1
|
Dean JLS, Cramer CG, Fournier JA. Interplay between anion-receptor and anion-solvent interactions in halide receptor complexes characterized with ultrafast infrared spectroscopies. Phys Chem Chem Phys 2024; 26:21163-21172. [PMID: 39072495 DOI: 10.1039/d4cp02280g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The competition between host-guest binding and solvent interactions is a crucial factor in determining the binding affinities and selectivity of molecular receptor species. The interplay between these competing interactions, however, have been difficult to disentangle. In particular, the development of molecular-level descriptions of solute-solvent interactions remains a grand experimental challenge. Herein, we investigate the prototypical halide receptor meso-octamethylcalix[4]pyrrole (OMCP) complexed with either chloride or bromide anions in both dichloromethane (DCM) and chloroform (trichloromethane, TCM) solvent using ultrafast infrared transient absorption and 2D IR spectroscopies. OMCP·Br- complexes in both solvents display slower vibrational relaxation dynamics of the OMCP pyrrole NH stretches, consistent with weaker H-bonding interactions with OMCP compared to chloride and less efficient intermolecular relaxation to the solvent. Further, OMCP·Br- complexes show nearly static spectral diffusion dynamics compared to OMCP·Cl-, indicating larger structural fluctuations occur within chloride complexes. Importantly, distinct differences in the vibrational spectra and dynamics are observed between DCM and TCM solutions. The data are consistent with stronger and more perturbative solvent effects in TCM compared to DCM, despite DCM's larger dielectric constant and smaller reported OMCP·X- binding affinities. These differences are attributed to the presence of weak H-bond interactions between halides and TCM, in addition to competing interactions from the bulky tetrabutylammonium countercation. The data provide important experimental benchmarks for quantifying the role of solvent and countercation interactions in anion host-guest complexes.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Caroline G Cramer
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Saak CM, Backus EHG. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J Phys Chem Lett 2024; 15:4546-4559. [PMID: 38636165 PMCID: PMC11071071 DOI: 10.1021/acs.jpclett.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Surfaces, both water/air and solid/water, play an important role in mediating a multitude of processes central to atmospheric chemistry, particularly in the aerosol phase. However, the study of both static and dynamic properties of surfaces is highly challenging from an experimental standpoint, leading to a lack of molecular level information about the processes that take place at these systems and how they differ from bulk. One of the few techniques that has been able to capture ultrafast surface phenomena is time-resolved sum-frequency generation (SFG) spectroscopy. Since it is both surface-specific and chemically sensitive, the extension of this spectroscopic technique to the time domain makes it possible to study dynamic processes on the femtosecond time scale. In this Perspective, we will explore recent advances made in the field both in terms of studying energy dissipation as well as chemical reactions and the role the surface geometry plays in these processes.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| | - Ellen H. G. Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| |
Collapse
|
3
|
Jamal S, Naz Z, Moin ST, Hofer TS. Deciphering Structural and Dynamical Properties of Hydrated Cobalt Porphyrins via Ab Initio Quantum Mechanical Charge Field Molecular Dynamics Simulation. J Phys Chem B 2023. [PMID: 37220311 DOI: 10.1021/acs.jpcb.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The present study successfully implemented the ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism for the investigation of structural and dynamical properties of hydrated cobalt-porphyrin complexes. Considering the significance of cobalt ions in biological systems (for instance, vitamin B12), which reportedly incorporate cobalt ions in a d6, low spin, +3 state chelated in the corrin ring, an analog of porphyrin, the current study is focused on cobalt in the oxidation states +2 and +3 bound to the parent porphyrin lead structures embedded in an aqueous solution. These cobalt-porphyrin complexes were investigated in terms of their structural and dynamical properties at the quantum chemical level. The structural attributes of these hydrated complexes revealed the contrasting features of the water binding to these solutes, including a detailed evaluation of the associated dynamics. The study also yielded notable findings in regard to the respective electronic configurations vs coordination, which suggested that Co(II)-POR possesses a 5-fold square pyramidal coordination geometry in an aqueous solution containing the metal ion coordinating to four nitrogen atoms of the porphyrin ring and one axial water as the fifth ligand. On the other hand, high-spin Co(III)-POR was hypothesized to be more stable due to the smaller size-to-charge ratio of the cobalt ion, but the high-spin complex demonstrated unstable structural and dynamical behavior. However, the corresponding properties of the hydrated Co(III)LS-POR revealed a stable structure in an aqueous solution, thus suggesting the Co(III) ion to be in a low-spin state when bound to the porphyrin ring. Moreover, the structural and dynamical data were augmented by computing the free energy of water binding to the cobalt ions and the solvent-accessible surface area, which provide further information on thermochemical properties of the metal-water interaction and the hydrogen bonding potential of the porphyrin ring in these hydrated systems.
Collapse
Affiliation(s)
- Sehrish Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Zobia Naz
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Thomas S Hofer
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Ahmed M, Nihonyanagi S, Tahara T. Ultrafast vibrational dynamics of the free OD at the air/water interface: Negligible isotopic dilution effect but large isotope substitution effect. J Chem Phys 2022; 156:224701. [PMID: 35705420 DOI: 10.1063/5.0085320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrational relaxation dynamics of the OH stretch of water at the air/water interface has been a subject of intensive research, facilitated by recent developments in ultrafast interface-selective nonlinear spectroscopy. However, a reliable determination of the vibrational relaxation dynamics in the OD stretch region at the air/D2O interface has not been yet achieved. Here, we report a study of the vibrational relaxation of the free OD carried out by time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. The results obtained with the aid of singular value decomposition analysis indicate that the vibrational relaxation (T1) time of the free OD at the air/D2O interface and air/isotopically diluted water (HOD-H2O) interfaces show no detectable isotopic dilution effect within the experimental error, as in the case of the free OH in the OH stretch region. Thus, it is concluded that the relaxation of the excited free OH/OD predominantly proceeds with their reorientation, negating a major contribution of the intramolecular energy transfer. It is also shown that the T1 time of the free OD is substantially longer than that of the free OH, further supporting the reorientation relaxation mechanism. The large difference in the T1 time between the free OD and the free OH (factor of ∼2) may indicate the nuclear quantum effect on the diffusive reorientation of the free OD/OH because this difference is significantly larger than the value expected for a classical rotational motion.
Collapse
Affiliation(s)
- Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Dean JLS, Fournier JA. Vibrational Dynamics of the Intramolecular H-Bond in Acetylacetone Investigated with Transient and 2D IR Spectroscopy. J Phys Chem B 2022; 126:3551-3562. [PMID: 35536173 DOI: 10.1021/acs.jpcb.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetylacetone (AcAc) has proven to be a fruitful but highly challenging model system for the experimental and computational interrogation of strong intramolecular hydrogen bonds. Key questions remain, however, regarding the identity of the minimum-energy structure of AcAc and the dynamics of intramolecular proton transfer. Here, we investigate the OH/OD stretch and bend regions of the enol tautomer of AcAc and its deuterated isotopologue with transient absorption and 2D IR spectroscopy. The OH bend region reveals a single dominant diagonal transition near 1625 cm-1 with intense cross peaks to lower-frequency modes, demonstrating highly mixed fingerprint transitions that contain OH bend character. The anharmonic coupling of the OH bend results in a highly elongated OH bend excited-state absorption transition that indicates a large manifold of OH bend overtone/combination bands in the OH stretch region that leads to strong bend-stretch Fermi resonance interactions. The OH and OD stretch regions consist of broad ground-state bleach signals, but there is no clear evidence of ω21 excited-state absorptions due to rapid population relaxation arising from strong intramolecular coupling to bending, fingerprint, and low-frequency H-bond modes. Orientational relaxation dynamics persist for timescales longer than the vibrational lifetimes, with polarization anisotropy components decaying within approximately 2 and 10 periods of the O-O oscillation for the OH and OD stretch, respectively. The significant isotopic dependence of the orientational dynamics is discussed in the context of intramolecular mode coupling, diffusional processes, and contributions from proton/deuteron transfer dynamics.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, United States 63130
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, United States 63130
| |
Collapse
|
6
|
Rodrigues AC, de M. Camargo LT, Francisco Lopes Y, Sallum LO, Napolitano HB, Camargo AJ. Aqueous solvation study of melatonin using ab initio molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Robben KC, Cheatum CM. Least-Squares Fitting of Multidimensional Spectra to Kubo Line-Shape Models. J Phys Chem B 2021; 125:12876-12891. [PMID: 34783568 PMCID: PMC8630800 DOI: 10.1021/acs.jpcb.1c08764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report a comprehensive
study of the efficacy of least-squares
fitting of multidimensional spectra to generalized Kubo line-shape
models and introduce a novel least-squares fitting metric, termed
the scale invariant gradient norm (SIGN), that enables a highly reliable
and versatile algorithm. The precision of dephasing parameters is
between 8× and 50× better for nonlinear model fitting compared
to that for the centerline-slope (CLS) method, which effectively increases
data acquisition efficiency by 1–2 orders of magnitude. Whereas
the CLS method requires sequential fitting of both the nonlinear and
linear spectra, our model fitting algorithm only requires nonlinear
spectra but accurately predicts the linear spectrum. We show an experimental
example in which the CLS time constants differ by 60% for independent
measurements of the same system, while the Kubo time constants differ
by only 10% for model fitting. This suggests that model fitting is
a far more robust method of measuring spectral diffusion than the
CLS method, which is more susceptible to structured residual signals
that are not removable by pure solvent subtraction. Statistical analysis
of the CLS method reveals a fundamental oversight in accounting for
the propagation of uncertainty by Kubo time constants in the process
of fitting to the linear absorption spectrum. A standalone desktop
app and source code for the least-squares fitting algorithm are freely
available, with example line-shape models and data. We have written
the MATLAB source code in a generic framework where users may supply
custom line-shape models. Using this application, a standard desktop
fits a 12-parameter generalized Kubo model to a 106 data-point
spectrum in a few minutes.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
8
|
Ishiyama T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J Chem Phys 2021; 154:204502. [PMID: 34241149 DOI: 10.1063/5.0050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational energy relaxation paths of hydrogen-bonded (H-bonded) OH excited in pure water and in isotopically diluted (deuterated) water are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The present study extends the previous NE-AIMD simulation for the energy relaxation of an excited free OH vibration at an air/water interface [T. Ishiyama, J. Chem. Phys. 154, 104708 (2021)] to the energy relaxation of an excited H-bonded OH vibration in bulk water. The present simulation shows that the excited OH vibration in pure water dissipates its energy on a timescale of 0.1 ps, whereas that in deuterated water relaxes on a timescale of 0.7 ps, consistent with the experimental observations. To decompose these relaxation energies into the components due to intramolecular and intermolecular couplings, constraints are introduced on the vibrational modes except for the target path in the NE-AIMD simulation. In the case of pure water, 80% of the total relaxation is attributed to the pathway due to the resonant intermolecular OH⋯OH stretch coupling, and the remaining 17% and 3% are attributed to intramolecular couplings with the bend overtone and with the conjugate OH stretch, respectively. This result strongly supports a significant role for the Förster transfer mechanism of pure water due to the intermolecular dipole-dipole interactions. In the case of deuterated water, on the other hand, 36% of the total relaxation is due to the intermolecular stretch coupling, and all the remaining 64% arises from coupling with the intramolecular bend overtone.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
9
|
Sofronov O, Bakker HJ. Slow Proton Transfer in Nanoconfined Water. ACS CENTRAL SCIENCE 2020; 6:1150-1158. [PMID: 32724849 PMCID: PMC7379388 DOI: 10.1021/acscentsci.0c00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The transport of protons in nanoconfined environments, such as in nanochannels of biological or artificial proton conductive membranes, is essential to chemistry, biology, and nanotechnology. In water, proton diffusion occurs by hopping of protons between water molecules. This process involves the rearrangement of many hydrogen bonds and as such can be strongly affected by nanoconfinement. We study the vibrational and structural dynamics of hydrated protons in water nanodroplets stabilized by a cationic surfactant using polarization-resolved femtosecond infrared transient absorption spectroscopy. We determine the time scale of proton hopping in the center of the water nanodroplets from the dynamics of the anisotropy of the transient absorption signals. We find that in small nanodroplets with a diameter <4 nm, proton hopping is more than 10 times slower than in bulk water. Even in relatively large nanodroplets with a diameter of ∼7 nm, we find that the rate of proton hopping is slowed by ∼4 times compared with bulk water.
Collapse
|
10
|
Sudera P, Cyran JD, Deiseroth M, Backus EHG, Bonn M. Interfacial Vibrational Dynamics of Ice I h and Liquid Water. J Am Chem Soc 2020; 142:12005-12009. [PMID: 32573242 PMCID: PMC7467663 DOI: 10.1021/jacs.0c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Insights
into energy flow dynamics at ice surfaces are essential
for understanding chemical dynamics relevant to atmospheric and geographical
sciences. Here, employing ultrafast surface-specific spectroscopy,
we report the interfacial vibrational dynamics of ice Ih. A comparison to liquid water surfaces reveals accelerated vibrational
energy relaxation and dissipation at the ice surface for hydrogen-bonded
OH groups. In contrast, free-OH groups sticking into the vapor phase
exhibit substantially slower vibrational dynamics on ice. The acceleration
and deceleration of vibrational dynamics of these different OH groups
at the ice surface are attributed to enhanced intermolecular coupling
and reduced rotational mobility, respectively. Our results highlight
the unique properties of free-OH groups on ice, putatively linked
to the high catalytic activities of ice surfaces.
Collapse
Affiliation(s)
- Prerna Sudera
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jenée D Cyran
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Baylor University, Waco, Texas 76798, United States
| | - Malte Deiseroth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Vienna, 1090 Vienna, Austria
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
11
|
Camargo LTFDM, Signini R, Rodrigues ACC, Lopes YF, Camargo AJ. Ab Initio Molecular Dynamics Simulations of Aqueous Glucosamine Solutions: Solvation Structure and Mechanism of Proton Transfer from Water to Amino Group. J Phys Chem B 2020; 124:6986-6997. [DOI: 10.1021/acs.jpcb.0c03821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lilian T. F. de M. Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Anápolis 75131-457, GO, Brazil
| | - Roberta Signini
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Allane C. C. Rodrigues
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Yago Francisco Lopes
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| | - Ademir J. Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis 75132-903, GO, Brazil
| |
Collapse
|
12
|
Ahmed M, Inoue K, Nihonyanagi S, Tahara T. Hidden Isolated OH at the Charged Hydrophobic Interface Revealed by Two‐Dimensional Heterodyne‐Detected VSFG Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammed Ahmed
- Molecular Spectroscopy LaboratoryRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research TeamRIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Ken‐ichi Inoue
- Molecular Spectroscopy LaboratoryRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Present address: Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy LaboratoryRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research TeamRIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tahei Tahara
- Molecular Spectroscopy LaboratoryRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Ultrafast Spectroscopy Research TeamRIKEN Center for Advanced Photonics (RAP), RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
13
|
Ahmed M, Inoue KI, Nihonyanagi S, Tahara T. Hidden Isolated OH at the Charged Hydrophobic Interface Revealed by Two-Dimensional Heterodyne-Detected VSFG Spectroscopy. Angew Chem Int Ed Engl 2020; 59:9498-9505. [PMID: 32189396 DOI: 10.1002/anie.202002368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 02/04/2023]
Abstract
Water around hydrophobic groups mediates hydrophobic interactions that play key roles in many chemical and biological processes. Thus, the molecular-level elucidation of the properties of water in the vicinity of hydrophobic groups is important. We report on the structure and dynamics of water at two oppositely charged hydrophobic ion/water interfaces, that is, the tetraphenylborate-ion (TPB- )/water and tetraphenylarsonium-ion (TPA+ )/water interfaces, which are clarified by two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy. The obtained 2D HD-VSFG spectra of the anionic TPB- interface reveal the existence of distinct π-hydrogen bonded OH groups in addition to the usual hydrogen-bonded OH groups, which are hidden in the steady-state spectrum. In contrast, 2D HD-VSFG spectra of the cationic TPA+ interface only show the presence of usual hydrogen-bonded OH groups. The present study demonstrates that the sign of the interfacial charge governs the structure and dynamics of water molecules that face the hydrophobic region.
Collapse
Affiliation(s)
- Mohammed Ahmed
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken-Ichi Inoue
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Present address: Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
14
|
Naz Z, Moin ST, Hofer TS. Hydration of Closely Related Manganese and Magnesium Porphyrins in Aqueous Solutions: Ab Initio Quantum Mechanical Charge Field Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:10769-10779. [PMID: 31738566 DOI: 10.1021/acs.jpcb.9b07639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To the best of our knowledge, the current study based on ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) is the first to explore the difference in the hydration behavior between Mn(II)- and Mg(II)-associated porphyrins (Mn(II)-POR and Mg(II)-POR) in aqueous solution. The simulation study highlights similar and dissimilar characteristics of the structural, dynamical, and thermodynamical properties of these closely related metals bound to porphyrins in aqueous solution. The structural analysis is based on radial and angular distribution functions, coordination number distributions, and angular-radial distributions. Both hydrated systems demonstrate similar pentacoordinated structures formed via the axial coordination of one water molecule to the metal ion in addition to the four nitrogen atoms of the porphyrin ring. However, in the case of Mn(II)-POR, the formation of a distorted square pyramidal geometry was observed. It was envisaged as a weak coordination of the water molecule to the Mn(II) atom and thus higher atomic fluctuation for all atoms in contrast to that for the hydrated Mg(II)-POR. The dynamical data in terms of the mean residence times, velocity autocorrelation function, free energy, and other parameters revealed the difference in the metal binding effect because the Mn(II) atom was observed to inhibit H-bond formation more than the presence of Mg(II) atoms in the core of the porphyrin. The current study thus highlights the significant differences in the structural and dynamical properties of Mn(II)- and Mg(II)-associated porphyrin systems.
Collapse
Affiliation(s)
- Zobia Naz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi 75270 , Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi 75270 , Pakistan
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
15
|
Dettori R, Ceriotti M, Hunger J, Colombo L, Donadio D. Energy Relaxation and Thermal Diffusion in Infrared Pump-Probe Spectroscopy of Hydrogen-Bonded Liquids. J Phys Chem Lett 2019; 10:3447-3452. [PMID: 31180225 DOI: 10.1021/acs.jpclett.9b01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infrared pump-probe spectroscopy provides detailed information about the dynamics of hydrogen-bonded liquids. Due to dissipation of the absorbed pump pulse energy, thermal equilibration dynamics also contributes to the observed signal. Disentangling this contribution from the molecular response remains a challenge. By performing non-equilibrium molecular dynamics simulations of liquid-deuterated methanol, we show that faster molecular vibrational relaxation and slower heat diffusion are decoupled and occur on different length scales. Transient structures of the hydrogen bonding network influence thermal relaxation by affecting thermal diffusivity over a length scale of several nanometers.
Collapse
Affiliation(s)
- Riccardo Dettori
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, IMX , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Johannes Hunger
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Luciano Colombo
- Dipartimento di Fisica , Università di Cagliari , Cittadella Universitaria , I-09042 Monserrato , CA , Italy
| | - Davide Donadio
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
16
|
Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules. Nat Commun 2019; 10:1010. [PMID: 30824834 PMCID: PMC6397197 DOI: 10.1038/s41467-019-08899-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
The influence of hydration water on the vibrational energy relaxation in a protein holds the key to understand ultrafast protein dynamics, but its detection is a major challenge. Here, we report measurements on the ultrafast vibrational dynamics of amide I vibrations of proteins at the lipid membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy. We find that the relaxation time of the amide I mode shows a very strong dependence on the H2O exposure, but not on the D2O exposure. This observation indicates that the exposure of amide I bond to H2O opens up a resonant relaxation channel and facilitates direct resonant vibrational energy transfer from the amide I mode to the H2O bending mode. The protein backbone motions can thus be energetically coupled with protein-bound water molecules. Our findings highlight the influence of H2O on the ultrafast structure dynamics of proteins.
Collapse
|
17
|
Sofronov OO, Bakker HJ. Energy Relaxation and Structural Dynamics of Protons in Water/DMSO Mixtures. J Phys Chem B 2018; 122:10005-10013. [PMID: 30351147 PMCID: PMC6216113 DOI: 10.1021/acs.jpcb.8b06938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
We
investigate the structure and dynamics of proton solvation structures
in mixed water/dimethyl sulfoxide (DMSO) solvents using two-color
mid-infrared femtosecond pump–probe spectroscopy. At a water
fraction below 20%, protons are mainly solvated as (DMSO-H)+ and (DMSO-H)+-H2O structures. We find that
excitation of the OH-stretch vibration of the proton in (DMSO-H)+-H2O structures leads to an ultrafast contraction
of the hydrogen bond between (DMSO-H)+ and H2O. This excited state relaxes rapidly with T1 = 95 ± 10 fs and leads in part to a strong local heating
effect and in part to predissociation of the protonated cluster into
(DMSO-H)+ and water monomers.
Collapse
Affiliation(s)
| | - Huib J Bakker
- AMOLF , Science Park 104 , 1098 XG Amsterdam , The Netherlands
| |
Collapse
|
18
|
Neto APV, Machado DFS, Lopes TO, Camargo AJ, de Oliveira HCB. Explicit Aqueous Solvation Treatment of Epinephrine from Car–Parrinello Molecular Dynamics: Effect of Hydrogen Bonding on the Electronic Absorption Spectrum. J Phys Chem B 2018; 122:8439-8450. [DOI: 10.1021/acs.jpcb.8b06110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arsênio P. V. Neto
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade Federal de Goiás, 70904-970 Brasília, DF, Brazil
| | - Daniel F. Scalabrini Machado
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade Federal de Goiás, 70904-970 Brasília, DF, Brazil
| | - Thiago O. Lopes
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade Federal de Goiás, 70904-970 Brasília, DF, Brazil
| | - Ademir J. Camargo
- Grupo de Química Teórica de Anápolis (GQTEA), Universidade Estadual de Goiás, 75132-903 Anápolis, Goiás, Brazil
| | - Heibbe C. B. de Oliveira
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade Federal de Goiás, 70904-970 Brasília, DF, Brazil
- Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Química, Universidade de Brasília, 74690-900 Goiânia, Goiás, Brazil
| |
Collapse
|
19
|
Ahmed S, Pasti A, Fernández-Terán RJ, Ciardi G, Shalit A, Hamm P. Aqueous solvation from the water perspective. J Chem Phys 2018; 148:234505. [PMID: 29935500 DOI: 10.1063/1.5034225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The response of water re-solvating a charge-transfer dye (deprotonated Coumarin 343) after photoexcitation has been measured by means of transient THz spectroscopy. Two steps of increasing THz absorption are observed, a first ∼10 ps step on the time scale of Debye relaxation of bulk water and a much slower step on a 3.9 ns time scale, the latter of which reflecting heating of the bulk solution upon electronic relaxation of the dye molecules from the S1 back into the S0 state. As an additional reference experiment, the hydroxyl vibration of water has been excited directly by a short IR pulse, establishing that the THz signal measures an elevated temperature within ∼1 ps. This result shows that the first step upon dye excitation (10 ps) is not limited by the response time of the THz signal; it rather reflects the reorientation of water molecules in the solvation layer. The apparent discrepancy between the relatively slow reorientation time and the general notion that water is among the fastest solvents with a solvation time in the sub-picosecond regime is discussed. Furthermore, non-equilibrium molecular dynamics simulations have been performed, revealing a close-to-quantitative agreement with experiment, which allows one to disentangle the contribution of heating to the overall THz response from that of water orientation.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Pasti
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Gustavo Ciardi
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrey Shalit
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kananenka AA, Skinner JL. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. J Chem Phys 2018; 148:244107. [DOI: 10.1063/1.5037113] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexei A. Kananenka
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
21
|
Murakami H. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage. J Chem Phys 2018; 148:144505. [PMID: 29655335 DOI: 10.1063/1.5008448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (∼1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.
Collapse
Affiliation(s)
- Hiroshi Murakami
- QST Advanced Study Laboratory and Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa City, Kyoto 619-0215, Japan
| |
Collapse
|
22
|
Carpenter WB, Fournier JA, Biswas R, Voth GA, Tokmakoff A. Delocalization and stretch-bend mixing of the HOH bend in liquid water. J Chem Phys 2018; 147:084503. [PMID: 28863511 DOI: 10.1063/1.4987153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid water's rich sub-picosecond vibrational dynamics arise from the interplay of different high- and low-frequency modes evolving in a strong yet fluctuating hydrogen bond network. Recent studies of the OH stretching excitations of H2O indicate that they are delocalized over several molecules, raising questions about whether the bending vibrations are similarly delocalized. In this paper, we take advantage of an improved 50 fs time-resolution and broadband infrared (IR) spectroscopy to interrogate the 2D IR lineshape and spectral dynamics of the HOH bending vibration of liquid H2O. Indications of strong bend-stretch coupling are observed in early time 2D IR spectra through a broad excited state absorption that extends from 1500 cm-1 to beyond 1900 cm-1, which corresponds to transitions from the bend to the bend overtone and OH stretching band between 3150 and 3550 cm-1. Pump-probe measurements reveal a fast 180 fs vibrational relaxation time, which results in a hot-ground state spectrum that is the same as observed for water IR excitation at any other frequency. The fastest dynamical time scale is 80 fs for the polarization anisotropy decay, providing evidence for the delocalized or excitonic character of the bend. Normal mode analysis conducted on water clusters extracted from molecular dynamics simulations corroborate significant stretch-bend mixing and indicate delocalization of δHOH on 2-7 water molecules.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rajib Biswas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Cyran JD, Backus EHG, Nagata Y, Bonn M. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity. J Phys Chem B 2018; 122:3667-3679. [PMID: 29490138 PMCID: PMC5900549 DOI: 10.1021/acs.jpcb.7b10574] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The structural heterogeneity of water
at various interfaces can be revealed by time-resolved sum-frequency
generation spectroscopy. The vibrational dynamics of the O–H
stretch vibration of interfacial water can reflect structural variations.
Specifically, the vibrational lifetime is typically found to increase
with increasing frequency of the O–H stretch vibration, which
can report on the hydrogen-bonding heterogeneity of water. We compare
and contrast vibrational dynamics of water in contact with various
surfaces, including vapor, biomolecules, and solid interfaces. The
results reveal that variations in the vibrational lifetime with vibrational
frequency are very typical, and can frequently be accounted for by
the bulk-like heterogeneous response of interfacial water. Specific
interfaces exist, however, for which the behavior is less straightforward.
These insights into the heterogeneity of interfacial water thus obtained
contribute to a better understanding of complex phenomena taking place
at aqueous interfaces, such as photocatalytic reactions and protein
folding.
Collapse
Affiliation(s)
- Jenée D Cyran
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
24
|
Moin ST, Hofer TS. Hydration of iron-porphyrins: ab initio quantum mechanical charge field molecular dynamics simulation study. Phys Chem Chem Phys 2017; 19:30822-30833. [PMID: 29135005 DOI: 10.1039/c7cp04436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulation approach was successfully applied to Fe2+-P and Fe3+-P in water to evaluate their structural, dynamical and energetic properties. Based on the structural data, it was found that Fe2+-P accommodates one water molecule in the first coordination sphere of the Fe2+ ion including the four nitrogen atoms of the porphyrin system coordinating with central metal species. On the other hand, two water molecules were coordinated to Fe3+-P, thus forming a hexa-coordinated species. Comparison of dynamical properties such as the vibrational power spectrum and ligand mean residence times to other metal-free porphyrin systems demonstrate the ions' influence on the hydration structure, enabling a characterisation of the strong interaction of the ions which greatly reduces the hydrogen bonding potential of the complex. The association of water molecules with the metal ions in both solutes was quantified by computing the free energy of binding obtained via the potential of mean force. This further confirmed the strong association of water to the metal ions which was conversely weak as inferred from the energetic data for the Fe2+-P system.
Collapse
Affiliation(s)
- Syed Tarique Moin
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi, Karachi-75270, Pakistan.
| | | |
Collapse
|
25
|
Moin ST, Hofer TS. Zinc- and copper-porphyrins in aqueous solution - two similar complexes with strongly contrasting hydration. MOLECULAR BIOSYSTEMS 2017; 12:2288-2295. [PMID: 27194391 DOI: 10.1039/c6mb00133e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present detailed analysis of the hydration behavior of zinc and copper bound porphyrins treated via ab initio quantum mechanical charge field molecular dynamics which agrees well with available experimental data. The computed metal-water coordination in the case of zinc bound porphyrin demonstrates a strong association of water with zinc compared to the copper-water interaction which correlates well with the calculated free energy of binding. The H-bond dynamics in these hydrated systems yield weaker H-bond interactions as compared to that observed in the case of metal-free porphyrin; nevertheless, the effect of metal association with porphyrin resulted in shifts in the vibrational frequencies. These characteristic data suggest a contrasting behavior between these metalloporphyrins in solution which could also serve to correlate with the properties of biological systems.
Collapse
Affiliation(s)
- Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Nihonyanagi S, Yamaguchi S, Tahara T. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chem Rev 2017; 117:10665-10693. [DOI: 10.1021/acs.chemrev.6b00728] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Shoichi Yamaguchi
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | | |
Collapse
|
27
|
Dettori R, Ceriotti M, Hunger J, Melis C, Colombo L, Donadio D. Simulating Energy Relaxation in Pump–Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids. J Chem Theory Comput 2017; 13:1284-1292. [DOI: 10.1021/acs.jctc.6b01108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Dettori
- Dipartimento
di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Michele Ceriotti
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Claudio Melis
- Dipartimento
di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Luciano Colombo
- Dipartimento
di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Davide Donadio
- Department
of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
28
|
De Marco L, Fournier JA, Thämer M, Carpenter W, Tokmakoff A. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy. J Chem Phys 2016; 145:094501. [DOI: 10.1063/1.4961752] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Joseph A. Fournier
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - William Carpenter
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
29
|
van der Post ST, Woutersen S, Bakker HJ. Quantum Interference in the Vibrational Relaxation of the O-H Stretch Overtone of Liquid H2O. J Phys Chem A 2016; 120:3441-9. [PMID: 27070075 DOI: 10.1021/acs.jpca.5b11735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using femtosecond two-color infrared pump-probe spectroscopy, we study the vibrational relaxation of the O-H stretch vibrations of liquid H2O after excitation of the overtone transition. The overtone transition has its maximum at 6900 cm(-1) (1.45 μm), which is a relatively high frequency in view of the central frequency of 3400 cm(-1) of the fundamental transition. The excitation of the overtone leads to a transient induced absorption of two-exciton states of the O-H stretch vibrations. When the overtone excitation frequency is tuned from 6600 to 7200 cm(-1), the vibrational relaxation time constant of the two-exciton states increases from 400 ± 50 fs to 540 ± 40 fs. These values define a limited range of relatively long relaxation time constants compared to the range of relaxation time constants of 250-550 fs that we recently observed for the one-exciton O-H stretch vibrational state of liquid H2O ( S. T. van der Post et al., Nature Comm. 2015 , 6 , 8384 ). We explain the high central frequency and the limited range of relatively long relaxation time constants of the overtone transition from the destructive quantum interference of the mechanical and electrical anharmonic contributions to the overtone transition probability. As a result of this destructive interference, the overtone transition of liquid H2O is dominated by molecules of which the O-H groups donate relatively weak hydrogen bonds to other H2O molecules.
Collapse
Affiliation(s)
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam, The Netherlands
| | - Huib J Bakker
- FOM Institute AMOLF , Science Park 104, Amsterdam, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Ma K, Zhao L. The Opposite Effect of Metal Ions on Short-/Long-Range Water Structure: A Multiple Characterization Study. Int J Mol Sci 2016; 17:ijms17050602. [PMID: 27120598 PMCID: PMC4881438 DOI: 10.3390/ijms17050602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
Inorganic electrolyte solutions are very important in our society as they dominate many biochemical and geochemical processes. Herein, an in-depth study was performed to illustrate the ion-induced effect on water structure by coupling NMR, viscometer, Raman and Molecular Dynamic (MD) simulations. The NMR coefficient (BNMR) and diffusion coefficient (D) from NMR, and viscosity coefficient (Bvis) from a viscometer all proved that dissolved metal ions are capable of enhancing the association degree of adjacent water molecules, and the impact on water structure decreased in the order of Cr3+ > Fe3+ > Cu2+ > Zn2+. This regularity was further evidenced by Raman analysis; however, the deconvoluted Raman spectrum indicated the decrease in high association water with salt concentration and the increase in low association water before 200 mmol·L−1. By virtue of MD simulations, the opposite changing manner proved to be the result of the opposite effect on short-/long-range water structure induced by metal ions. Our results may help to explain specific protein denaturation induced by metal ions.
Collapse
Affiliation(s)
- Kai Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
31
|
Perakis F, De Marco L, Shalit A, Tang F, Kann ZR, Kühne TD, Torre R, Bonn M, Nagata Y. Vibrational Spectroscopy and Dynamics of Water. Chem Rev 2016; 116:7590-607. [DOI: 10.1021/acs.chemrev.5b00640] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fivos Perakis
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrey Shalit
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fujie Tang
- International Center for Quantum Materials, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Zachary R. Kann
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,
| | - Thomas D. Kühne
- Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Renato Torre
- European Lab for Nonlinear Spectroscopy and Dipartimento di Fisica e Astronomia, Università di Firenze, Via Nello Carrara 1, Sesto Fiorentino (Firenze) I-50019, Italy
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
32
|
Mandal A, Tokmakoff A. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy. J Chem Phys 2016; 143:194501. [PMID: 26590536 DOI: 10.1063/1.4935174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O-H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm(-1). We observe rapid vibrational relaxation processes on 150-250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1-2 ps time scales. Furthermore, the O-H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.
Collapse
Affiliation(s)
- Aritra Mandal
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
33
|
Thämer M, De Marco L, Ramasesha K, Mandal A, Tokmakoff A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 2015; 350:78-82. [DOI: 10.1126/science.aab3908] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite decades of study, the structures adopted to accommodate an excess proton in water and the mechanism by which they interconvert remain elusive. We used ultrafast two-dimensional infrared (2D IR) spectroscopy to investigate protons in aqueous hydrochloric acid solutions. By exciting O–H stretching vibrations and detecting the spectral response throughout the mid-IR region, we observed the interaction between the stretching and bending vibrations characteristic of the flanking waters of the Zundel complex, [H(H2O)2]+, at 3200 and 1760 cm−1, respectively. From time-dependent shifts of the stretch-bend cross peak, we determined a lower limit on the lifetime of this complex of 480 femtoseconds. These results suggest a key role for the Zundel complex in aqueous proton transfer.
Collapse
|
34
|
van der Post ST, Hsieh CS, Okuno M, Nagata Y, Bakker HJ, Bonn M, Hunger J. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat Commun 2015; 6:8384. [PMID: 26382651 PMCID: PMC4595750 DOI: 10.1038/ncomms9384] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm(-1). For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface.
Collapse
Affiliation(s)
| | - Cho-Shuen Hsieh
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Masanari Okuno
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Huib J Bakker
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Mischa Bonn
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
35
|
Tros M, Woutersen S. Polarization-modulation setup for ultrafast infrared anisotropy experiments to study liquid dynamics. OPTICS LETTERS 2015; 40:2607-2609. [PMID: 26030569 DOI: 10.1364/ol.40.002607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An infrared pump-probe setup using rapid polarization modulation has been developed to perform time-resolved vibrational anisotropy measurements. A photo-elastic modulator is used as a rapidly switchable half-wave plate, enabling the measurement of transient absorptions for parallel and perpendicular polarizations of the pump and probe pulses on a shot-to-shot basis. In this way, infrared intensity fluctuations are nearly completely canceled, significantly enhancing the accuracy of the transient-anisotropy measurement. The method is tested on the OD-stretch vibration of HDO in H2O, for which the signal-to-noise ratio is found to be 4 times better than with conventional methods.
Collapse
|
36
|
Vchirawongkwin S, Kritayakornupong C, Tongraar A, Vchirawongkwin V. Hydration properties determining the reactivity of nitrite in aqueous solution. Dalton Trans 2015; 43:12164-74. [PMID: 24840033 DOI: 10.1039/c4dt00273c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The knowledge of the hydration properties of the nitrite ion is key to understanding its reaction mechanism controlled by solvent effects. Here, ab initio quantum mechanical charge field molecular dynamics was performed to obtain the structural and dynamical properties of the hydration shell in an aqueous solution of nitrite ions, elucidated by data analysis using a molecular approach and an extended quantitative analysis of all superimposed trajectories with three-dimensional alignment (density map). The pattern of the power spectra corresponded to the experimental data, indicating the suitability of the Hartree-Fock method coupled with double-ζ plus polarization and diffuse functional basis sets to study this system. The density maps revealed the structure of the hydration shell, that presented a higher density in the N-O bond direction than in the axis vertical to the molecular plane, whereas the atomic and molecular radial distribution functions provided vague information. The number of actual contacts indicated 4.6 water molecules interacting with a nitrite ion, and 1.5 extra water molecules located in the molecular hydration shell, forming a H-bonding network with the bulk water. The mean residence times for the water ligands designated the strength of the hydration spheres for the oxygen sites, whilst the results for the nitrogen sites over-estimated the number of water molecules from other sites and indicated a weak structure. These results show the influence of the water molecules surrounding the nitrite ion creating an anisotropic hydration shell, suggesting that the reactive sites are situated above and below the molecular plane with a lower water density.
Collapse
Affiliation(s)
- Saowapak Vchirawongkwin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Patumthani 12000, Thailand
| | | | | | | |
Collapse
|
37
|
Zhao L, Ma K, Yang Z. Changes of water hydrogen bond network with different externalities. Int J Mol Sci 2015; 16:8454-89. [PMID: 25884333 PMCID: PMC4425091 DOI: 10.3390/ijms16048454] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
It is crucial to uncover the mystery of water cluster and structural motif to have an insight into the abundant anomalies bound to water. In this context, the analysis of influence factors is an alternative way to shed light on the nature of water clusters. Water structure has been tentatively explained within different frameworks of structural models. Based on comprehensive analysis and summary of the studies on the response of water to four externalities (i.e., temperature, pressure, solutes and external fields), the changing trends of water structure and a deduced intrinsic structural motif are put forward in this work. The variations in physicochemical and biological effects of water induced by each externality are also discussed to emphasize the role of water in our daily life. On this basis, the underlying problems that need to be further studied are formulated by pointing out the limitations attached to current study techniques and to outline prominent studies that have come up recently.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
- School of Chemical Engineering and Technology, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
| | - Kai Ma
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
| | - Zi Yang
- School of Chemical Engineering and Technology, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
38
|
Mazur K, Bonn M, Hunger J. Hydrogen bond dynamics in primary alcohols: a femtosecond infrared study. J Phys Chem B 2015; 119:1558-66. [PMID: 25531023 DOI: 10.1021/jp509816q] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen-bonded liquids are excellent solvents, in part due to the highly dynamic character of the directional interaction associated with the hydrogen bond. Here we study the vibrational and reorientational dynamics of deuterated hydroxyl groups in various primary alcohols using polarization-resolved femtosecond infrared spectroscopy. We show that the relaxation of the OD stretch vibration is similar for ethanol and its higher homologues (∼0.9 ps), while it is appreciably faster for methanol (∼0.75 ps). The fast relaxation for methanol is attributed to strong coupling of the OD stretch vibration to the overtone of the CH3 rocking mode. Subsequent to excited state relaxation, the dissipation of the excess energy leads to structural relaxation of the alcohol liquid structure. We show that this relaxation of the H-bonded network depends on the alkyl chain length. We find that the anisotropy of the excitation decays by both thermal diffusion from excited OD groups to nonexcited molecules and reorientational motion. The reorientation is described well by a model employing two relaxation times that increase linearly with increasing alcohol size. The short reorientation time is assigned to the partial reorientation of molecules within the alcohol cluster, while the long reorientation times can be attributed to breaking and reforming of hydrogen bonds.
Collapse
Affiliation(s)
- Kamila Mazur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | |
Collapse
|
39
|
Zheng ZP, Fan WH, Roy S, Mazur K, Nazet A, Buchner R, Bonn M, Hunger J. Ionic Liquids: Not only Structurally but also Dynamically Heterogeneous. Angew Chem Int Ed Engl 2014; 54:687-90. [DOI: 10.1002/anie.201409136] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 11/06/2022]
|
40
|
Zheng ZP, Fan WH, Roy S, Mazur K, Nazet A, Buchner R, Bonn M, Hunger J. Ionische Flüssigkeiten: nicht nur strukturell, sondern auch dynamisch heterogen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Moin ST, Hofer TS. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study. Phys Chem Chem Phys 2014; 16:26075-83. [DOI: 10.1039/c4cp03697b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Piatkowski L, Zhang Z, Backus EHG, Bakker HJ, Bonn M. Extreme surface propensity of halide ions in water. Nat Commun 2014; 5:4083. [DOI: 10.1038/ncomms5083] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/09/2014] [Indexed: 11/09/2022] Open
|
43
|
Backus EHG, Tielrooij KJ, Bonn M, Bakker HJ. Probing ultrafast temperature changes of aqueous solutions with coherent terahertz pulses. OPTICS LETTERS 2014; 39:1717-1720. [PMID: 24686587 DOI: 10.1364/ol.39.001717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We introduce an infrared pump-terahertz probe technique to measure the thermalization dynamics of aqueous solutions with a time resolution <200 fs. This technique makes use of the sensitivity of the terahertz absorption to the temperature of the hydrogen bond network. The thermalization dynamics of different aqueous solutions are measured and compared to the dynamics inferred from ultrafast infrared pump-infrared probe measurements on the intramolecular stretch vibration of water. This technique can shed new light on important aspects of energy transfer and heat dynamics and is applicable to a wide range of systems.
Collapse
|
44
|
Moin ST, Hofer TS. Hydration of porphyrin and Mg–porphyrin: ab initio quantum mechanical charge field molecular dynamics simulations. ACTA ACUST UNITED AC 2014; 10:117-27. [DOI: 10.1039/c3mb70300b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Water Dynamics in Aqueous Solutions of Tetra-n-alkylammonium Salts: Hydrophobic and Coulomb Interactions Disentangled. J Phys Chem B 2013; 117:15101-10. [DOI: 10.1021/jp4085734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Niu Y, Pang R, Zhu C, Hayashi M, Fujimura Y, Lin S, Shen Y. Quantum chemical calculation of intramolecular vibrational redistribution and vibrational energy transfer of water clusters. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Son H, Park KH, Kwak KW, Park S, Cho M. Ultrafast intermolecular vibrational excitation transfer from solute to solvent: Observation of intermediate states. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Moin ST, Hofer TS, Weiss AKH, Rode BM. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region. J Chem Phys 2013; 139:014503. [DOI: 10.1063/1.4811114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Yang L, Niu Y, Zhu C, Fujimura Y, Shiu Y, Yu J, Lin S. Quantum Chemical Calculations of Intramolecular Vibrational Redistribution and Energy Transfer of Dipeptides (GlyTyr and LeuTyr) and Applications to the RRKM Theory. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Yang
- Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, PR China, Tel: +886‐3‐5712121#56503; Fax: +886‐3‐5723764
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Tel: +886‐3‐5712121#56591; Fax: +886‐3‐5723764
| | - Yingli Niu
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
| | - Chaoyuan Zhu
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
| | - Yuichi Fujimura
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Tel: +886‐3‐5712121#56591; Fax: +886‐3‐5723764
| | - Yingjen Shiu
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
| | - Jian‐Guo Yu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Sheng‐Hsien Lin
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao‐Tung University, Hsinchu 30050, Taiwan, Tel: +886‐3‐5712121#56582
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Tel: +886‐3‐5712121#56591; Fax: +886‐3‐5723764
| |
Collapse
|
50
|
Study on vibrational relaxation dynamics of phenol–water complex by picosecond time-resolved IR-UV pump–probe spectroscopy in a supersonic molecular beam. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|