1
|
Ansari SJ, Mohapatra S, Fiorin G, Klein ML, Mogurampelly S. Proton Transport Scenarios in Sulfuric Acid Explored via Ab Initio Molecular Dynamics Simulations. J Phys Chem B 2024; 128:9014-9021. [PMID: 39257301 DOI: 10.1021/acs.jpcb.4c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sulfuric acid (H2SO4), a highly reactive reagent containing intrinsic protonic charge carriers, has been studied via ab initio molecular dynamics simulations. Specifically, we explore the solvation shell structure of the protonic defects, H1SO4- and H3SO4+, as well as the underlying proton transport mechanisms in both the neat and hydrated H2SO4 solutions. Our findings reveal a significant contraction of the dynamic hydrogen-bonded network around the protonic defects, which resembles features seen in water. The simulations provide estimates of the structural relaxation time scales for proton release from both the covalent O-H bonds (∼23 ps) and the hydrogen bonds (∼0.4 ps). In contrast to water, our analysis of the proton transfer scenarios in sulfuric acid reveals correlated events mediated by the formation of longer (up to four) hydrogen-bonded Grotthuss chains.
Collapse
Affiliation(s)
- Suleman Jalilahmad Ansari
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sipra Mohapatra
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Giacomo Fiorin
- Institute for Computational Molecular Science (ICMS), Temple Materials Institute (TMI), Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute for Computational Molecular Science (ICMS), Temple Materials Institute (TMI), Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
2
|
Wonglakhon T, Zahn D. Molecular dynamics simulation study of NH4+ and NH2− in liquid ammonia: interaction potentials, structural and dynamical properties. J Mol Model 2022; 28:127. [DOI: 10.1007/s00894-022-05110-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
3
|
Yan Z, Dai Z, Zheng W, Lei Z, Qiu J, Kuang W, Huang W, Feng C. Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals. WATER RESEARCH 2021; 205:117678. [PMID: 34601361 DOI: 10.1016/j.watres.2021.117678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The treatment of low-concentration ammonium (e.g., <50 mg L-1) in highly acidic wastewaters through traditional biological nitrification, physical separation, or chemical stripping remains a huge challenge. Herein, we report that photocatalytic ammonium oxidation using bismuth oxychloride (BiOCl) can successfully occur in Cl--laden solutions within a pH range of 1.0-6.0. All reactions follow pseudo-zero-order kinetics (with rate constants of 0.27-0.32 mg L-1 min-1 at pH 2.0-6.0 and 0.14 mg L-1 min-1 at pH 1.0), indicating the saturation of reactive species by the reactants. The interlayer is self-oxidized by the valence band holes (VB h+), resulting in the formation of Cl• and subsequently HClO, which is excited upon UV irradiation to provoke consecutive photoreactions for chlorine radical generation. Compared to the free chlorine, HO•, Cl•, and Cl2•-, the ClO• produced using the UV/BiOCl system plays a predominant role in oxidizing ammonium under acidic conditions. BiOCl exhibits good stability because of the compensation of Cl- from solution and maintains high activity under different conditions (i.e., different cations and co-existing anions, temperatures, and initial substrate concentrations). The successful removal of ammonium from real wastewater using the UV/BiOCl system suggests that this is a promising method for treating diluted ammonium under highly acidic conditions.
Collapse
Affiliation(s)
- Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zongren Dai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jinwen Qiu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenjie Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Weijun Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Ravasio A, Bethkenhagen M, Hernandez JA, Benuzzi-Mounaix A, Datchi F, French M, Guarguaglini M, Lefevre F, Ninet S, Redmer R, Vinci T. Metallization of Shock-Compressed Liquid Ammonia. PHYSICAL REVIEW LETTERS 2021; 126:025003. [PMID: 33512205 DOI: 10.1103/physrevlett.126.025003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ammonia is predicted to be one of the major components in the depths of the ice giant planets Uranus and Neptune. Their dynamics, evolution, and interior structure are insufficiently understood and models rely imperatively on data for equation of state and transport properties. Despite its great significance, the experimentally accessed region of the ammonia phase diagram today is still very limited in pressure and temperature. Here we push the probed regime to unprecedented conditions, up to ∼350 GPa and ∼40 000 K. Along the Hugoniot, the temperature measured as a function of pressure shows a subtle change in slope at ∼7000 K and ∼90 GPa, in agreement with ab initio simulations we have performed. This feature coincides with the gradual transition from a molecular liquid to a plasma state. Additionally, we performed reflectivity measurements, providing the first experimental evidence of electronic conduction in high-pressure ammonia. Shock reflectance continuously rises with pressure above 50 GPa and reaches saturation values above 120 GPa. Corresponding electrical conductivity values are up to 1 order of magnitude higher than in water in the 100 GPa regime, with possible significant contributions of the predicted ammonia-rich layers to the generation of magnetic dynamos in ice giant interiors.
Collapse
Affiliation(s)
- A Ravasio
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - M Bethkenhagen
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon Cedex 07, France
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - J-A Hernandez
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - F Datchi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - M French
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - M Guarguaglini
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - F Lefevre
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - S Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 place Jussieu, F-75005 Paris, France
| | - R Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - T Vinci
- LULI, CNRS, CEA, École Polytechnique-Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
5
|
Sagi R, Akerman M, Ramakrishnan S, Asscher M. Spontaneous polarization of thick solid ammonia films. J Chem Phys 2020; 153:124707. [DOI: 10.1063/5.0017853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Roey Sagi
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Michelle Akerman
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sujith Ramakrishnan
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Micha Asscher
- Institute of Chemistry, Edmond J. Safra Campus, Givat-Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Ekimova M, Quevedo W, Szyc Ł, Iannuzzi M, Wernet P, Odelius M, Nibbering ETJ. Aqueous Solvation of Ammonia and Ammonium: Probing Hydrogen Bond Motifs with FT-IR and Soft X-ray Spectroscopy. J Am Chem Soc 2017; 139:12773-12783. [PMID: 28810120 DOI: 10.1021/jacs.7b07207] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a multifaceted investigation combining local soft X-ray and vibrational spectroscopic probes with ab initio molecular dynamics simulations, hydrogen-bonding interactions of two key principal amine compounds in aqueous solution, ammonia (NH3) and ammonium ion (NH4+), are quantitatively assessed in terms of electronic structure, solvation structure, and dynamics. From the X-ray measurements and complementary determination of the IR-active hydrogen stretching and bending modes of NH3 and NH4+ in aqueous solution, the picture emerges of a comparatively strongly hydrogen-bonded NH4+ ion via N-H donating interactions, whereas NH3 has a strongly accepting hydrogen bond with one water molecule at the nitrogen lone pair but only weakly N-H donating hydrogen bonds. In contrast to the case of hydrogen bonding among solvent water molecules, we find that energy mismatch between occupied orbitals of both the solutes NH3 and NH4+ and the surrounding water prevents strong mixing between orbitals upon hydrogen bonding and, thus, inhibits substantial charge transfer between solute and solvent. A close inspection of the calculated unoccupied molecular orbitals, in conjunction with experimentally measured N K-edge absorption spectra, reveals the different nature of the electronic structural effects of these two key principal amine compounds imposed by hydrogen bonding to water, where a pH-dependent excitation energy appears to be an intrinsic property. These results provide a benchmark for hydrogen bonding of other nitrogen-containing acids and bases.
Collapse
Affiliation(s)
- Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max Born Strasse 2A, 12489 Berlin, Germany
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Łukasz Szyc
- Magnosco c/o LTB Lasertechnik Berlin GmbH , Am Studio 2c, 12489 Berlin, Germany
| | - Marcella Iannuzzi
- Institute of Physical Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michael Odelius
- Department of Physics, Stockholm University , AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Erik T J Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
7
|
He LL, Zhang SY, Sun TT, Zhao CL, Zhang C, Yang ZZ, Zhao DX. Study on properties of liquid ammonia via molecular dynamics simulation based on ABEEMσπ polarisable force field. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1324958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lan-Lan He
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Shi-Yuan Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Ting-Ting Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Chong-Li Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Chao Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| |
Collapse
|
8
|
Pothoczki S, Temleitner L, Pusztai L. Structure of Neat Liquids Consisting of (Perfect and Nearly) Tetrahedral Molecules. Chem Rev 2015; 115:13308-61. [DOI: 10.1021/acs.chemrev.5b00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Szilvia Pothoczki
- Institute for Solid State
Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly Thege út 29-33, Budapest, H-1121 Hungary
| | - László Temleitner
- Institute for Solid State
Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly Thege út 29-33, Budapest, H-1121 Hungary
| | - László Pusztai
- Institute for Solid State
Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly Thege út 29-33, Budapest, H-1121 Hungary
| |
Collapse
|
9
|
Investigation of structural and dynamical properties of hafnium(IV) ion in liquid ammonia: An ab initio QM/MM molecular dynamics simulation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bankura A, Chandra A. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations. J Chem Phys 2015; 142:044701. [DOI: 10.1063/1.4905495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arindam Bankura
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
11
|
Ma Z, Anick D, Tuckerman ME. Ab Initio Molecular Dynamics Study of the Aqueous HOO– Ion. J Phys Chem B 2014; 118:7937-45. [DOI: 10.1021/jp5008335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhonghua Ma
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - David Anick
- Laboratory
for Water and Surface Studies, Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Mark E. Tuckerman
- Department
of Chemistry, Courant Institution of Mathematical Sciences, New York University, New York, New York 10003, United States
| |
Collapse
|
12
|
Urbanek J, Vöhringer P. Vertical Photoionization of Liquid-to-Supercritical Ammonia: Thermal Effects on the Valence-to-Conduction Band Gap. J Phys Chem B 2013; 117:8844-54. [DOI: 10.1021/jp404532s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janus Urbanek
- Abteilung für Molekulare
Physikalische Chemie,
Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße
12, 53115 Bonn, Germany
| | - Peter Vöhringer
- Abteilung für Molekulare
Physikalische Chemie,
Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße
12, 53115 Bonn, Germany
| |
Collapse
|
13
|
Laasonen K. Ab initio molecular dynamics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 924:29-42. [PMID: 23034744 DOI: 10.1007/978-1-62703-017-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.
Collapse
Affiliation(s)
- Kari Laasonen
- Department of Chemistry, Aalto University, Espoo, Finland
| |
Collapse
|
14
|
Bankura A, Chandra A. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. J Chem Phys 2012; 136:114509. [DOI: 10.1063/1.3691602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Chakraborty D, Chandra A. Voids and necks in liquid ammonia and their roles in diffusion of ions of varying size. J Comput Chem 2012; 33:843-52. [DOI: 10.1002/jcc.22910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 10/30/2011] [Accepted: 11/20/2011] [Indexed: 11/05/2022]
|
16
|
Bankura A, Chandra A. A first principles theoretical study of the hydration structure and dynamics of an excess proton in water clusters of varying size and temperature. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Lutz S, Tubert-Brohman I, Yang Y, Meuwly M. Water-assisted proton transfer in ferredoxin I. J Biol Chem 2011; 286:23679-87. [PMID: 21531725 DOI: 10.1074/jbc.m111.230003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.
Collapse
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Pratihar S, Chandra A. A first principles molecular dynamics study of excess electron and lithium atom solvation in water-ammonia mixed clusters: structural, spectral, and dynamical behaviors of [(H2O)5NH3]- and Li(H2O)5NH3 at finite temperature. J Chem Phys 2011; 134:034302. [PMID: 21261348 DOI: 10.1063/1.3511701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First principles molecular dynamics simulations are carried out to investigate the solvation of an excess electron and a lithium atom in mixed water-ammonia cluster (H(2)O)(5)NH(3) at a finite temperature of 150 K. Both [(H(2)O)(5)NH(3)](-) and Li(H(2)O)(5)NH(3) clusters are seen to display substantial hydrogen bond dynamics due to thermal motion leading to many different isomeric structures. Also, the structures of these two clusters are found to be very different from each other and also very different from the corresponding neutral cluster without any excess electron or the metal atom. Spontaneous ionization of Li atom occurs in the case of Li(H(2)O)(5)NH(3). The spatial distribution of the singly occupied molecular orbital shows where and how the excess (or free) electron is primarily localized in these clusters. The populations of single acceptor (A), double acceptor (AA), and free (NIL) type water and ammonia molecules are found to be significantly high. The dangling hydrogens of these type of water or ammonia molecules are found to primarily capture the free electron. It is also found that the free electron binding motifs evolve with time due to thermal fluctuations and the vertical detachment energy of [(H(2)O)(5)NH(3)](-) and vertical ionization energy of Li(H(2)O)(5)NH(3) also change with time along the simulation trajectories. Assignments of the observed peaks in the vibrational power spectra are done and we found a one to one correlation between the time-averaged populations of water and ammonia molecules at different H-bonding sites with the various peaks of power spectra. The frequency-time correlation functions of OH stretch vibrational frequencies of these clusters are also calculated and their decay profiles are analyzed in terms of the dynamics of hydrogen bonded and dangling OH modes. It is found that the hydrogen bond lifetimes in these clusters are almost five to six times longer than that of pure liquid water at room temperature.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
19
|
Pratihar S, Chandra A. Excess electron and lithium atom solvation in water clusters at finite temperature: an ab initio molecular dynamics study of the structural, spectral, and dynamical behavior of (H2O)6- and Li(H2O)6. J Phys Chem A 2010; 114:11869-78. [PMID: 20958010 DOI: 10.1021/jp103139c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of hydrogen bonds in the solvation of an excess electron and a lithium atom in water hexamer cluster at 150 K have been studied by means of ab initio molecular dynamics simulations. It is found that the hydrogen bonded structures of (H(2)O)(6)(-) and Li(H(2)O)(6) clusters are very different from each other and they dynamically evolve from one conformer to other along their simulation trajectories. The populations of the single acceptor, double acceptor, and free type water molecules are found to be significantly high unlike that in pure water clusters. Free hydrogens of these type of water molecules primarily capture the unbound electron density in these clusters. It is found that the binding motifs of the free electron evolve with time and the vertical detachment energy of (H(2)O)(6)(-) and vertical ionization energy of Li(H(2)O)(6) also change with time. Assignments of the observed peaks in vibrational power spectra are done, and we found direct correlations between the time-averaged population of water molecules in different hydrogen bonding states and the spectral features. The dynamical aspects of these clusters have also been studied through calculations of time correlations of instantaneous stretch frequencies of OH modes which are obtained from the simulation trajectories through a time series analysis.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| | | |
Collapse
|
20
|
Ufimtsev IS, Kalinichev AG, Martinez TJ, Kirkpatrick RJ. A multistate empirical valence bond model for solvation and transport simulations of OH- in aqueous solutions. Phys Chem Chem Phys 2009; 11:9420-30. [PMID: 19830325 DOI: 10.1039/b907859b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe a new multistate empirical valence bond (MS-EVB) model of OH(-) in aqueous solutions. This model is based on the recently proposed "charged ring" parameterization for the intermolecular interaction of hydroxyl ion with water [Ufimtsev, et al., Chem. Phys. Lett., 2007, 442, 128] and is suitable for classical molecular simulations of OH(-) solvation and transport. The model reproduces the hydration structure of OH(-)(aq) in good agreement with experimental data and the results of ab initio molecular dynamics simulations. It also accurately captures the major structural, energetic, and dynamic aspects of the proton transfer processes involving OH(-) (aq). The model predicts an approximately two-fold increase of the OH(-) mobility due to proton exchange reactions.
Collapse
Affiliation(s)
- Ivan S Ufimtsev
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
21
|
García-Fernández P, García-Canales L, García-Lastra JM, Junquera J, Moreno M, Aramburu JA. Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N(2)H(7) (+). J Chem Phys 2009; 129:124313. [PMID: 19045029 DOI: 10.1063/1.2980053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N(2)H(7) (+) were studied by means of ab initio and density-functional theory (DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H(5)O(2) (+). All geometry optimizations carried out using wavefunction-based methods [Hartree-Fock, second and fourth order Moller-Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H(3)N-H(+)cdots, three dots, centeredNH(3) conformation (C(3v) symmetry) with a small energy barrier (1.26 kcalmol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H(3)Ncdots, three dots, centeredH(+)cdots, three dots, centeredNH(3) structure (D(3d) point group). The instability of the symmetric D(3d) structure is shown to originate from the pseudo-Jahn-Teller mixing of the electronic (1)A(1g) ground state with five low lying excited states of A(2u) symmetry through the asymmetric alpha(2u) vibrational mode. A molecular orbital study of the pseudo-Jahn-Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH(3) molecules and the transfer of electronic charge between the proton and the NH(3) units (rebonding). The parallel study of the H(5)O(2) (+) cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle-Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N-N distance in the D(3d) and C(3v) configurations of N(2)H(7) (+) indicates a large anharmonic coupling between alpha(2u)-alpha(1g) modes along the proton-transfer dynamics. This issue was explored by solving numerically the vibrational Schrodinger equation corresponding to the bidimensional E[Q(alpha(2u)),Q(alpha(1g))] energy surface calculated at the MP46-311++G(**) level of theory.
Collapse
Affiliation(s)
- P García-Fernández
- Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, 39005 Santander, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Lammers S, Lutz S, Meuwly M. Reactive force fields for proton transfer dynamics. J Comput Chem 2008; 29:1048-63. [PMID: 18072179 DOI: 10.1002/jcc.20864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A force field-inspired method based on fitted, high-quality multidimensional potential energy surfaces to follow proton transfer (PT) reactions in molecular dynamics simulations is presented. In molecular mechanics with proton transfer (MMPT) a system is partitioned into a region where proton transfer takes place and the remaining degrees of freedom which are treated with a conventional force field. The implementation of the method and applications to specific chemically and biologically relevant scenarios are presented. MMPT is developed in view of two primary areas in mind: to follow the molecular dynamics of proton transfer in the condensed phase on realistic time scales and to adapt the shape (morphing) of the potential energy surface for specific applications. MMPT is applied to PT in protonated ammonia dimer, double proton transfer in 2-pyridone-2-hydroxypyridine, and the first step of PT from a protein side-chain towards a buried [3Fe4S] cluster in ferredoxin I. Specific findings of the work include the fundamental role of the N-N vibration as the gating mode for PT in NH4+...NH3 and the qualitative understanding of PT from the protein to a metastable active-site water molecule in Ferredoxin I.
Collapse
Affiliation(s)
- Sven Lammers
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
23
|
Ishibashi H, Hayashi A, Shiga M, Tachikawa M. Geometric Isotope Effect on the N2H7+ Cation and N2H5− Anion by Ab Initio Path Integral Molecular Dynamics Simulation. Chemphyschem 2008; 9:383-7. [DOI: 10.1002/cphc.200700570] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Tongraar A, Hannongbua S. Solvation Structure and Dynamics of Ammonium (NH4+) in Liquid Ammonia Studied by HF/MM and B3LYP/MM Molecular Dynamics Simulations. J Phys Chem B 2008; 112:885-91. [DOI: 10.1021/jp076173t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supot Hannongbua
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Lammers S, Meuwly M. Investigating the relationship between infrared spectra of shared protons in different chemical environments: a comparison of protonated diglyme and protonated water dimer. J Phys Chem A 2007; 111:1638-47. [PMID: 17295453 DOI: 10.1021/jp065323h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energetics, dynamics, and infrared spectroscopy of the shared proton in different chemical environments is investigated using molecular dynamics simulations. A three-dimensional potential energy surface (PES) suitable for describing proton transfer between an acceptor and a donor oxygen atom is combined with an all-atom force field to carry out reactive molecular dynamics simulations. The construction of the fully dimensional PES is inspired from the established mixed quantum mechanics/molecular mechanics treatment of larger systems. The "morphing potential" method is used to transform the generic PES for proton transfer along an O...H+...O motif into a three-dimensional PES for proton transfer in protonated diglyme. Using molecular dynamics simulations at finite temperature, the gas phase infrared spectra are calculated for both species from the Fourier transform of the dipole moment autocorrelation function. For protonated diglyme the modes involving the H+ motion are strongly mixed with other degrees of freedom. At low temperature, the O...H+...O asymmetric stretching vibration is found at 870 cm-1, whereas for H5O2+ this band is at 724 cm-1. As expected, the vibrational bands of protonated diglyme show no temperature dependence whereas for H5O2+ at T = 100 K the proton transfer mode is found at 830 cm-1, in good agreement with 861 cm-1 from very recent molecular dynamics simulations.
Collapse
Affiliation(s)
- Sven Lammers
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | |
Collapse
|
26
|
Tongraar A, Kerdcharoen T, Hannongbua S. Simulations of Liquid Ammonia Based on the Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Approach. J Phys Chem A 2006; 110:4924-9. [PMID: 16599463 DOI: 10.1021/jp057342h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, namely, HF/MM and B3LYP/MM, have been performed to investigate the local structure and dynamics of liquid ammonia. The most interesting region, a sphere containing a central reference molecule and all its nearest surrounding molecules (first coordination shell), was treated by the Hartree-Fock (HF) and hybrid density functional B3LYP methods, whereas the rest of the system was described by the classical pair potentials. On the basis of both HF and B3LYP methods, it is observed that the hydrogen bonding in this peculiar liquid is weak. The structure and dynamics of this liquid are suggested to be determined by the steric packing effects, rather than by the directional hydrogen bonding interactions. Compared to previous empirical as well as Car-Parrinello (CP) molecular dynamics studies, our QM/MM simulations provide detailed information that is in better agreement with experimental data.
Collapse
Affiliation(s)
- Anan Tongraar
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | | | | |
Collapse
|
27
|
A new relation from the HSAB theory for predicting the conductivity maxima of salts in nonaqueous solvents. J Mol Liq 2004. [DOI: 10.1016/j.molliq.2004.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Zhuang W, Dellago C. Dissociation of Hydrogen Chloride and Proton Transfer in Liquid Glycerol: An Ab Initio Molecular Dynamics Study. J Phys Chem B 2004. [DOI: 10.1021/jp047676r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei Zhuang
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, and Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Dellago
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, and Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
29
|
Raugei S, Klein ML. On the Quantum Nature of an Excess Proton in Liquid Hydrogen Fluoride. Chemphyschem 2004; 5:1569-76. [PMID: 15535556 DOI: 10.1002/cphc.200400198] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid hydrogen fluoride consists of chains of hydrogen-bonded molecules. The nature of an excess proton in liquid HF, which is of interest not only for its own sake, but also in relation to super-acid chemistry and to its behavior in water, has been studied using computer simulations. The methodology employed is the density-functional-theory-based path-integral Car-Parrinello ab initio molecular dynamics. The excess proton, which formally exists as a H2F+ or a H2F2+ defect in an HF chain, is found to strongly perturb the chain to which it is attached. Moreover, due to large zero-point energy, the charge defect is largely delocalized over several HF molecules.
Collapse
Affiliation(s)
- Simone Raugei
- International School for Advanced Studies, INFM-DEMOCRITOS Modeling Center for Research in Atomistic Simulation, via Beirut 4, 34014 Trieste, Italy.
| | | |
Collapse
|
30
|
Abstract
Properties of neat liquid formamide (HCONH2) have been studied by the combination of gradient-corrected density-functional theory, norm-conserving pseudopotentials, and the adaptive finite-element method. The structural and dynamical quantities have been calculated through molecular dynamics simulations under the Born-Oppenheimer approximation. Satisfactory agreement with experimental data was obtained for both intramolecular and intermolecular properties. Our results are also compared with those of the empirical potential functions to clarify their accuracies.
Collapse
Affiliation(s)
- Eiji Tsuchida
- Research Institute for Computational Sciences, AIST Tsukuba Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
31
|
Zoete V, Meuwly M. On the influence of semirigid environments on proton transfer along molecular chains. J Chem Phys 2004; 120:7085-94. [PMID: 15267612 DOI: 10.1063/1.1643721] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The dynamics of proton transfer along ammonia chains (chemical composition N(x)H(+)(3x+1), x=2, 4, and 6) in a constraining environment is investigated by ab initio molecular dynamics simulations. A carbon nanotube of defined length and diameter is used as an idealized constraining environment such that the ammonia chain is forced to maintain its quasilinear geometry. It is found that, although the energetics of proton transport shows considerable energetic barriers, proton translocation along the wire is possible at finite temperature for all chain lengths studied. The proton transport involves rotational reorientation of the proton-carrying ammonia molecule. High level ab initio calculations (MP2/aug-cc-pVTZ) yield barriers for internal rotation of 9.1 kcal/mol for NH(4) (+)-NH(3) and 11.7 kcal/mol for OH(3) (+)-OH(2), respectively. The infrared spectrum calculated from the dipole-dipole autocorrelation function shows distinct spectral features in the regions (2000-3000 cm(-1)) where the NHN proton transfer mode is expected to absorb. Assigning moderate opposite total charges between 0.002 and 0.2e to the carbon atoms at the end caps of the nanotube leads to a considerable speedup of the proton transfer.
Collapse
Affiliation(s)
- Vincent Zoete
- Laboratoire de Chimie Biophysique, ISIS, Strasbourg, France
| | | |
Collapse
|
32
|
Boese AD, Chandra A, Martin JML, Marx D. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia. J Chem Phys 2003. [DOI: 10.1063/1.1599338] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Daniel Boese
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reh_ovot, Israel
| | - Amalendu Chandra
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reh_ovot, Israel
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
33
|
Ponti A, Mella M. Three-Fragment Counterpoise Correction of Potential Energy Curves for Proton-Transfer Reactions. J Phys Chem A 2003. [DOI: 10.1021/jp034682z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Ponti
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via Golgi 19, 20133 Milano, Italy, and Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Massimo Mella
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via Golgi 19, 20133 Milano, Italy, and Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
34
|
Coussan S, Manca C, Tanner C, Bach A, Leutwyler S. Ammonia-chain clusters: Vibronic spectra of 7-hydroxyquinoline⋅(NH3)2. J Chem Phys 2003. [DOI: 10.1063/1.1589482] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Minary P, Martyna GJ, Tuckerman ME. Algorithms and novel applications based on the isokinetic ensemble. II. Ab initio molecular dynamics. J Chem Phys 2003. [DOI: 10.1063/1.1534583] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Morrone JA, Tuckerman ME. Ab initio molecular dynamics study of proton mobility in liquid methanol. J Chem Phys 2002. [DOI: 10.1063/1.1496457] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
37
|
Zhu Z, Tuckerman ME. Ab Initio Molecular Dynamics Investigation of the Concentration Dependence of Charged Defect Transport in Basic Solutions via Calculation of the Infrared Spectrum. J Phys Chem B 2002. [DOI: 10.1021/jp020866m] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongwei Zhu
- Department of Chemistry, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| | - Mark E. Tuckerman
- Department of Chemistry, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| |
Collapse
|
38
|
Tuckerman ME, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 2002; 417:925-9. [PMID: 12087398 DOI: 10.1038/nature00797] [Citation(s) in RCA: 633] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Compared to other ions, protons (H(+)) and hydroxide ions (OH(-)) exhibit anomalously high mobilities in aqueous solutions. On a qualitative level, this behaviour has long been explained by 'structural diffusion' the continuous interconversion between hydration complexes driven by fluctuations in the solvation shell of the hydrated ions. Detailed investigations have led to a clear understanding of the proton transport mechanism at the molecular level. In contrast, hydroxide ion mobility in basic solutions has received far less attention, even though bases and base catalysis play important roles in many organic and biochemical reactions and in the chemical industry. The reason for this may be attributed to the century-old notion that a hydrated OH(-) can be regarded as a water molecule missing a proton, and that the transport mechanism of such a 'proton hole' can be inferred from that of an excess proton by simply reversing hydrogen bond polarities. However, recent studies have identified OH(-) hydration complexes that bear little structural similarity to proton hydration complexes. Here we report the solution structures and transport mechanisms of hydrated hydroxide, which we obtained from first-principles computer simulations that explicitly treat quantum and thermal fluctuations of all nuclei. We find that the transport mechanism, which differs significantly from the proton hole picture, involves an interplay between the previously identified hydration complexes and is strongly influenced by nuclear quantum effects.
Collapse
Affiliation(s)
- Mark E Tuckerman
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 4 Washington Place, New York, New York 10003, USA.
| | | | | |
Collapse
|
39
|
Meuwly M, Karplus M. Simulation of proton transfer along ammonia wires: An “ab initio” and semiempirical density functional comparison of potentials and classical molecular dynamics. J Chem Phys 2002. [DOI: 10.1063/1.1431285] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|