| | - Jesús Pérez-Gil
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain, .,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| |
Collapse
|
5
|
Singh MK, Khan MF, Shweta H, Sen S. Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Phys Chem Chem Phys 2017; 19:25870-25885. [DOI: 10.1039/c7cp03108d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of dielectric environment and lipid fluidity/rigidity in multi-chromophoric FRET from a series of donors to acceptors at lipid/water interfaces are monitored by tailored donor–acceptor pairs.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Mohammad Firoz Khan
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Him Shweta
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Sobhan Sen
- Spectroscopy Laboratory
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| |
Collapse
|
6
|
Filipe HAL, Bowman D, Palmeira T, Cardoso RMS, Loura LMS, Moreno MJ. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study. Phys Chem Chem Phys 2016; 17:27534-47. [PMID: 26426766 DOI: 10.1039/c5cp04191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A complete homologous series of fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl-(NBD) labelled fatty amines of varying alkyl chain lengths, NBD-Cn, inserted in 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) or N-palmitoyl sphingomyelin (SpM) bilayers, with 50 mol% and 40 mol% cholesterol (Chol), respectively, was studied using atomistic molecular dynamics simulations. For all amphiphiles in both bilayers, the NBD fluorophore locates at the interface, in a more external position than that previously observed for pure POPC bilayers. This shallower location of the NBD group agrees with the lower fluorescent quantum yield, shorter fluorescence lifetime, and higher ionisation constants (smaller pKa) determined experimentally. The more external location is also consistent with the changes measured in steady-state fluorescence anisotropy from POPC to POPC/Chol (1 : 1) vesicles. Accordingly, the equilibrium location of the NBD group within the various bilayers is mainly dictated by bilayer compositions, and is mostly unaffected by the length of the attached alkyl chain. Similarly to the behaviour observed in POPC bilayers, the longer-chained NBD-Cn amphiphiles show significant mass density near the mixed bilayers' midplanes, and the alkyl chains of the longer derivatives, mainly NBD-C16, penetrate the opposite bilayer leaflet to some extent. However, this effect is quantitatively less pronounced in these ordered bilayers than in POPC. Similarly to POPC bilayers, the effects of these amphiphiles on the structure and dynamics of the host lipid were found to be relatively mild, in comparison with acyl-chain phospholipid analogues.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
7
|
Faller R. Molecular modeling of lipid probes and their influence on the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2353-2361. [PMID: 26891817 DOI: 10.1016/j.bbamem.2016.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/03/2023]
Abstract
In this review a number of Molecular Dynamics simulation studies are discussed which focus on the understanding of the behavior of lipid probes in biomembranes. Experiments often use specialized probe moieties or molecules to report on the behavior of a membrane and try to gain information on the membrane as a whole from the probe lipids as these probes are the only things an experiment sees. Probes can be used to make NMR, EPR and fluorescence accessible to the membrane and use fluorescent or spin-active moieties for this purpose. Clearly membranes with and without probes are not identical which makes it worthwhile to elucidate the differences between them with detailed atomistic simulations. In almost all cases these differences are confined to the local neighborhood of the probe molecules which are sparsely used and generally present as single molecules. In general, the behavior of the bulk membrane lipids can be qualitatively understood from the probes but in most cases their properties cannot be directly quantitatively deduced from the probe behavior. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Roland Faller
- Department of Chemical Engineering & Materials Science, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
9
|
Filipe HAL, Santos LS, Prates Ramalho JP, Moreno MJ, Loura LMS. Behaviour of NBD-head group labelled phosphatidylethanolamines in POPC bilayers: a molecular dynamics study. Phys Chem Chem Phys 2015; 17:20066-79. [DOI: 10.1039/c5cp01596k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An NBD-diC16PE/POPC bilayer with typical fluorophore inverted-snorkelling configurations, and mass density profiles across the membrane. The wide distribution of the NBD fluorophore lies at the origin of its complex emission kinetics.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - Lennon S. Santos
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - J. P. Prates Ramalho
- Departamento de Química
- Escola de Ciências e Tecnologia
- Universidade de Évora
- Rua Romão Ramalho
- Portugal
| | - Maria João Moreno
- Departamento de Química
- Faculty of Science and Technnology
- University of Coimbra
- Rua Larga
- Portugal
| | - Luís M. S. Loura
- Centro de Química de Coimbra
- Rua Larga
- Portugal
- Centro de Neurociências e Biologia Celular
- Universidade de Coimbra
| |
Collapse
|
10
|
Suárez-Germà C, Hernández-Borrell J, Prieto M, Loura LMS. Modeling FRET to investigate the selectivity of lactose permease ofEscherichia colifor lipids. Mol Membr Biol 2014; 31:120-30. [DOI: 10.3109/09687688.2014.915351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes. Int J Mol Sci 2012. [PMID: 23203123 PMCID: PMC3509639 DOI: 10.3390/ijms131115252] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor κ2. Different donor/acceptor conformations can lead to κ2 values in the 0 ≤ κ2 ≤ 4 range. Because the characteristic distance for FRET, R0, is proportional to (κ2)1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of κ2 corresponding to the dynamic isotropic limit (<κ2> = 2/3) is used for computation of R0 and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of κ2 for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.
Collapse
|
12
|
Loura LMS. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching. Int J Mol Sci 2012; 13:14545-64. [PMID: 23203080 PMCID: PMC3509596 DOI: 10.3390/ijms131114545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/19/2023] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.
Collapse
Affiliation(s)
- Luís M S Loura
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
13
|
Synthesis, characterization of conjugated oligo-phenylene-ethynylenes and their supramolecular interaction with β-cyclodextrin for salicylaldehyde detection. Talanta 2012; 100:229-38. [PMID: 23141331 DOI: 10.1016/j.talanta.2012.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
Abstract
Four new conjugated oligo-phenylene-ethynylenes derivatives, N-methyl-4-(4-acetylthiophenylethynyl)-1,8-naphthalimide (1), thioacetic acid S-[4-(4-aminophenyl-ethynyl)phenyl]ester (2), 4-methylthiophenylethynylbenzenamine (3), N-methyl-4-(4-methyl-thiophenyl-ethynyl)-1,8-naphthalimide (4), were synthesized by Sonogashira and Eglinton cross-coupling reactions. The structures of the four compounds were confirmed by (1)HNMR, (13)CNMR, MS and IR and their spectral characteristics were studied by ultraviolet and visible (UV) spectroscopy as well as fluorescence spectroscopy in different medium. It was found that the fluorescence properties of compounds 2 and 3 were notably improved in aqueous solutions in the presence of β-cyclodextrin (β-CD). Spectral analysis supported the suppositions that the fluorescence intensity enhancement was due to the formation of inclusion complex with β-CD. The supramolecular interaction was investigated in detail and the reaction mechanism was provided. A salicylaldehyde determination method in aqueous medium was established based on the supramolecular complex of compound 3. Under the optimum conditions, the supramolecular complex exhibited a dynamic fluorescence response range for salicylaldehyde from 0.6 to 240×10(-6) molL(-1), with a detection limit of 1×10(-8) molL(-1).
Collapse
|
14
|
Loura LMS, Prieto M. Lateral Membrane Heterogeneity Probed by FRET Spectroscopy and Microscopy. SPRINGER SERIES ON FLUORESCENCE 2012. [DOI: 10.1007/4243_2012_59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Fernandes F, Prieto M, Loura LMS. Advanced FRET Methodologies: Protein–Lipid Selectivity Detection and Quantification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:171-85. [DOI: 10.1007/978-1-4614-3381-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yu H, Xiao Y, Guo H, Qian X. Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and BODIPY: Transformation of ‘Turn‐On’ Sensors into Ratiometric Ones with Dual Emission. Chemistry 2011; 17:3179-91. [DOI: 10.1002/chem.201002498] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Haibo Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Zhongshan Road 158, Dalian, 116012 (P.R. China), Fax: (+86) 411‐83673488
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Zhongshan Road 158, Dalian, 116012 (P.R. China), Fax: (+86) 411‐83673488
| | - Haiying Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Zhongshan Road 158, Dalian, 116012 (P.R. China), Fax: (+86) 411‐83673488
| | - Xuhong Qian
- Laboratory of Chemical Biology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 (P.R. China), Fax: (+86) 21‐64252603
| |
Collapse
|
17
|
Tomatsu I, Marsden HR, Rabe M, Versluis F, Zheng T, Zope H, Kros A. Influence of pegylation on peptide-mediated liposome fusion. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11722j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Direct calculation of Förster orientation factor of membrane probes by molecular simulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2010.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:589-607. [DOI: 10.1007/s00249-009-0547-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/14/2009] [Accepted: 09/24/2009] [Indexed: 01/20/2023]
|
20
|
Hosomizu K, Oodoi M, Umeyama T, Matano Y, Yoshida K, Isoda S, Isosomppi M, Tkachenko NV, Lemmetyinen H, Imahori H. Substituent effects of porphyrins on structures and photophysical properties of amphiphilic porphyrin aggregates. J Phys Chem B 2009; 112:16517-24. [PMID: 19053673 DOI: 10.1021/jp807991k] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Substituent effects of porphyrin on the structures and photophysical properties of the J-aggregates of protonated 5-(4-alkoxyphenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin have been examined for the first time. Selective formation of the porphyrin J-aggregate was attained when suitable length of the alkoxy group was employed for the amphiphilic porphyrin. Namely, a regular leaflike structure was observed for the J-aggregates of protonated 5-(4-octyloxyphenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin, which was consistent with the results obtained by using the UV-visible absorption and dynamic light-scattering measurements. A bilayer structure in which the hydrophobic alkoxyl groups facing inside the bilayer are interdigitated to each other, whereas the hydrophilic porphyrin moieties are exposed outside, was proposed to explain the unique porphyrin J-aggregate. Fast energy migration and efficient quenching by defect site in the J-aggregates were suggested to rationalize the short lifetimes of the excited J-aggregates.
Collapse
Affiliation(s)
- Kohei Hosomizu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Loura LM, de Almeida RF, Silva LC, Prieto M. FRET analysis of domain formation and properties in complex membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:209-24. [DOI: 10.1016/j.bbamem.2008.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 12/27/2022]
|
22
|
Hesselink RW, Fedorov A, Hemminga MA, Prieto M. Membrane-bound peptides from V-ATPase subunita do not interact with an indole-type inhibitor. J Pept Sci 2008; 14:383-8. [DOI: 10.1002/psc.980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Loura LMS, Ramalho JPP. Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:467-78. [PMID: 17141730 DOI: 10.1016/j.bbamem.2006.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/09/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
100-ns molecular dynamics simulations of fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, both pure and containing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl-chain labeled fluorescent analogs (C6-NBD-PC and C12-NBD-PC), are described. These molecules are widely used as probes for lipid structure and dynamics. The results obtained here for pure DPPC agree with both experimental and theoretical published works. We verified that the NBD fluorophore of both derivatives loops to a transverse location closer to the interface than to the center of the bilayer. Whereas this was observed previously in experimental literature works, conflicting transverse locations were proposed for the NBD group. According to our results, the maximum of the transverse distribution of NBD is located around the glycerol backbone/carbonyl region, and the nitro group is the most external part of the fluorophore. Hydrogen bonds from the NH group of NBD (mostly to glycerol backbone lipid O atoms) and to the nitro O atoms of NBD (from water OH groups) are continuously observed. Rotation of NBD occurs with approximately 2.5-5 ns average correlation time for these probes, but very fast, unresolved reorientation motions occur in <20 ps, in agreement with time-resolved fluorescence anisotropy measurements. Finally, within the uncertainty of the analysis, both probes show lateral diffusion dynamics identical to DPPC.
Collapse
Affiliation(s)
- Luís M S Loura
- Centro de Química and Departamento de Química, Universidade de Evora, Rua Romão Ramalho, 59, 7000-671 Evora, Portugal.
| | | |
Collapse
|
24
|
Fernandes F, Loura LMS, Fedorov A, Prieto M. Absence of clustering of phosphatidylinositol-(4,5)-bisphosphate in fluid phosphatidylcholine. J Lipid Res 2006; 47:1521-5. [PMID: 16632797 DOI: 10.1194/jlr.m600121-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] plays a key role in the modulation of actin polymerization and vesicle trafficking. These processes seem to depend on the enrichment of PI(4,5)P(2) in plasma membrane domains. Here, we show that PI(4,5)P(2) does not form domains when in a fluid phosphatidylcholine matrix in the pH range of 4.8-8.4. This finding is at variance with the spontaneous segregation of PI(4,5)P(2) to domains as a mechanism for the compartmentalization of PI(4,5)P(2) in the plasma membrane. Water/bilayer partition of PI(4,5)P(2) is also shown to be dependent on the protonation state of the lipid.
Collapse
Affiliation(s)
- Fábio Fernandes
- Centro de Química-Física Molecular, Instituto Superior Técnico, Lisbon, Portugal.
| | | | | | | |
Collapse
|
25
|
de Almeida RFM, Loura LMS, Fedorov A, Prieto M. Lipid Rafts have Different Sizes Depending on Membrane Composition: A Time-resolved Fluorescence Resonance Energy Transfer Study. J Mol Biol 2005; 346:1109-20. [PMID: 15701521 DOI: 10.1016/j.jmb.2004.12.026] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 12/13/2004] [Accepted: 12/14/2004] [Indexed: 02/06/2023]
Abstract
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies.
Collapse
Affiliation(s)
- Rodrigo F M de Almeida
- Centro de Química-Física Molecular, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal.
| | | | | | | |
Collapse
|
26
|
Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga MA, Fedorov A, Prieto M. Quantification of Protein-Lipid Selectivity using FRET: Application to the M13 Major Coat Protein. Biophys J 2005; 87:344-52. [PMID: 15240469 PMCID: PMC1304355 DOI: 10.1529/biophysj.104.040337] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantification of lipid selectivity by membrane proteins has been previously addressed mainly from electron spin resonance studies. We present here a new methodology for quantification of protein-lipid selectivity based on fluorescence resonance energy transfer. A mutant of M13 major coat protein was labeled with 7-diethylamino-3((4'iodoacetyl)amino)phenyl-4-methylcoumarin to be used as the donor in energy transfer studies. Phospholipids labeled with N-(7-nitro-2-1,3-benzoxadiazol-4-yl) were selected as the acceptors. The dependence of protein-lipid selectivity on both hydrophobic mismatch and headgroup family was determined. M13 major coat protein exhibited larger selectivity toward phospholipids which allow for a better hydrophobic matching. Increased selectivity was also observed for anionic phospholipids and the relative association constants agreed with the ones already presented in the literature and obtained through electron spin resonance studies. This result led us to conclude that fluorescence resonance energy transfer is a promising methodology in protein-lipid selectivity studies.
Collapse
Affiliation(s)
- Fábio Fernandes
- Centro de Química-Física Molecular, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Fernandes F, Loura LMS, Prieto M, Koehorst R, Spruijt RB, Hemminga MA. Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition. Biophys J 2004; 85:2430-41. [PMID: 14507706 PMCID: PMC1303467 DOI: 10.1016/s0006-3495(03)74666-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
M13 major coat protein was derivatized with BODIPY (n-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide), and its aggregation was studied in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC/1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/DOPG (model systems of membranes with hydrophobic thickness matching that of the protein) using photophysical methodologies (time-resolved and steady-state self-quenching, absorption, and emission spectra). It was concluded that the protein is essentially monomeric, even in the absence of anionic phospholipids. The protein was also incorporated in pure bilayers of lipids with a strong mismatch with the protein transmembrane length, 1,2-dierucoyl-sn-glycero-3-phosphocholine (DEuPC, longer lipid) and 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (DMoPC, shorter lipid), and in lipidic mixtures containing DOPC and one of these lipids. The protein was aggregated in the pure vesicles of mismatching lipid but remained essentially monomeric in the mixtures as detected from BODIPY fluorescence emission self-quenching. From fluorescence resonance energy transfer (FRET) measurements (donor-n-(iodoacetyl)aminoethyl-1-sulfonaphthylamine (IAEDANS)-labeled protein; acceptor-BODIPY labeled protein), it was concluded that in the DEuPC/DOPC and DMoPC/DOPC lipid mixtures, domains enriched in the protein and the matching lipid (DOPC) are formed.
Collapse
Affiliation(s)
- Fábio Fernandes
- Centro de Química-Física Molecular, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Iozzi MF, Mennucci B, Tomasi J, Cammi R. Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM). J Chem Phys 2004; 120:7029-40. [PMID: 15267604 DOI: 10.1063/1.1669389] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a quantum-mechanical theory to study excitation energy transfers between molecular systems in solution. The model is developed within the time-dependent (TD) density-functional theory and the solvent effects are introduced in terms of the polarizable continuum model (PCM). Unique characteristic of this model is that both "reaction field" and screening effects are included in a coherent and self-consistent way. This is obtained by introducing proper solvent-specific operators in the Kohn-Sham equations and in the corresponding TD scheme. The solvation model exploits the integral equation formalism (IEF) version of PCM and it defines the solvent operators on a molecular cavity modeled on the real three-dimensional (3D) structure of the solute systems. Applications to EET in dimers of ethylene and naphtalene are presented and discussed.
Collapse
|
30
|
de Almeida RFM, Loura LMS, Fedorov A, Prieto M. Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer. Biophys J 2002; 82:823-34. [PMID: 11806924 PMCID: PMC1301891 DOI: 10.1016/s0006-3495(02)75444-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lipid bilayers composed of two phospholipids with significant acyl-chain mismatch behave as nonideal mixtures. Although many of these systems are well characterized from the equilibrium point of view, studies concerning their nonequilibrium dynamics are still rare. The kinetics of lipid demixing (phase separation) was studied in model membranes (large unilamellar vesicles of 1:1 dilauroylphosphatidylcholine (C(12) acyl chain) and distearoylphosphatidylcholine (C(18) acyl chain)). For this purpose, photophysical techniques (fluorescence intensity, anisotropy, and fluorescence resonance energy transfer) were applied using suitable probes (gel phase probe trans-parinaric acid and fluid phase probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanolamine). The nonequilibrium situation was induced by a sudden thermal quench from a one-fluid phase equilibrium situation (higher temperature) to the gel/fluid coexistence range (lower temperature). We verified that the attainment of equilibrium is a very slow process (occurs in a time scale of hours), leading to large domains at infinite time. The nonequilibrium structure stabilization is due essentially to temporarily rigidified C(12) chains in the interface between gel/fluid domains, which decrease the interfacial tension by acting as surfactants. The relaxation process becomes faster with the increase of the temperature drop. In addition, heterogeneity is already present in the supposed homogeneous fluid mixture at the higher temperature.
Collapse
Affiliation(s)
- Rodrigo F M de Almeida
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
31
|
Alakoskela JMI, Kinnunen PKJ. Probing Phospholipid Main Phase Transition by Fluorescence Spectroscopy and a Surface Redox Reaction. J Phys Chem B 2001. [DOI: 10.1021/jp011080b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juha-Matti I. Alakoskela
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, University of Helsinki, Helsinki, Finland
| | - Paavo K. J. Kinnunen
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Loura LM, Fedorov A, Prieto M. Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:236-43. [PMID: 11286966 DOI: 10.1016/s0005-2736(01)00269-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vesicles of phosphatidylcholine/cholesterol mixtures show a wide composition range with coexistence of two fluid phases, the 'liquid disordered' (cholesterol-poor) and 'liquid ordered' (cholesterol-rich) phases. These systems have been widely used as models of membranes exhibiting lateral heterogeneity (membrane domains). The distributions of two fluorescent probes (a fluorescent cholesterol analog, NBD-cholesterol, and a lipophilic rhodamine probe, octadecylrhodamine B) in dimyristoylphosphatidylcholine/cholesterol vesicles were studied, at 30 degrees C and 40 degrees C. The steady-state fluorescence intensity of both probes decreases markedly with increasing cholesterol concentration, unlike the fluorescence lifetimes. The liquid ordered to liquid disordered phase partition coefficients K(p) were measured, and values much less than unity were obtained for both probes, pointing to preference for the cholesterol-poor phase. Globally analyzed time-resolved energy transfer results confirmed these findings. It is concluded that, in particular, NBD-cholesterol is not a suitable cholesterol analog and its distribution behavior in phosphatidylcholine/cholesterol bilayers is in fact opposite to that of cholesterol.
Collapse
Affiliation(s)
- L M Loura
- Centro de Quimica-Fisica Molecular, Instituto Superior Tecnio, P-1049-001 Lisbon, Portugal
| | | | | |
Collapse
|
33
|
Loura LM, Castanho MA, Fedorov A, Prieto M. A photophysical study of the polyene antibiotic filipin. Self-aggregation and filipin--ergosterol interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:125-35. [PMID: 11342153 DOI: 10.1016/s0005-2736(00)00341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Filipin, a macrolide polyene antibiotic, is known to interact selectively with ergosterol, a constituent of fungi membranes. In this work, the fluorescence resonance energy transfer (FRET) between a fluorescent analog of ergosterol, dehydroergosterol (DHE), and filipin was measured in small unilamellar vesicles of dipalmitoylphosphatidylcholine at 25 degrees C. The time-resolved FRET results were rationalized in the framework of the mean concentration model, and were complemented with steady-state fluorescence intensity, anisotropy and absorption measurements. The results point to the formation of both DHE--filipin aggregates (evidence from static quenching of DHE fluorescence by filipin) and filipin--filipin aggregates (evidence from: (i) the FRET acceptor concentration distributions; (ii) spectral changes of filipin absorption in the vesicles, the excitonic interaction suggesting a stack arrangement; (iii) filipin fluorescence self-quenching), even in presence of DHE and low antibiotic mole fractions (<1 mol%). These results point out that apparently contradictory biochemical models for the action of filipin (some based on the presence of sterols, others not) can be equally valid. Moreover, since results (ii) and (iii) are also observed when a sterol is present, both models of action can actually coexist in membranes with a low sterol content.
Collapse
Affiliation(s)
- L M Loura
- Centro de Quimica-Fisica Molecular, Instituto Superior Técnico, Lisbon, Portugal.
| | | | | | | |
Collapse
|
34
|
Loura LM, Fedorov A, Prieto M. Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys J 2001; 80:776-88. [PMID: 11159445 PMCID: PMC1301276 DOI: 10.1016/s0006-3495(01)76057-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Large unilamellar vesicles of dimyristoylphosphatidylcholine/cholesterol mixtures were studied using fluorescence techniques (steady-state fluorescence intensity and anisotropy, fluorescence lifetime, and fluorescence resonance energy transfer (FRET)). Three compositions (cholesterol mole fraction 0.15, 0.20, and 0.25) and two temperatures (30 and 40 degrees C) inside the coexistence range of liquid-ordered (l(o)) and liquid-disordered (l(d)) phases were investigated. Two common membrane probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dimyristoylphosphatidylethanolamine (NBD-DMPE) and N-(lissamine(TM)-rhodamine B)-dimyristoylphosphatidylethanolamine (Rh-DMPE), which form a FRET pair, were used. The l(o)/l(d) partition coefficients of the probes were determined by individual photophysical measurements and global analysis of time-resolved FRET decays. Although the acceptor, Rh-DMPE, prefers the l(d) phase, the opposite is observed for the donor, NBD-DMPE. Accordingly, FRET efficiency decreases as a consequence of phase separation. Comparing the independent measurements of partition coefficient, it was possible to detect very small domains (<20 nm) of l(o) in the cholesterol-poor end of the phase coexistence range. In contrast, domains of l(d) in the cholesterol-rich end of the coexistence range have comparatively large size. These observations are probably related to different processes of phase separation, nucleation being preferred in formation of l(o) phase from initially pure l(d), and domain growth being faster in formation of l(d) phase from initially pure l(o).
Collapse
Affiliation(s)
- L M Loura
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal.
| | | | | |
Collapse
|
35
|
Loura LMS, Prieto M. Resonance Energy Transfer in Heterogeneous Planar and Bilayer Systems: Theory and Simulation. J Phys Chem B 2000. [DOI: 10.1021/jp000245y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luís M. S. Loura
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal, and Departamento de Química, Universidade de Évora, Rua Romão Ramalho, 59, P-7000-671 Évora, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal, and Departamento de Química, Universidade de Évora, Rua Romão Ramalho, 59, P-7000-671 Évora, Portugal
| |
Collapse
|