1
|
Cescon M, Stevanin C, Ardit M, Orlandi M, Martucci A, Chenet T, Pasti L, Caramori S, Cristino V. Solvothermally Grown Oriented WO 3 Nanoflakes for the Photocatalytic Degradation of Pharmaceuticals in a Flow Reactor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:860. [PMID: 38786816 PMCID: PMC11124514 DOI: 10.3390/nano14100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes.
Collapse
Affiliation(s)
- Mirco Cescon
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.C.); (V.C.)
| | - Claudia Stevanin
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.S.); (T.C.)
| | - Matteo Ardit
- Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova, Italy;
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44121 Ferrara, Italy;
| | - Michele Orlandi
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy;
| | - Annalisa Martucci
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44121 Ferrara, Italy;
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.S.); (T.C.)
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (C.S.); (T.C.)
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.C.); (V.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Ferrara Research Unit, 44121 Ferrara, Italy
| | - Vito Cristino
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.C.); (V.C.)
| |
Collapse
|
2
|
Amano F, Suzuki S, Tsushiro K, Ito J, Naito T, Kubota H. Photoelectrochemical Conversion of Methane to Ethane and Hydrogen under Visible Light Using Functionalized Tungsten Trioxide Photoanodes with Proton Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698546 DOI: 10.1021/acsami.4c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Developing methane utilization technologies is desired to convert abundant and renewable carbon resources, such as natural gas and biogas, into value-added chemical products. This study provides insights into emerging photoelectrochemical (PEC) technology for the photocatalytic transformation of methane to C2H6 and H2 using visible light at room temperature. The PEC conversion of methane to oxygenates has been investigated in aqueous electrolytes. Herein, we demonstrate the gas-phase PEC methane conversion using a proton exchange membrane (PEM) as a solid polymer electrolyte and a gas-diffusion photoanode for methane oxidation. Tungsten trioxide (WO3), a semiconductor photocatalyst responsive to visible light, is utilized as the photoanode material. Ultraviolet light (∼365 nm) excitation predominantly results in CO2 production with lower C2H6 selectivity in humidified methane. In contrast, visible light (∼453 nm) effectively promotes C2H6 production over the WO3 photoanode, attributed to preferential hydroxyl radical (•OH) formation compared to UV irradiation. Photogenerated holes formed near the valence band maximum of WO3 contribute to •OH formation through a single-electron water oxidation. The photogenerated •OH activates gaseous methane molecules to methyl radicals, subsequently coupled into C2H6 at the gas-electrolyte-semiconductor boundary. H2 is concurrently formed on the cathode electrocatalyst. Improving the selectivity for the dehydrogenative coupling of methane is pivotal for enhancing the energy efficiency in the PEM-PEC system.
Collapse
Affiliation(s)
- Fumiaki Amano
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Souta Suzuki
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Keisuke Tsushiro
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Junji Ito
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Tetsuro Naito
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Hiroshi Kubota
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| |
Collapse
|
3
|
Nomellini C, Polo A, Mesa CA, Pastor E, Marra G, Grigioni I, Dozzi MV, Giménez S, Selli E. Improved Photoelectrochemical Performance of WO 3/BiVO 4 Heterojunction Photoanodes via WO 3 Nanostructuring. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37921705 PMCID: PMC10658457 DOI: 10.1021/acsami.3c10869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
WO3/BiVO4 heterojunction photoanodes can be efficiently employed in photoelectrochemical (PEC) cells for the conversion of water into molecular oxygen, the kinetic bottleneck of water splitting. Composite WO3/BiVO4 photoelectrodes possessing a nanoflake-like morphology have been synthesized through a multistep process and their PEC performance was investigated in comparison to that of WO3/BiVO4 photoelectrodes displaying a planar surface morphology and similar absorption properties and thickness. PEC tests, also in the presence of a sacrificial hole scavenger, electrochemical impedance analysis under simulated solar irradiation, and incident photon to current efficiency measurements highlighted that charge transport and charge recombination issues affecting the performance of the planar composite can be successfully overcome by nanostructuring the WO3 underlayer in nanoflake-like WO3/BiVO4 heterojunction electrodes.
Collapse
Affiliation(s)
- Chiara Nomellini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - Annalisa Polo
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - Camilo A. Mesa
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, S/N, 12006 Castelló, Spain
| | - Ernest Pastor
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, S/N, 12006 Castelló, Spain
- IPR−Institut
de Physique de Rennes, CNRS, UMR 6251 Université de Rennes, 35000 Rennes, France
| | - Gianluigi Marra
- Eni
S.p.A Novara Laboratories (NOLAB) Renewable, New Energies and Material
Science Research Center (DE-R&D) Via G. Fauser 4, I-28100 Novara, Italy
| | - Ivan Grigioni
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - Maria Vittoria Dozzi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, I-20133 Milano, Italy
| | - Sixto Giménez
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, S/N, 12006 Castelló, Spain
| | - Elena Selli
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via C. Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
4
|
Hojamberdiev M, Vargas R, Zhang F, Teshima K, Lerch M. Perovskite BaTaO 2 N: From Materials Synthesis to Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305179. [PMID: 37852947 PMCID: PMC10667847 DOI: 10.1002/advs.202305179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
- Escuela de Bio y NanotecnologíasUniversidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
| | - Fuxiang Zhang
- State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean EnergyDalian116023P.R. China
| | - Katsuya Teshima
- Department of Materials ChemistryShinshu University4‐17‐1 WakasatoNagano3808553Japan
- Research Initiative for Supra‐MaterialsShinshu University4‐17‐1 WakasatoNagano3808553Japan
| | - Martin Lerch
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
5
|
Liu B, Wang S, Zhang G, Gong Z, Wu B, Wang T, Gong J. Tandem cells for unbiased photoelectrochemical water splitting. Chem Soc Rev 2023. [PMID: 37325843 DOI: 10.1039/d3cs00145h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
| | - Shujie Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zichen Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Bo Wu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Chandra D, Katsuki T, Tanahashi Y, Togashi T, Tsubonouchi Y, Hoshino N, Zahran ZN, Yagi M. Temperature-Controlled Transformation of WO 3 Nanowires into Active Facets-Exposed Hexagonal Prisms toward Efficient Visible-Light-Driven Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20885-20896. [PMID: 37083342 DOI: 10.1021/acsami.2c22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A unique transformation of WO3 nanowires (NW-WO3) into hexagonal prisms (HP-WO3) was demonstrated by tuning the temperature of the (N2H4)WO3 precursor suspension prepared from tungstic acid and hydrazine as a structure-directing agent. The precursor preparation at 20 °C followed by calcination at 550 °C produced NW-WO3 nanocrystals (ca. <100 nm width, 3-5 μm length) with anisotropic growth of monoclinic WO3 crystals to (002) and (200) planes and a polycrystalline character with randomly oriented crystallites in the lateral face of nanowires. The precursor preparation at 45 °C followed by calcination at 550 °C produced HP-WO3 nanocrystals (ca. 500-1000 nm diameter) with preferentially exposed (002) and (020) facets on the top-flat and side-rectangle surfaces, respectively, of hexagonal prismatic WO3 nanocrystals with a single-crystalline character. The HP-WO3 electrode exhibited the superior photoelectrochemical (PEC) performance for visible-light-driven water oxidation to that for the NW-WO3 electrode; the incident photon-to-current conversion efficiency (IPCE) of 47% at 420 nm and 1.23 V vs RHE for HP-WO3 was 3.1-fold higher than 15% for the NW-WO3 electrode. PEC impedance data revealed that the bulk electron transport through the NW-WO3 layer with the unidirectional nanowire structure is more efficient than that through the HP-WO3 layer with the hexagonal prismatic structure. However, the water oxidation reaction at the surface for the HP-WO3 electrode is more efficient than the NW-WO3 electrode, contributing significantly to the superior PEC water oxidation performance observed for the HP-WO3 electrode. The efficient water oxidation reaction at the surface for the HP-WO3 electrode was explained by the high surface fraction of the active (002) facet with fewer grain boundaries and defects on the surface of HP-WO3 to suppress the electron-hole recombination at the surface.
Collapse
Affiliation(s)
- Debraj Chandra
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Tomohiro Katsuki
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Yuki Tanahashi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Takanari Togashi
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Yuta Tsubonouchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Zaki N Zahran
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| |
Collapse
|
7
|
Li D, Lan B, Shen H, Gao C, Tian S, Han F, Chen Z. Controllable Synthesis of N2-Intercalated WO3 Nanorod Photoanode Harvesting a Wide Range of Visible Light for Photoelectrochemical Water Oxidation. Molecules 2023; 28:molecules28072987. [PMID: 37049750 PMCID: PMC10096165 DOI: 10.3390/molecules28072987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
A highly efficient visible-light-driven photoanode, N2-intercalated tungsten trioxide (WO3) nanorod, has been controllably synthesized by using the dual role of hydrazine (N2H4), which functioned simultaneously as a structure directing agent and as a nitrogen source for N2 intercalation. The SEM results indicated that the controllable formation of WO3 nanorod by changing the amount of N2H4. The β values of lattice parameters of the monoclinic phase and the lattice volume changed significantly with the nW: nN2H4 ratio. This is consistent with the addition of N2H4 dependence of the N content, clarifying the intercalation of N2 in the WO3 lattice. The UV-visible diffuse reflectance spectra (DRS) of N2-intercalated exhibited a significant redshift in the absorption edge with new shoulders appearing at 470–600 nm, which became more intense as the nW:nN2H4 ratio increased from 1:1.2 and then decreased up to 1:5 through the maximum at 1:2.5. This addition of N2H4 dependence is consistent with the case of the N contents. This suggests that N2 intercalating into the WO3 lattice is responsible for the considerable red shift in the absorption edge, with a new shoulder appearing at 470−600 nm owing to formation of an intra-bandgap above the VB edges and a dopant energy level below the CB of WO3. The N2 intercalated WO3 photoanode generated a photoanodic current under visible light irradiation below 530 nm due to the photoelectrochemical (PEC) water oxidation, compared with pure WO3 doing so below 470 nm. The high incident photon-to-current conversion efficiency (IPCE) of the WO3-2.5 photoanode is due to efficient electron transport through the WO3 nanorod film.
Collapse
|
8
|
Minato A, Pan Z, Katayama K, Yong Sohn W. Enhancement of photoelectrochemical performance of Bismuth vanadate (BiVO4)-Based photoanode by building phase-junction configurations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jakubow-Piotrowska K, Witkowski B, Augustynski J. Photoelectrocatalytic hydrogen generation coupled with reforming of glucose into valuable chemicals using a nanostructured WO 3 photoanode. Commun Chem 2022; 5:125. [PMID: 36697912 PMCID: PMC9814346 DOI: 10.1038/s42004-022-00745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
Coupling the photo-oxidation of biomass derived substrates with water splitting in a photoelectrochemical (PEC) cell is a broadly discussed approach intended to enhance efficiency of hydrogen generation at the cathode. Here, we report a PEC device employing a nanostructured semitransparent WO3 photoanode that, irradiated with simulated solar light achieves large photocurrents of 6.5 mA cm-2 through oxidation of glucose, a common carbohydrate available in nature that can be obtained by processing waste biomass. The attained photocurrents are in a large part due to the occurrence of the photocurrent doubling, where oxidation of glucose by the photogenerated positive hole is followed by injection by the formed intermediate of an electron into the conduction band of WO3. Selection of an appropriate supporting electrolyte enabled effective reforming of glucose into valuable products: gluconic and glucaric acids, erythrose and arabinose with up to 64% total Faradaic yield attained at ca 15% glucose conversion.
Collapse
Affiliation(s)
- Katarzyna Jakubow-Piotrowska
- grid.12847.380000 0004 1937 1290Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Bartłomiej Witkowski
- grid.12847.380000 0004 1937 1290Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Jan Augustynski
- grid.12847.380000 0004 1937 1290Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Electrochemical impedance spectroscopy of WO3 photoanodes on different conductive substrates: The interfacial charge transport between semiconductor particles and Ti surface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Puntsagdorj S, Koirala AR, Gombovanjil J, Khanh NN, Sung SD, Lee WI, Yoon KB. Increase in Photocurrent Density of WO 3 Photoanode by Placing a Layer of an Ordered Array of Mesoporous WO 3 Micropillars on Top of a WO 3 Sheet Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31838-31850. [PMID: 35792885 DOI: 10.1021/acsami.2c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile stamping method was developed to assemble ordered arrays of mesoporous WO3 micropillars with uniform sizes, shapes, and lengths on F-doped tin oxide glass. Using this method, a series of WO3 heterostructural bilayer photoanodes consisting of an array of m-μm long ordered mesoporous WO3 micropillars at the top and the n-μm thick mesoporous WO3 plain sheet layer at the bottom (denoted as m/n) were prepared. Among them 2.5/7.5 displayed a steady state photocurrent density of 3.6 mA cm-2 at 1.23 V (vs RHE) under AM 1.5 (1 Sun), which is much higher than that of the plain 10-μm thick WO3 sheet (2.5 mA cm-2). This phenomenon occurs owing to the following six benefits: increases in charge carrier density, number of photogenerated electron, charge collection rate, thermodynamic feasibility for the vectorial charge transport from the outermost layer of the photoanode to the inner layer, the surface hydrophilicity, and the decrease in charge transfer resistance.
Collapse
Affiliation(s)
| | | | | | | | - Sang Do Sung
- Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea
| | - Wan In Lee
- Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea
| | | |
Collapse
|
12
|
Fabrication of an Efficient N, S Co-Doped WO 3 Operated in Wide-Range of Visible-Light for Photoelectrochemical Water Oxidation. NANOMATERIALS 2022; 12:nano12122079. [PMID: 35745417 PMCID: PMC9228223 DOI: 10.3390/nano12122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
In this work, a highly efficient wide-visible-light-driven photoanode, namely, nitrogen and sulfur co-doped tungsten trioxide (S-N-WO3), was synthesized using tungstic acid (H2WO4) as W source and ammonium sulfide ((NH4)2S), which functioned simultaneously as a sulfur source and as a nitrogen source for the co-doping of nitrogen and sulfur. The EDS and XPS results indicated that the controllable formation of either N-doped WO3 (N-WO3) or S-N-WO3 by changing the nW:n(NH4)2S ratio below or above 1:5. Both N and S contents increased when increasing the nW:n(NH4)2S ratio from 1:0 to 1:15 and thereafter decreased up to 1:25. The UV-visible diffuse reflectance spectra (DRS) of S-N-WO3 exhibited a significant redshift of the absorption edge with new shoulders appearing at 470–650 nm, which became more intense as the nW:n(NH4)2S ratio increased from 1:5 and then decreased up to 1:25, with the maximum at 1:15. The values of nW:n(NH4)2S ratio dependence is consistent with the cases of the S and N contents. This suggests that S and N co-doped into the WO3 lattice are responsible for the considerable redshift in the absorption edge, with a new shoulder appearing at 470–650 nm owing to the intrabandgap formation above the valence band (VB) edge and a dopant energy level below the conduction band (CB) of WO3. Therefore, benefiting from the S and N co-doping, the S-N-WO3 photoanode generated a photoanodic current under visible light irradiation below 580 nm due to the photoelectrochemical (PEC) water oxidation, compared with pure WO3 doing so below 470 nm.
Collapse
|
13
|
Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García AB, Pavone M. Oxygen evolution reaction at the Mo/W-doped bismuth vanadate surface: Assessing the dopant role by DFT calculations. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wang Y, Li X, Yang Y. Seed layer-free hydrothermal synthesis of porous tungsten trioxide nanoflake arrays for photoelectrochemical water splitting. RSC Adv 2022; 12:26099-26105. [PMID: 36275104 PMCID: PMC9475338 DOI: 10.1039/d2ra04313k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
The simple preparation of efficient nano-photoanodes has been a key issue in the development of photoelectrochemical water splitting. In this work, a convenient and seed layer-free hydrothermal approach has been developed to synthesize vertically aligned porous WO3 nanoflakes on a fluorine-doped tin oxide conductive glass substrate. The morphology of WO3 nanoflakes could be manipulated by changing the annealing time, which further affected the performance of WO3 nanoflakes as photoanodes. Under optimum conditions, the obtained photoanode can lead to a high photocurrent density of 2.34 mA cm−2 at 1.4 V vs. Ag/AgCl under one sun irradiation (100 mW cm−2) and an incident photon to current conversion efficiency of 60% at 300 nm. The excellent photoelectrochemical performance can be mainly attributed to the larger active surface area, single crystal structure with an optimum thickness and the exposed highly active facets. SEM image of the WO3 nanoflakes after 2 hours annealing (inset). Current density vs. potential curves of the photoelectrodes prepared in a Na2SO4 solution were scanned from −0.2 V to +1.4 V (vs. Ag/AgCl @ 25 °C) using linear sweep voltammetry.![]()
Collapse
Affiliation(s)
- Yongtao Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuhua Yang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
Handal HT, Abdel Ghany NA, Elsherif SA, Siebel A, Allam NK. Unraveling the structure and electrochemical supercapacitive performance of novel tungsten bronze synthesized by facile template-free hydrothermal method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Juelsholt M, Anker AS, Christiansen TL, Jørgensen MRV, Kantor I, Sørensen DR, Jensen KMØ. Size-induced amorphous structure in tungsten oxide nanoparticles. NANOSCALE 2021; 13:20144-20156. [PMID: 34846442 DOI: 10.1039/d1nr05991b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The properties of functional materials are intrinsically linked to their atomic structure. When going to the nanoscale, size-induced structural changes in atomic structure often occur, however these are rarely well-understood. Here, we systematically investigate the atomic structure of tungsten oxide nanoparticles as a function of the nanoparticle size and observe drastic changes when the particles are smaller than 5 nm, where the particles are amorphous. The tungsten oxide nanoparticles are synthesized by thermal decomposition of ammonium metatungstate hydrate in oleylamine and by varying the ammonium metatungstate hydrate concentration, the nanoparticle size, shape and structure can be controlled. At low concentrations, nanoparticles with a diameter of 2-4 nm form and adopt an amorphous structure that locally resembles the structure of polyoxometalate clusters. When the concentration is increased the nanoparticles become elongated and form nanocrystalline rods up to 50 nm in length. The study thus reveals a size-dependent amorphous structure when going to the nanoscale and provides further knowledge on how metal oxide crystal structures change at extreme length scales.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | | | - Mads Ry Vogel Jørgensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Innokenty Kantor
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- Department of Physics, The Technical University of Denmark, 2880 Lyngby, Denmark
| | - Daniel Risskov Sørensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
Ionic Porous Aromatic Framework as a Self-Degraded Template for the Synthesis of a Magnetic γ-Fe 2O 3/WO 3·0.5H 2O Hybrid Nanostructure with Enhanced Photocatalytic Property. Molecules 2021; 26:molecules26226857. [PMID: 34833949 PMCID: PMC8617793 DOI: 10.3390/molecules26226857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
An ionic porous aromatic framework is developed as a self-degraded template to synthesize the magnetic heterostructure of γ-Fe2O3/WO3·0.5H2O. The Fe3O4 polyhedron was obtained with the two-phase method first and then reacted with sodium tungstate to form the γ-Fe2O3/WO3·0.5H2O hybrid nanostructure. Under the induction effect of the ionic porous network, the Fe3O4 phase transformed to the γ-Fe2O3 state and complexed with WO3·0.5H2O to form the n-n heterostructure with the n-type WO3·0.5H2O on the surface of n-type γ-Fe2O3. Based on a UV-Visible analysis, the magnetic photocatalyst was shown to have a suitable band gap for the catalytic degradation of organic pollutants. Under irradiation, the resulting γ-Fe2O3/WO3·0.5H2O sample exhibited a removal efficiency of 95% for RhB in 100 min. The charge transfer mechanism was also studied. After the degradation process, the dispersed powder can be easily separated from the suspension by applying an external magnetic field. The catalytic activity displayed no significant decrease after five recycles. The results present new insights for preparing a hybrid nanostructure photocatalyst and its potential application in harmful pollutant degradation.
Collapse
|
18
|
Jenewein KJ, Kormányos A, Knöppel J, Mayrhofer KJJ, Cherevko S. Accessing In Situ Photocorrosion under Realistic Light Conditions: Photoelectrochemical Scanning Flow Cell Coupled to Online ICP-MS. ACS MEASUREMENT SCIENCE AU 2021; 1:74-81. [PMID: 36785747 PMCID: PMC9838614 DOI: 10.1021/acsmeasuresciau.1c00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-impact photoelectrode materials for photoelectrochemical (PEC) water splitting are distinguished by synergistically attaining high photoactivity and stability at the same time. With numerous efforts toward optimizing the activity, the bigger challenge of tailoring the durability of photoelectrodes to meet industrially relevant levels remains. In situ photostability measurements hold great promise in understanding stability-related properties. Although different flow systems coupled to light-emitting diodes were introduced recently to measure time-resolved photocorrosion, none of the measurements were performed under realistic light conditions. In this paper, a photoelectrochemical scanning flow cell connected to an inductively coupled plasma mass spectrometer (PEC-ICP-MS) and equipped with a solar simulator, Air Mass 1.5 G filter, and monochromator was developed. The established system is capable of independently assessing basic PEC metrics, such as photopotential, photocurrent, incident photon to current efficiency (IPCE), and band gap in a high-throughput manner as well as the in situ photocorrosion behavior of photoelectrodes under standardized and realistic light conditions by coupling it to an ICP-MS. Polycrystalline platinum and tungsten trioxide (WO3) were used as model systems to demonstrate the operation under dark and light conditions, respectively. Photocorrosion measurements conducted with the present PEC-ICP-MS setup revealed that WO3 starts dissolving at 0.8 VRHE with the dissolution rate rapidly increasing past 1.2 VRHE, coinciding with the onset of the saturation photocurrent. The most detrimental damage to the photoelectrode is caused when subjecting it to a prolonged high potential hold, e.g., at 1.5 VRHE. By using standardized illumination conditions such as Air Mass 1.5 Global under 1 Sun, the obtained dissolution characteristics are translatable to actual devices under realistic light conditions. The gained insights can then be utilized to advance synthesis and design approaches of novel PEC materials with improved photostability.
Collapse
Affiliation(s)
- Ken J. Jenewein
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse 3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Attila Kormányos
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Julius Knöppel
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse 3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse 3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Takasugi S, Miseki Y, Sayama K. Photo-electrochemical Production of IO4− from IO3− over a WO3 Semiconductor Photoanode. CHEM LETT 2021. [DOI: 10.1246/cl.210094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Soichi Takasugi
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yugo Miseki
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiro Sayama
- Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
20
|
Wang M, Zeng Q, Chang S, Li S, Hu C, Chen Z. Improving the charge properties of the WO 3 photoanode using a BiFeO 3 ferroelectric nanolayer. Phys Chem Chem Phys 2021; 23:8241-8245. [PMID: 33875991 DOI: 10.1039/d0cp06214f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tungstic oxide (WO3) is a promising visible-light-responsive photoanode material, but it has poor charge transport and collection properties. In this study, a WO3/BiFeO3 core/shell photoanode (WO3/BFO) with enhanced photoelectrochemical (PEC) performance was successfully prepared using a facile spin-coating method. The optimal WO3/BFO shows an excellently enhanced and stable photocurrent density of ∼2.83 mA cm-2 at 0.6 V vs. Ag/AgCl, which is ∼244% more than WO3 under AM 1.5 illumination. The results of Mott-Schottky tests, intensity modulated photoelectrochemical spectroscopy and transient photocurrent decay indicated that the BFO ferroelectric nanolayer significantly enhances the charge density of the WO3/BFO, and improves its charge transport and separation property and charge lifetime, which could be the reason for the enhanced PEC activity of WO3/BFO.
Collapse
Affiliation(s)
- Mingqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
21
|
Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-Based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
|
23
|
Han HS, Park W, Hwang SW, Kim H, Sim Y, Surendran S, Sim U, Cho IS. (0 2 0)-Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Juodkazytė J, Petrulevičienė M, Parvin M, Šebeka B, Savickaja I, Pakštas V, Naujokaitis A, Virkutis J, Gegeckas A. Activity of sol-gel derived nanocrystalline WO3 films in photoelectrochemical generation of reactive chlorine species. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Li Y, Zhang W, Qiu B. Enhanced Surface Charge Separation Induced by Ag Nanoparticles on WO 3 Photoanode for Photoelectrochemical Water Splitting. CHEM LETT 2020. [DOI: 10.1246/cl.200033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanxiao Li
- School of Chemistry and Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Baijing Qiu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
26
|
Amano F, Koga S. Influence of light intensity on the steady-state kinetics in tungsten trioxide particulate photoanode studied by intensity-modulated photocurrent spectroscopy. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Halevy S, Korin E, Bettelheim A. Enhancement of photoelectrochemical organics degradation and power generation by electrodeposited coatings of g-C 3N 4 and graphene on TiO 2 nanotube arrays. NANOSCALE ADVANCES 2019; 1:4128-4136. [PMID: 36132104 PMCID: PMC9417468 DOI: 10.1039/c9na00437h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/15/2019] [Indexed: 06/01/2023]
Abstract
New g-C3N4 coatings obtained via electropolymerization (EP) of melamine followed by a heat treatment and graphene oxide (GO) coatings based on combining GO sheets via EP of GO phenolic groups are used to improve the performance of photoanodes composed of TiO2 nanotube arrays towards the photoelectrochemical (PEC) oxidation of methanol. This process, as examined in Na2CO3 solution (pH 11.4) for the two types of coatings and serving as a model for the degradation of an organic pollutant, demonstrates enhanced PEC performance as compared to that obtained using electrochemically reduced GO coatings. PEC oxidation currents obtained with 1 M methanol reach saturation at potentials as low as ∼-0.4 V vs. Ag/AgCl, with the highest saturation current density of ∼2.6 mA cm-2 and photon-to-current efficiency of 52% as observed for the new TiO2NTs/g-C3N4 photoanodes. Electrochemical impedance spectroscopy measurements for these photoanodes show a charge transfer resistance one order of magnitude lower than that obtained by the other types of coatings. This indicates an enhanced charge separation ability for the photogenerated electron-hole pairs and faster interfacial charge transfer between the electron donor (methanol) and acceptor (holes). It is also demonstrated that the process of organics degradation can be achieved not only via an applied potential but also in a galvanic photofuelcell with methanol and oxygen serving as the fuel and oxidant, respectively. The power densities achieved with the electrochemically prepared g-C3N4 photoanodes (∼0.5 mW cm-2) are at least one order of magnitude higher than those reported for other TiO2-based systems.
Collapse
Affiliation(s)
- Shuli Halevy
- Chemical Engineering Department, Ben Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Eli Korin
- Chemical Engineering Department, Ben Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Armand Bettelheim
- Chemical Engineering Department, Ben Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
28
|
Hirayama N, Nakata H, Wakayama H, Nishioka S, Kanazawa T, Kamata R, Ebato Y, Kato K, Kumagai H, Yamakata A, Oka K, Maeda K. Solar-Driven Photoelectrochemical Water Oxidation over an n-Type Lead–Titanium Oxyfluoride Anode. J Am Chem Soc 2019; 141:17158-17165. [DOI: 10.1021/jacs.9b06570] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naoki Hirayama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroko Nakata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Haruki Wakayama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shunta Nishioka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoki Kanazawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryutaro Kamata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yosuke Ebato
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Hiromu Kumagai
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Kengo Oka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
29
|
Fracchia M, Cristino V, Vertova A, Rondinini S, Caramori S, Ghigna P, Minguzzi A. Operando X-ray absorption spectroscopy of WO3 photoanodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Zhou G, Zhao T, Qian R, Xia X, Dai S, Alsaedi A, Hayat T, Pan JH. Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Photoelectrochemical properties of the composites based on TiO2 nanotubes, CdSe and graphene oxide. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Sharma L, Kumar P, Halder A. Phase and Vacancy Modulation in Tungsten Oxide: Electrochemical Hydrogen Evolution. ChemElectroChem 2019. [DOI: 10.1002/celc.201900666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lalita Sharma
- School of Basic SciencesIndian Institute of Technology Mandi Himachal Pradesh India 175005
| | - Pawan Kumar
- School of EngeeneringIndian Institute of Technology Mandi, Himachal Pradesh India 175005
| | - Aditi Halder
- School of Basic SciencesIndian Institute of Technology Mandi Himachal Pradesh India 175005
| |
Collapse
|
33
|
|
34
|
Significance of an anion effect in the selective oxidation of Ce3+ to Ce4+ over a porous WO3 photoanode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Kmentová H, Nandan D, Kment Š, Naldoni A, Gawande MB, Hubička Z, Zbořil R. RETRACTED: Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Kim JH, Lee JS. Elaborately Modified BiVO 4 Photoanodes for Solar Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806938. [PMID: 30793384 DOI: 10.1002/adma.201806938] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/24/2018] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) cells for solar-energy conversion have received immense interest as a promising technology for renewable hydrogen production. Their similarity to natural photosynthesis, utilizing sunlight and water, has provoked intense research for over half a century. Among many potential photocatalysts, BiVO4 , with a bandgap of 2.4-2.5 eV, has emerged as a highly promising photoanode material with a good chemical stability, environmental inertness, and low cost. Unfortunately, its charge transport properties are modest, at most a hole diffusion length (Lp ) of ≈70 nm. However, recent rapid developments in multiple modification strategies have elevated it to a position as the most promising metal oxide photoanode material. This review summarizes developments in BiVO4 photoanodes in the past 10 years, in which time it has continuously broken its own performance records for PEC water oxidation. Effective modification techniques are discussed, including synthesis of nanostructures/nanopores, external/internal doping, heterojunction fabrication, surface passivation, and cocatalysts. Tandem systems for unassisted solar water splitting and PEC production of value-added chemicals are also discussed.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Sung Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
37
|
Application of carbon microfiber felts as three-dimensional conductive substrate for efficient photoanodes of tungsten(VI) oxide. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Wang S, Liu G, Wang L. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chem Rev 2019; 119:5192-5247. [PMID: 30875200 DOI: 10.1021/acs.chemrev.8b00584] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for solar-driven hydrogen production with zero emissions, and it has been intensively studied over the past decades. However, the solar-to-hydrogen (STH) efficiencies of the current PEC systems are still far from the 10% target needed for practical application. The development of efficient photoelectrodes in PEC systems holds the key to achieving high STH efficiencies. In recent years, crystal facet engineering has emerged as an important strategy in designing efficient photoelectrodes for PEC water splitting, which has yet to be comprehensively reviewed and is the main focus of this article. After the Introduction, the second section of this review concisely introduces the mechanisms of crystal facet engineering. The subsequent section provides a snapshot of the unique facet-dependent properties of some semiconductor crystals including surface electronic structures, redox reaction sites, surface built-in electric fields, molecular adsorption, photoreaction activity, photocorrosion resistance, and electrical conductivity. Then, the methods for fabricating photoelectrodes with faceted semiconductor crystals are reviewed, with a focus on the preparation processes. In addition, the notable advantages of the crystal facet engineering of photoelectrodes in terms of light harvesting, charge separation and transfer, and surface reactions are critically discussed. This is followed by a systematic overview of the modification strategies of faceted photoelectrodes to further enhance the PEC performance. The last section summarizes the major challenges and some invigorating perspectives for future research on crystal facet engineered photoelectrodes, which are believed to play a vital role in promoting the development of this important research field.
Collapse
Affiliation(s)
- Songcan Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Gang Liu
- Shenyang National Laboratory for Materials Science , Institute of Metal Research Chinese Academy of Sciences , 72 Wenhua Road , Shenyang 110016 , China.,School of Materials Science and Engineering , University of Science and Technology of China , 72 Wenhua Road , Shenyang 110016 , China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
39
|
|
40
|
Amano F, Shintani A, Mukohara H, Hwang YM, Tsurui K. Photoelectrochemical Gas-Electrolyte-Solid Phase Boundary for Hydrogen Production From Water Vapor. Front Chem 2018; 6:598. [PMID: 30560121 PMCID: PMC6287029 DOI: 10.3389/fchem.2018.00598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Hydrogen production from humidity in the ambient air reduces the maintenance costs for sustainable solar-driven water splitting. We report a gas-diffusion porous photoelectrode consisting of tungsten trioxide (WO3) nanoparticles coated with a proton-conducting polymer electrolyte thin film for visible-light-driven photoelectrochemical water vapor splitting. The gas-electrolyte-solid triple phase boundary enhanced not only the incident photon-to-current conversion efficiency (IPCE) of the WO3 photoanode but also the Faraday efficiency (FE) of oxygen evolution in the gas-phase water oxidation process. The IPCE was 7.5% at an applied voltage of 1.2 V under 453 nm blue light irradiation. The FE of hydrogen evolution in the proton exchange membrane photoelectrochemical cell was close to 100%, and the produced hydrogen was separated from the photoanode reaction by the membrane. A comparison of the gas-phase photoelectrochemical reaction with that in liquid-phase aqueous media confirmed the importance of the triple phase boundary for realizing water vapor splitting.
Collapse
Affiliation(s)
- Fumiaki Amano
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Ayami Shintani
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Hyosuke Mukohara
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Young-Min Hwang
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Kenyou Tsurui
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| |
Collapse
|
41
|
Díaz-García AK, Gómez R. Improvement of sol-gel prepared tungsten trioxide photoanodes upon doping with ytterbium. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Jelinska A, Bienkowski K, Jadwiszczak M, Pisarek M, Strawski M, Kurzydlowski D, Solarska R, Augustynski J. Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03497] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aldona Jelinska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | | | - Marcin Pisarek
- Institute of Physical Chemistry, Polish Academy of Science, 02-668 Warsaw, Poland
| | - Marcin Strawski
- Faculty of Chemistry, University of Warsaw, 02-097 Warsaw, Poland
| | - Dominik Kurzydlowski
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University, 01-815 Warsaw, Poland
| | - Renata Solarska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jan Augustynski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
Le TA, Huynh TP. The Combination of Hydrogen and Methanol Production through Artificial Photosynthesis-Are We Ready Yet? CHEMSUSCHEM 2018; 11:2654-2672. [PMID: 29944207 DOI: 10.1002/cssc.201800731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Because 100 % quantum efficiency for the photosynthetic production of H2 from H2 O under visible illumination has been achieved recently, the oxidation of H2 O to O2 remains the bottleneck to the overall water-splitting reaction. Oxidation of CH4 to CH3 OH might be combined with water reduction instead, so that H2 and CH3 OH chemical fuels can be simultaneously produced through a one-step process under solar illumination. This combination would be a promising approach towards a more sustainable future of chemistry, in which developing different strategies for artificial photosynthesis is of paramount importance. By using free and adsorbed HO. radicals on the semiconductor surface, CH4 can be activated to H3 C. radicals and converted into CH3 OH, respectively, with great selectivity up to 100 %. The present lack of efficient photosynthetic systems for the formation of H2 and CH3 OH from abundant H2 O and CH4 motivates future research for basic science and industrial applications.
Collapse
Affiliation(s)
- Trung-Anh Le
- Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500, Turku, Finland
| | - Tan-Phat Huynh
- Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500, Turku, Finland
- Center of Functional Materials, Åbo Akademi University, 20500, Turku, Finland
| |
Collapse
|
44
|
Ahamed I, Ulman K, Seriani N, Gebauer R, Kashyap A. Magnetoelectric ϵ-Fe 2O 3: DFT study of a potential candidate for electrode material in photoelectrochemical cells. J Chem Phys 2018; 148:214707. [PMID: 29884044 DOI: 10.1063/1.5025779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The metastable iron oxide ϵ-Fe2O3 is rare but known for its magnetoelectric properties. While the more common alpha phase has been recognized for a long time as a suitable material for photoelectrochemical cells, its use is limited because of the electron-hole recombination problem when exposed to light. The indirect bandgap of the epsilon phase with its spontaneous polarization may offer a better potential for the application in photoelectrochemistry. Here, we report a detailed study of the electronic and structural features of the epsilon phase of iron oxide, its stability in thin films, and possible water dissociation reactions. Our studies are performed using density functional theory with a Hubbard-U correction. We observe that the stable ϵ-Fe2O3 surfaces favor the dissociation of water. The average difference in the energies of the states when water is adsorbed and when it is dissociated is roughly found to be -0.40 eV. Our results compare with the available experimental results where the epsilon phase is reported to be more efficient for the release of hydrogen from renewable oxygenates when exposed to sunlight.
Collapse
Affiliation(s)
- Imran Ahamed
- School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India
| | - Kanchan Ulman
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Nicola Seriani
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Arti Kashyap
- School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
45
|
Li D, Takeuchi R, Chandra D, Saito K, Yui T, Yagi M. Visible Light-Driven Water Oxidation on an In Situ N 2 -Intercalated WO 3 Nanorod Photoanode Synthesized by a Dual-Functional Structure-Directing Agent. CHEMSUSCHEM 2018; 11:1151-1156. [PMID: 29457373 DOI: 10.1002/cssc.201702439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/18/2018] [Indexed: 06/08/2023]
Abstract
With a view to developing a photoanode for visible light-driven water oxidation in solar water splitting cells, pure-monoclinic WO3 nanorod crystals with N2 intercalated into the lattice were synthesized by using hydrazine with a dual functional role-as an N atom source for the in situ N2 intercalation and as a structure-directing agent for the nanorod architecture-to gain higher incident photon-to-current conversion efficiency at 420 nm than with most previously reported WO3 electrodes.
Collapse
Affiliation(s)
- Dong Li
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Ryouchi Takeuchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Debraj Chandra
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Kenji Saito
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| |
Collapse
|
46
|
On the measured optical bandgap values of inorganic oxide semiconductors for solar fuels generation. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Holmes-Gentle I, Agarwal H, Alhersh F, Hellgardt K. Assessing the scalability of low conductivity substrates for photo-electrodes via modelling of resistive losses. Phys Chem Chem Phys 2018; 20:12422-12429. [DOI: 10.1039/c8cp01337c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to scale up photo-electrochemical water splitting, ohmic losses within the substrate must be assessed with a model which captures the behaviour of the photo-electrode.
Collapse
Affiliation(s)
| | - Harsh Agarwal
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Faye Alhersh
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Klaus Hellgardt
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| |
Collapse
|
48
|
Li F, Yu F, Du J, Wang Y, Zhu Y, Li X, Sun L. Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron-Coupled-Proton Buffer. Chem Asian J 2017; 12:2666-2669. [PMID: 28885769 DOI: 10.1002/asia.201701123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/31/2017] [Indexed: 11/08/2022]
Abstract
Water splitting mediated by electron-coupled-proton buffer (ECPB) provides an efficient way to avoid gas mixing by separating oxygen evolution from hydrogen evolution in space and time. Though electrochemical and photoelectrochemcial water oxidation have been incorporated in such a two-step water splitting system, alternative ways to reduce the cost and energy input for decoupling two half-reactions are desired. Herein, we show the feasibility of photocatalytic oxygen evolution in a powder system with BiVO4 as a photocatalyst and polyoxometalate H3 PMo12 O40 as an electron and proton acceptor. The resulting reaction mixture was allowed to be directly used for the subsequent hydrogen evolution with the reduced H3 PMo12 O40 as electron and proton donors. Our system exhibits excellent stability in repeated oxygen and hydrogen evolution, which brings considerable convenience to decoupled water splitting.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Fengshou Yu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Jian Du
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Yong Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.,Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
49
|
Pt-doped TiO 2 /WO 3 bi-layer catalysts on graphite substrates with enhanced photoelectrocatalytic activity for methanol oxidation under visible light. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Ahn SH, Zhao J, Kim JH, Zheng X. Effect of Interfacial Blocking Layer Morphology on the Solar Peroxydisulfate Production of WO 3 Nanoflakes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|