1
|
Bhati A, Wan S, Coveney PV. Equilibrium and Nonequilibrium Ensemble Methods for Accurate, Precise and Reproducible Absolute Binding Free Energy Calculations. J Chem Theory Comput 2025; 21:440-462. [PMID: 39680850 PMCID: PMC11736689 DOI: 10.1021/acs.jctc.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Free energy calculations for protein-ligand complexes have become widespread in recent years owing to several conceptual, methodological and technological advances. Central among these is the use of ensemble methods which permits accurate, precise and reproducible predictions and is necessary for uncertainty quantification. Absolute binding free energies (ABFEs) are challenging to predict using alchemical methods and their routine application in drug discovery has remained out of reach until now. Here, we apply ensemble alchemical ABFE methods to a large data set comprising 219 ligand-protein complexes and obtain statistically robust results with high accuracy (<1 kcal/mol). We compare equilibrium and nonequilibrium methods for ABFE predictions at large scale and provide a systematic critical assessment of each method. The equilibrium method is more accurate, precise, faster, computationally more cost-effective and requires a much simpler protocol, making it preferable for large scale and blind applications. We find that the calculated free energy distributions are non-normal and discuss the consequences. We recommend a definitive protocol to perform ABFE calculations optimally. Using this protocol, it is possible to perform thousands of ABFE calculations within a few hours on modern exascale machines.
Collapse
Affiliation(s)
- Agastya
P. Bhati
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Shunzhou Wan
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Computational
Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam 1012, The Netherlands
- Advanced
Research Computing Centre, University College
London, London WC1H 9BT, United Kingdom
| |
Collapse
|
2
|
Lagardère L, Maurin L, Adjoua O, El Hage K, Monmarché P, Piquemal JP, Hénin J. Lambda-ABF: Simplified, Portable, Accurate, and Cost-Effective Alchemical Free-Energy Computation. J Chem Theory Comput 2024; 20:4481-4498. [PMID: 38805379 DOI: 10.1021/acs.jctc.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We introduce the lambda-Adaptive Biasing Force (lambda-ABF) method for the computation of alchemical free-energy differences. We propose a software implementation and showcase it on biomolecular systems. The method arises from coupling multiple-walker adaptive biasing force with λ-dynamics. The sampling of the alchemical variable is continuous and converges toward a uniform distribution, making manual optimization of the λ schedule unnecessary. Contrary to most other approaches, alchemical free-energy estimates are obtained immediately without any postprocessing. Free diffusion of λ improves orthogonal relaxation compared to fixed-λ thermodynamic integration or free-energy perturbation. Furthermore, multiple walkers provide generic orthogonal space coverage with minimal user input and negligible computational overhead. We show that our high-performance implementations coupling the Colvars library with NAMD and Tinker-HP can address real-world cases including ligand-receptor binding with both fixed-charge and polarizable models, with a demonstrably richer sampling than fixed-λ methods. The implementation is fully open-source, publicly available, and readily usable by practitioners of current alchemical methods. Thanks to the portable Colvars library, lambda-ABF presents a unified user interface regardless of the back-end (NAMD, Tinker-HP, or any software to be interfaced in the future), sparing users the effort of learning multiple interfaces. Finally, the Colvars Dashboard extension of the visual molecular dynamics (VMD) software provides an interactive monitoring and diagnostic tool for lambda-ABF simulations.
Collapse
Affiliation(s)
- Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique, FR2622 CNRS, 75005 Paris, France
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lise Maurin
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005 Paris, France
| | - Olivier Adjoua
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
| | - Krystel El Hage
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Pierre Monmarché
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, UPR 9080, 75005 Paris, France
| |
Collapse
|
3
|
Champion C, Hünenberger PH, Riniker S. Multistate Method to Efficiently Account for Tautomerism and Protonation in Alchemical Free-Energy Calculations. J Chem Theory Comput 2024; 20:4350-4362. [PMID: 38742760 PMCID: PMC11137823 DOI: 10.1021/acs.jctc.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The majority of drug-like molecules contain at least one ionizable group, and many common drug scaffolds are subject to tautomeric equilibria. Thus, these compounds are found in a mixture of protonation and/or tautomeric states at physiological pH. Intrinsically, standard classical molecular dynamics (MD) simulations cannot describe such equilibria between states, which negatively impacts the prediction of key molecular properties in silico. Following the formalism described by de Oliveira and co-workers (J. Chem. Theory Comput. 2019, 15, 424-435) to consider the influence of all states on the binding process based on alchemical free-energy calculations, we demonstrate in this work that the multistate method replica-exchange enveloping distribution sampling (RE-EDS) is well suited to describe molecules with multiple protonation and/or tautomeric states in a single simulation. We apply our methodology to a series of eight inhibitors of factor Xa with two protonation states and a series of eight inhibitors of glycogen synthase kinase 3β (GSK3β) with two tautomeric states. In particular, we show that given a sufficient phase-space overlap between the states, RE-EDS is computationally more efficient than standard pairwise free-energy methods.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Boresch S. On Analytical Corrections for Restraints in Absolute Binding Free Energy Calculations. J Chem Inf Model 2024; 64:3605-3609. [PMID: 38640478 PMCID: PMC11094717 DOI: 10.1021/acs.jcim.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Double decoupling absolute binding free energy simulations require an intermediate state at which the ligand is held solely by restraints in a position and orientation resembling the bound state. One possible choice consists of one distance, two angle, and three dihedral angle restraints. Here, I demonstrate that in practically all cases the analytical correction derived under the rigid rotator harmonic oscillator approximation is sufficient to account for the free energy of the restraints.
Collapse
Affiliation(s)
- Stefan Boresch
- Department of Chemistry, University
of Vienna, Währinger
Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Chen L, Wu Y, Wu C, Silveira A, Sherman W, Xu H, Gallicchio E. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. J Chem Inf Model 2024; 64:250-264. [PMID: 38147877 DOI: 10.1021/acs.jcim.3c01705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The Alchemical Transfer Method (ATM) is herein validated against the relative binding-free energies (RBFEs) of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and AToM-OpenMM software to compute the RBFEs of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical RBFE methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and postcorrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 RBFE calculations for eight protein targets and found that ATM achieves accuracy comparable to that of existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into the specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM can be applied as a production tool for RBFE predictions across a wide range of perturbation types within a unified, open-source framework.
Collapse
Affiliation(s)
- Lieyang Chen
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Yujie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Chuanjie Wu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
| | - Ana Silveira
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Psivant Therapeutics, 451 D Street, Boston, Massachusetts 02210, United States
| | - Huafeng Xu
- Roivant Sciences, 151 W 42nd Street, 15th Floor, New York, New York 10036, United States
- Atommap Corporation, New York, New York 10017, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
6
|
Hernández González JE, de Araujo AS. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein-Protein Interfaces Considering Fixed and Variable Protonation States. J Chem Inf Model 2023; 63:6807-6822. [PMID: 37851531 DOI: 10.1021/acs.jcim.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The calculation of relative free energies (ΔΔG) for charge-changing mutations at protein-protein interfaces through alchemical methods remains challenging due to variations in the system's net charge during charging steps, the possibility of mutated and contacting ionizable residues occurring in various protonation states, and undersampling issues. In this study, we present a set of strategies, collectively termed TIRST/TIRST-H+, to address some of these challenges. Our approaches combine thermodynamic integration (TI) with the prediction of pKa shifts to calculate ΔΔG values. Moreover, special sets of restraints are employed to keep the alchemically transformed molecules separated. The accuracy of the devised approaches was assessed on a large and diverse data set comprising 164 point mutations of charged residues (Asp, Glu, Lys, and Arg) to Ala at the protein-protein interfaces of complexes with known three-dimensional structures. Mean absolute and root-mean-square errors ranging from 1.38 to 1.66 and 1.89 to 2.44 kcal/mol, respectively, and Pearson correlation coefficients of ∼0.6 were obtained when testing the approaches on the selected data set using the GPU-TI module of Amber18 suite and the ff14SB force field. Furthermore, the inclusion of variable protonation states for the mutated acid residues improved the accuracy of the predicted ΔΔG values. Therefore, our results validate the use of TIRST/TIRST-H+ in prospective studies aimed at evaluating the impact of charge-changing mutations to Ala on the stability of protein-protein complexes.
Collapse
|
7
|
Clayton J, de Oliveira VM, Ibrahim MF, Sun X, Mahinthichaichan P, Shen M, Hilgenfeld R, Shen J. Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease. J Chem Inf Model 2023; 63:3521-3533. [PMID: 37199464 PMCID: PMC10237302 DOI: 10.1021/acs.jcim.3c00344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Nirmatrelvir is an orally available inhibitor of SARS-CoV-2 main protease (Mpro) and the main ingredient of Paxlovid, a drug approved by the U.S. Food and Drug Administration for high-risk COVID-19 patients. Recently, a rare natural mutation, H172Y, was found to significantly reduce nirmatrelvir's inhibitory activity. As the COVID-19 cases skyrocket in China and the selective pressure of antiviral therapy builds in the US, there is an urgent need to characterize and understand how the H172Y mutation confers drug resistance. Here, we investigated the H172Y Mpro's conformational dynamics, folding stability, catalytic efficiency, and inhibitory activity using all-atom constant pH and fixed-charge molecular dynamics simulations, alchemical and empirical free energy calculations, artificial neural networks, and biochemical experiments. Our data suggest that the mutation significantly weakens the S1 pocket interactions with the N-terminus and perturbs the conformation of the oxyanion loop, leading to a decrease in the thermal stability and catalytic efficiency. Importantly, the perturbed S1 pocket dynamics weaken the nirmatrelvir binding in the P1 position, which explains the decreased inhibitory activity of nirmatrelvir. Our work demonstrates the predictive power of the combined simulation and artificial intelligence approaches, and together with biochemical experiments, they can be used to actively surveil continually emerging mutations of SARS-CoV-2 Mpro and assist the optimization of antiviral drugs. The presented approach, in general, can be applied to characterize mutation effects on any protein drug targets.
Collapse
Affiliation(s)
- Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Vinicius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Paween Mahinthichaichan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Rolf Hilgenfeld
- Institute for Molecular Medicine, University of Lübeck, Lübeck 23562, Germany
- German Center for Infection Research (DZIF), Hamburg – Lübeck – Borstel – Riems Site, University of Lübeck, Lübeck 23562, Germany
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| |
Collapse
|
8
|
Zhou W, Guo Y, Zhang Z, Guo W, Qiu H. Field-Induced Hydration Shell Reorganization Enables Electro-osmotic Flow in Nanochannels. PHYSICAL REVIEW LETTERS 2023; 130:084001. [PMID: 36898090 DOI: 10.1103/physrevlett.130.084001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electro-osmotic flow is the motion of fluid driven by an applied electric field, for which an electric double layer near a charged surface is deemed essential. Here, we find that electro-osmotic flow can occur in electrically neutral nanochannels in the absence of definable electric double layers through extensive molecular dynamics simulations. An applied electric field is shown to cause an intrinsic channel selectivity between cations and anions, by reorienting the hydration shells of these confined ions. The ion selectivity then results in a net charge density in the channel that induces the unconventional electro-osmotic flow. The flow direction is amenable to manipulation by the field strength and the channel size, which will inform ongoing efforts to develop highly integrated nanofluidic systems capable of complex flow control.
Collapse
Affiliation(s)
- Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
9
|
Govind Kumar V, Polasa A, Agrawal S, Kumar TKS, Moradi M. Binding affinity estimation from restrained umbrella sampling simulations. NATURE COMPUTATIONAL SCIENCE 2023; 3:59-70. [PMID: 38177953 PMCID: PMC10766565 DOI: 10.1038/s43588-022-00389-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2024]
Abstract
The protein-ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
10
|
Ranjbar S, Ashari Astani N, Atabay M, Naseri N, Esfandiar A, Reza Ejtehadi M. Electrochemical and computational studies of bio-mimicked Ti3C2Tx MXene-based sensor with multivalent interface. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Blazhynska M, Goulard Coderc de Lacam E, Chen H, Roux B, Chipot C. Hazardous Shortcuts in Standard Binding Free Energy Calculations. J Phys Chem Lett 2022; 13:6250-6258. [PMID: 35771686 DOI: 10.1021/acs.jpclett.2c01490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Calculating the standard binding free energies of protein-protein and protein-ligand complexes from atomistic molecular dynamics simulations in explicit solvent is a problem of central importance in computational biophysics. A rigorous strategy for carrying out such calculations is the so-called "geometrical route". In this method, two molecular objects are progressively separated from one another in the presence of orientational and conformational restraints serving to control the change in configurational entropy that accompanies the dissociation process, thereby allowing the computations to converge within simulations of affordable length. Although the geometrical route provides a rigorous theoretical framework, a tantalizing computational shortcut consists of simply leaving out such orientational and conformational degrees of freedom during the separation process. Here the accuracy and convergence of the two approaches are critically compared in the case of two protein-ligand complexes (Abl kinase-SH3:p41 and MDM2-p53:NVP-CGM097) and three protein-protein complexes (pig insulin dimer, SARS-CoV-2 spike RBD:ACE2, and CheA kinase-P2:CheY). The results of the simulations that strictly follow the geometrical route match the experimental standard binding free energies within chemical accuracy. In contrast, simulations bereft of geometrical restraints converge more poorly, yielding inconsistent results that are at variance with the experimental measurements. Furthermore, the orientational and positional time correlation functions of the protein in the unrestrained simulations decay over several microseconds, a time scale that is far longer than the typical simulation times of the geometrical route, which explains why those simulations fail to sample the relevant degrees of freedom during the separation process of the complexes.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Emma Goulard Coderc de Lacam
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, Illinois 60637, United States
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Markthaler D, Fleck M, Stankiewicz B, Hansen N. Exploring the Effect of Enhanced Sampling on Protein Stability Prediction. J Chem Theory Comput 2022; 18:2569-2583. [PMID: 35298174 DOI: 10.1021/acs.jctc.1c01012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Changes in protein stability due to side-chain mutations are evaluated by alchemical free-energy calculations based on classical molecular dynamics (MD) simulations in explicit solvent using the GROMOS force field. Three proteins of different complexity with a total number of 93 single-point mutations are analyzed, and the relative free-energy differences are discussed with respect to configurational sampling and (dis)agreement with experimental data. For the smallest protein studied, a 34-residue WW domain, the starting structure dependence of the alchemical free-energy changes, is discussed in detail. Deviations from previous simulations for the two other proteins are shown to result from insufficient sampling in the earlier studies. Hamiltonian replica exchange in combination with multiple starting structures and sufficient sampling time of more than 100 ns per intermediate alchemical state is required in some cases to reach convergence.
Collapse
Affiliation(s)
- Daniel Markthaler
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Bartosz Stankiewicz
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Azimi S, Khuttan S, Wu JZ, Pal RK, Gallicchio E. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. J Chem Inf Model 2022; 62:309-323. [PMID: 34990555 DOI: 10.1021/acs.jcim.1c01129] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Rajat K Pal
- Roivant Sciences, Inc., Boston, Massachusetts 02210, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
14
|
King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 2021; 8:712085. [PMID: 34458321 PMCID: PMC8387144 DOI: 10.3389/fmolb.2021.712085] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The grand challenge in structure-based drug design is achieving accurate prediction of binding free energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical to the binding process, leading to calculation of thermodynamic quantities involved in estimation of binding affinities. With recent advancements in computing capability and predictive accuracy, MD based virtual screening has progressed from the domain of theoretical attempts to real application in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly applied to model molecular recognition for drug discovery and lead optimization. Here we review the varied methodology of these approaches, developments enhancing simulation efficiency and reliability, remaining challenges hindering predictive performance, and applications to problems in the fields of medicine and biochemistry.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
- Department of Materials Science and Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
15
|
Husen P, Solov'yov IA. Modeling the Energy Landscape of Side Reactions in the Cytochrome bc 1 Complex. Front Chem 2021; 9:643796. [PMID: 34095083 PMCID: PMC8170094 DOI: 10.3389/fchem.2021.643796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Much of the metabolic molecular machinery responsible for energy transduction processes in living organisms revolves around a series of electron and proton transfer processes. The highly redox active enzymes can, however, also pose a risk of unwanted side reactions leading to reactive oxygen species, which are harmful to cells and are a factor in aging and age-related diseases. Using extensive quantum and classical computational modeling, we here show evidence of a particular superoxide production mechanism through stray reactions between molecular oxygen and a semiquinone reaction intermediate bound in the mitochondrial complex III of the electron transport chain, also known as the cytochrome b c 1 complex. Free energy calculations indicate a favorable electron transfer from semiquinone occurring at low rates under normal circumstances. Furthermore, simulations of the product state reveal that superoxide formed at the Q o -site exclusively leaves the b c 1 complex at the positive side of the membrane and escapes into the intermembrane space of mitochondria, providing a critical clue in further studies of the harmful effects of mitochondrial superoxide production.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
Fu H, Chen H, Cai W, Shao X, Chipot C. BFEE2: Automated, Streamlined, and Accurate Absolute Binding Free-Energy Calculations. J Chem Inf Model 2021; 61:2116-2123. [PMID: 33906354 DOI: 10.1021/acs.jcim.1c00269] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate absolute binding free-energy estimation in silico, following either an alchemical or a geometrical route, involves several subprocesses and requires the introduction of geometric restraints. Human intervention, for instance, to define the necessary collective variables, prepare the input files, monitor the simulation, and perform post-treatments is, however, tedious, cumbersome, and prone to errors. With the aim of automating and streamlining free-energy calculations, especially for nonexperts, version 2.0 of the binding free energy estimator (BFEE2) provides both standardized alchemical and geometrical workflows and obviates the need for extensive human intervention to guarantee complete reproducibility of the results. To achieve the largest gamut of protein-ligand and, more generally, of host-guest complexes, BFEE2 supports most academic force fields, such as CHARMM, Amber, OPLS, and GROMOS. Configurational files are generated in the NAMD and Gromacs formats, and all the post-treatments are performed in an automated fashion. Moreover, convergence of the free-energy calculation can be monitored from the intermediate files generated during the simulation. All in all, BFEE2 is a foolproof, versatile tool for accurate absolute binding free-energy calculations, assisting the end-user over a broad range of applications.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Haochuan Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR n°7019, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States.,Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urban-Champaign, 405 North Mathews, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Jacobsen L, Husen P, Solov'yov IA. Inhibition Mechanism of Antimalarial Drugs Targeting the Cytochrome bc 1 Complex. J Chem Inf Model 2021; 61:1334-1345. [PMID: 33617262 DOI: 10.1021/acs.jcim.0c01148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum (P. falciparum) is the main parasite known to cause malaria in humans. The antimalarial drug atovaquone is known to inhibit the Qo-site of the cytochrome bc1 complex of P. falciparum, which ultimately blocks ATP synthesis, leading to cell death. Through the years, mutations of the P. falciparum cytochrome bc1 complex, causing resistance to atovaquone, have emerged. The present investigation applies molecular dynamics (MD) simulations to study how the specific mutations Y279S and L282V, known to cause atovaquone resistance in malarial parasites, affect the inhibition mechanism of two known inhibitors. Binding free energy estimates were obtained through free energy perturbation calculations but were unable to confidently resolve the effects of mutations due to the great complexity of the binding environment. Meanwhile, basic mechanistic considerations from the MD simulations provide a detailed characterization of inhibitor binding modes and indicate that the Y279S mutation weakens the natural binding of the inhibitors, while no conclusive effect of the L282V mutation could be observed.
Collapse
Affiliation(s)
- Luise Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
18
|
Guclu TF, Kocatug N, Atilgan AR, Atilgan C. N-Terminus of the Third PDZ Domain of PSD-95 Orchestrates Allosteric Communication for Selective Ligand Binding. J Chem Inf Model 2020; 61:347-357. [PMID: 33331776 DOI: 10.1021/acs.jcim.0c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PDZ domains constitute common models to study single-domain allostery without significant structural changes. The third PDZ domain of PSD-95 (PDZ3) is known to have selective structural features that confer unique modulatory roles to this unit. In this model system, two residues, H372 directly connected to the binding site and G330 holding an off-binding-site position, were designated to assess the effect of mutations on binding selectivity. It has been observed that the H372A and G330T-H372A mutations change ligand preferences from class I (T/S amino acid at position -2 of the ligand) to class II (hydrophobic amino acid at the same position). Alternatively, the G330T single mutation leads to the recognition of both ligand classes. We have performed a series of molecular dynamics (MD) simulations for wild-type, H372A, and G330T single mutants and a double mutant of PDZ3 in the absence and presence of both types of ligands. With the combination of free-energy difference calculations and a detailed analysis of MD trajectories, "class switching" and "class bridging" behavior of PDZ3 mutants, as well as their effects on ligand selection and binding affinities are explained. We show that the dynamics of the charged N-terminus plays a fundamental role in determining the binding preferences in PDZ3 by altering the electrostatic energy. These findings are corroborated by simulations on N-terminus-truncated versions of these systems. The dynamical allostery orchestrated by the N-terminus offers a fresh perspective to the study of communication pathways in proteins.
Collapse
Affiliation(s)
- Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Nazli Kocatug
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
19
|
Öhlknecht C, Perthold JW, Lier B, Oostenbrink C. Charge-Changing Perturbations and Path Sampling via Classical Molecular Dynamic Simulations of Simple Guest-Host Systems. J Chem Theory Comput 2020; 16:7721-7734. [PMID: 33136389 PMCID: PMC7726903 DOI: 10.1021/acs.jctc.0c00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 01/24/2023]
Abstract
Currently, two different methods dominate the field of biomolecular free-energy calculations for the prediction of binding affinities. Pathway methods are frequently used for large ligands that bind on the surface of a host, such as protein-protein complexes. Alchemical methods, on the other hand, are preferably applied for small ligands that bind to deeply buried binding sites. The latter methods are also widely known to be heavily artifacted by the representation of electrostatic energies in periodic simulation boxes, in particular, when net-charge changes are involved. Different methods have been described to deal with these artifacts, including postsimulation correction schemes and instantaneous correction schemes (e.g., co-alchemical perturbation of ions). Here, we use very simple test systems to show that instantaneous correction schemes with no change in the system net charge lower the artifacts but do not eliminate them. Furthermore, we show that free energies from pathway methods suffer from the same artifacts.
Collapse
Affiliation(s)
- Christoph Öhlknecht
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Jan Walther Perthold
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Bettina Lier
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| |
Collapse
|
20
|
Kleemiss F, Justies A, Duvinage D, Watermann P, Ehrke E, Sugimoto K, Fugel M, Malaspina LA, Dittmer A, Kleemiss T, Puylaert P, King NR, Staubitz A, Tzschentke TM, Dringen R, Grabowsky S, Beckmann J. Sila-Ibuprofen. J Med Chem 2020; 63:12614-12622. [PMID: 32931274 DOI: 10.1021/acs.jmedchem.0c00813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis, characterization, biological activity, and toxicology of sila-ibuprofen, a silicon derivative of the most common nonsteroidal anti-inflammatory drug, is reported. The key improvements compared with ibuprofen are a four times higher solubility in physiological media and a lower melting enthalpy, which are attributed to the carbon-silicon switch. The improved solubility is of interest for postsurgical intravenous administration. A potential for pain relief is rationalized via inhibition experiments of cyclooxygenases I and II (COX-I and COX-II) as well as via a set of newly developed methods that combine molecular dynamics, quantum chemistry, and quantum crystallography. The binding affinity of sila-ibuprofen to COX-I and COX-II is quantified in terms of London dispersion and electrostatic interactions in the active receptor site. This study not only shows the potential of sila-ibuprofen for medicinal application but also improves our understanding of the mechanism of action of the inhibition process.
Collapse
Affiliation(s)
- Florian Kleemiss
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany.,University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland
| | - Aileen Justies
- Free University of Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Daniel Duvinage
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany
| | - Patrick Watermann
- University of Bremen, Center for Biomolecular Interactions Bremen and Center for Environmental Research and Sustainable Technology, Leobener Str. 5, 28359 Bremen, Germany
| | - Eric Ehrke
- University of Bremen, Center for Biomolecular Interactions Bremen and Center for Environmental Research and Sustainable Technology, Leobener Str. 5, 28359 Bremen, Germany
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI), Diffraction & Scattering Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Malte Fugel
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany
| | - Lorraine A Malaspina
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany.,University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland
| | - Anneke Dittmer
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany
| | - Torsten Kleemiss
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany
| | - Pim Puylaert
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany
| | - Nelly R King
- Free University of Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Anne Staubitz
- University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Str. 7, 28359 Bremen, Germany
| | | | - Ralf Dringen
- University of Bremen, Center for Biomolecular Interactions Bremen and Center for Environmental Research and Sustainable Technology, Leobener Str. 5, 28359 Bremen, Germany
| | - Simon Grabowsky
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany.,University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jens Beckmann
- University of Bremen, Institute for Inorganic Chemistry and Crystallography, Leobener Str. 3 and 7, 28359 Bremen, Germany.,Free University of Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany
| |
Collapse
|
21
|
Chen H, Maia JDC, Radak BK, Hardy DJ, Cai W, Chipot C, Tajkhorshid E. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD. J Chem Inf Model 2020; 60:5301-5307. [PMID: 32805108 DOI: 10.1021/acs.jcim.0c00745] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harnessing the power of graphics processing units (GPUs) to accelerate molecular dynamics (MD) simulations in the context of free-energy calculations has been a longstanding effort toward the development of versatile, high-performance MD engines. We report a new GPU-based implementation in NAMD of free-energy perturbation (FEP), one of the oldest, most popular importance-sampling approaches for the determination of free-energy differences that underlie alchemical transformations. Compared to the CPU implementation available since 2001 in NAMD, our benchmarks indicate that the new implementation of FEP in traditional GPU code is about four times faster, without any noticeable loss of accuracy, thereby paving the way toward more affordable free-energy calculations on large biological objects. Moreover, we have extended this new FEP implementation to a code path highly optimized for a single-GPU node, which proves to be up to nearly 30 times faster than the CPU implementation. Through optimized GPU performance, the present developments provide the community with a cost-effective solution for conducting FEP calculations. The new FEP-enabled code has been released with NAMD 3.0.
Collapse
Affiliation(s)
- Haochuan Chen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Julio D C Maia
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian K Radak
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Hardy
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Song LF, Merz KM. Evolution of Alchemical Free Energy Methods in Drug Discovery. J Chem Inf Model 2020; 60:5308-5318. [DOI: 10.1021/acs.jcim.0c00547] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Frank Song
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020; 153:044130. [PMID: 32752662 PMCID: PMC7395834 DOI: 10.1063/5.0014475] [Citation(s) in RCA: 1625] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.
Collapse
Affiliation(s)
| | - David J. Hardy
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Julio D. C. Maia
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John E. Stone
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - João V. Ribeiro
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rafael C. Bernardi
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Giacomo Fiorin
- National Heart, Lung and Blood Institute, National
Institutes of Health, Bethesda, Maryland 20814,
USA
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique UPR 9080, CNRS
and Université de Paris, Paris, France
| | | | - Ryan McGreevy
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Brian K. Radak
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Robert D. Skeel
- School of Mathematical and Statistical Sciences,
Arizona State University, Tempe, Arizona 85281,
USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State
University, Tempe, Arizona 85281, USA
| | - Yi Wang
- Department of Physics, The Chinese University of
Hong Kong, Shatin, Hong Kong, China
| | - Benoît Roux
- Department of Biochemistry, University of
Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | - Christophe Chipot
- Authors to whom correspondence should be addressed:
and . URL: http://www.ks.uiuc.edu
| | - Emad Tajkhorshid
- Authors to whom correspondence should be addressed:
and . URL: http://www.ks.uiuc.edu
| |
Collapse
|
24
|
Korol V, Husen P, Sjulstok E, Nielsen C, Friis I, Frederiksen A, Salo AB, Solov’yov IA. Introducing VIKING: A Novel Online Platform for Multiscale Modeling. ACS OMEGA 2020; 5:1254-1260. [PMID: 31984283 PMCID: PMC6977254 DOI: 10.1021/acsomega.9b03802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 05/17/2023]
Abstract
Various biochemical and biophysical processes, occurring on multiple time and length scales, can nowadays be studied using specialized software packages on supercomputer clusters. The complexity of such simulations often requires application of different methods in a single study and strong computational expertise. We have developed VIKING, a convenient web platform for carrying out multiscale computations on supercomputers. VIKING allows combining methods in standardized workflows, making complex simulations accessible to a broader biochemical and biophysical society.
Collapse
Affiliation(s)
- Vasili Korol
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Peter Husen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Emil Sjulstok
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
- Neuroscience, University of Texas Southwestern Medical Center at
Dallas, Dallas 75390, Texas, United States
| | - Claus Nielsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Ida Friis
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Anders Frederiksen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Adrian B. Salo
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Ilia A. Solov’yov
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
- Department
of Physics, Carl von Ossietzky Universität
Oldenburg, Oldenburg 26111, Germany
- E-mail:
| |
Collapse
|
25
|
Öhlknecht C, Lier B, Petrov D, Fuchs J, Oostenbrink C. Correcting electrostatic artifacts due to net-charge changes in the calculation of ligand binding free energies. J Comput Chem 2020; 41:986-999. [PMID: 31930547 DOI: 10.1002/jcc.26143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 01/06/2023]
Abstract
Alchemically derived free energies are artifacted when the perturbed moiety has a nonzero net charge. The source of the artifacts lies in the effective treatment of the electrostatic interactions within and between the perturbed atoms and remaining (partial) charges in the simulated system. To treat the electrostatic interactions effectively, lattice-summation (LS) methods or cutoff schemes in combination with a reaction-field contribution are usually employed. Both methods render the charging component of the calculated free energies sensitive to essential parameters of the system like the cutoff radius or the box side lengths. Here, we discuss the results of three previously published studies of ligand binding. These studies presented estimates of binding free energies that were artifacted due to the charged nature of the ligands. We show that the size of the artifacts can be efficiently calculated and raw simulation data can be corrected. We compare the corrected results with experimental estimates and nonartifacted estimates from path-sampling methods. Although the employed correction scheme involves computationally demanding continuum-electrostatics calculations, we show that the correction estimate can be deduced from a small sample of configurations rather than from the entire ensemble. This observation makes the calculations of correction terms feasible for complex biological systems. To show the general applicability of the proposed procedure, we also present results where the correction scheme was used to correct independent free energies obtained from simulations employing a cutoff scheme or LS electrostatics. In this work, we give practical guidelines on how to apply the appropriate corrections easily.
Collapse
Affiliation(s)
- Christoph Öhlknecht
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Bettina Lier
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Drazen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julian Fuchs
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
26
|
Sarter M, Niether D, Koenig BW, Lohstroh W, Zamponi M, Jalarvo NH, Wiegand S, Fitter J, Stadler AM. Strong Adverse Contribution of Conformational Dynamics to Streptavidin-Biotin Binding. J Phys Chem B 2019; 124:324-335. [PMID: 31710813 DOI: 10.1021/acs.jpcb.9b08467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics plays an important role for the biological function of proteins. For protein ligand interactions, changes of conformational entropy of protein and hydration layer are relevant for the binding process. Quasielastic neutron scattering (QENS) was used to investigate differences in protein dynamics and conformational entropy of ligand-bound and ligand-free streptavidin. Protein dynamics were probed both on the fast picosecond time scale using neutron time-of-flight spectroscopy and on the slower nanosecond time scale using high-resolution neutron backscattering spectroscopy. We found the internal equilibrium motions of streptavidin and the corresponding mean square displacements (MSDs) to be greatly reduced upon biotin binding. On the basis of the observed MSDs, we calculated the difference of conformational entropy ΔSconf of the protein component between ligand-bound and ligand-free streptavidin. The rather large negative ΔSconf value (-2 kJ mol-1 K-1 on the nanosecond time scale) obtained for the streptavidin tetramer seems to be counterintuitive, given the exceptionally high affinity of streptavidin-biotin binding. Literature data on the total entropy change ΔS observed upon biotin binding to streptavidin, which includes contributions from both the protein and the hydration water, suggest partial compensation of the unfavorable ΔSconf by a large positive entropy gain of the surrounding hydration layer and water molecules that are displaced during ligand binding.
Collapse
Affiliation(s)
- Mona Sarter
- I. Physikalisches Institut (IA), AG Biophysik , RWTH Aachen , Sommerfeldstrasse 14 , Aachen D-52074 , Germany
| | | | | | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum , Technische Universität München , Garching D-85747 , Germany
| | - Michaela Zamponi
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , Garching D-85748 , Germany
| | - Niina H Jalarvo
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6475 , United States
| | - Simone Wiegand
- Department für Chemie - Physikalische Chemie , Universität zu Köln , Cologne D-50939 , Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik , RWTH Aachen , Sommerfeldstrasse 14 , Aachen D-52074 , Germany.,Institute of Complex Systems, Molecular Biophysics (ICS-5) , Forschungszentrum Jülich GmbH , Jülich D-52428 , Germany
| | - Andreas M Stadler
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , Aachen D-52056 , Germany
| |
Collapse
|
27
|
Suh D, Jo S, Jiang W, Chipot C, Roux B. String Method for Protein-Protein Binding Free-Energy Calculations. J Chem Theory Comput 2019; 15:5829-5844. [PMID: 31593627 DOI: 10.1021/acs.jctc.9b00499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A powerful computational strategy to determine the equilibrium association constant of two macromolecules with explicit-solvent molecular dynamics (MD) simulations is the "geometric route", which considers the reversible physical separation of the bound complex in solution. Nonetheless, multiple challenges remain to render this type of methodology reliable and computationally efficient in practice. In particular, in one, formulation of the geometric route relies on the potential of mean force (PMF) for physically separating the two binding partners restrained along a straight axis, which must be selected prior to the calculation. However, practical applications indicate that the calculation of the separation PMF along the predefined rectilinear pathway may be suboptimal and slowly convergent. Recognizing that a rectilinear straight separation pathway is generally not representative of how the protein complex physically separates in solution, we put forth a novel theoretical framework for binding free-energy calculations, leaning on the optimal curvilinear minimum free-energy path (MFEP) determined from the string method. The proposed formalism is validated by comparing the results obtained using both rectilinear and curvilinear pathways for a prototypical host-guest complex formed by cucurbit[7]uril (CB[7]) binding benzene, and for the barnase-barstar protein complex. On the basis of multi-microsecond MD calculations, we find that the calculations following the traditional rectilinear pathway and the string-based curvilinear pathway agree quantitatively, but convergence is faster with the latter.
Collapse
Affiliation(s)
- Donghyuk Suh
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637-1454 , United States
| | - Sunhwan Jo
- Computational Science Division , Argonne National Laboratory , Argonne , Illinois 60439-8643 , United States
| | - Wei Jiang
- Computational Science Division , Argonne National Laboratory , Argonne , Illinois 60439-8643 , United States
| | - Chris Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign , Unité Mixte de Recherche n°7019, Université de Lorraine , B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex , France.,Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2325 , United States.,Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2325 , United States
| | - Benoît Roux
- Department of Chemistry , University of Chicago , Chicago , Illinois 60637-1454 , United States.,Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60637-1454 , United States.,Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439-8643 , United States
| |
Collapse
|
28
|
Chen W, Deng Y, Russell E, Wu Y, Abel R, Wang L. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges. J Chem Theory Comput 2018; 14:6346-6358. [PMID: 30375870 DOI: 10.1021/acs.jctc.8b00825] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Chen
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Yuqing Deng
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ellery Russell
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Yujie Wu
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Lingle Wang
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
29
|
Viricel C, de Givry S, Schiex T, Barbe S. Cost function network-based design of protein–protein interactions: predicting changes in binding affinity. Bioinformatics 2018; 34:2581-2589. [DOI: 10.1093/bioinformatics/bty092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/16/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Clément Viricel
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- Unité de Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan cedex, France
| | - Simon de Givry
- Unité de Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan cedex, France
| | - Thomas Schiex
- Unité de Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan cedex, France
| | - Sophie Barbe
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
30
|
Zhang H, Gattuso H, Dumont E, Cai W, Monari A, Chipot C, Dehez F. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA. Molecules 2018; 23:molecules23020228. [PMID: 29370096 PMCID: PMC6017086 DOI: 10.3390/molecules23020228] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.), which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Hugo Gattuso
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Université Claude Bernard Lyon 1, F-69342 Lyon, France.
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Antonio Monari
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
| | - Christophe Chipot
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), Université de Lorraine-Nancy, 54506 Vandoeuvre-lès-Nancy, France.
- UMR 7019, Theoretical Physics and Chemistry Department (LPCT), CNRS, 54506 Vandeouvre-lès-Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Champaign, Illinois, 54506 Vandeouvre-lès-Nancy, France.
| |
Collapse
|
31
|
Sharma V, Jambrina PG, Kaukonen M, Rosta E, Rich PR. Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations. Proc Natl Acad Sci U S A 2017; 114:E10339-E10348. [PMID: 29133387 PMCID: PMC5715751 DOI: 10.1073/pnas.1708628114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proton pumping A-type cytochrome c oxidase (CcO) terminates the respiratory chains of mitochondria and many bacteria. Three possible proton transfer pathways (D, K, and H channels) have been identified based on structural, functional, and mutational data. Whereas the D channel provides the route for all pumped protons in bacterial A-type CcOs, studies of bovine mitochondrial CcO have led to suggestions that its H channel instead provides this route. Here, we have studied H-channel function by performing atomistic molecular dynamics simulations on the entire, as well as core, structure of bovine CcO in a lipid-solvent environment. The majority of residues in the H channel do not undergo large conformational fluctuations. Its upper and middle regions have adequate hydration and H-bonding residues to form potential proton-conducting channels, and Asp51 exhibits conformational fluctuations that have been observed crystallographically. In contrast, throughout the simulations, we do not observe transient water networks that could support proton transfer from the N phase toward heme a via neutral His413, regardless of a labile H bond between Ser382 and the hydroxyethylfarnesyl group of heme a In fact, the region around His413 only became sufficiently hydrated when His413 was fixed in its protonated imidazolium state, but its calculated pKa is too low for this to provide the means to create a proton transfer pathway. Our simulations show that the electric dipole moment of residues around heme a changes with the redox state, hence suggesting that the H channel could play a more general role as a dielectric well.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pablo G Jambrina
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markus Kaukonen
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
| | - Edina Rosta
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Peter R Rich
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium. Catalysts 2017. [DOI: 10.3390/catal7080227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
New insights into human farnesyl pyrophosphate synthase inhibition by second-generation bisphosphonate drugs. J Comput Aided Mol Des 2017. [PMID: 28631130 DOI: 10.1007/s10822-017-0034-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pamidronate, alendronate, APHBP and neridronate are a group of drugs, known as second-generation bisphosphonates (2G-BPs), commonly used in the treatment of bone-resorption disorders, and recently their use has been related to some collateral side effects. The therapeutic activity of 2G-BPs is related to the inhibition of the human Farnesyl Pyrophosphate Synthase (hFPPS). Available inhibitory activity values show that 2G-BPs act time-dependently, showing big differences in their initial inhibitory activities but similar final IC50 values. However, there is a lack of information explaining this similar final inhibitory potency. Although different residues have been identified in the stabilization of the R2 side chain of 2G-BPs into the active site, similar free binding energies were obtained that highlighted a similar stability of the ternary complexes, which in turns justified the similar IC50 values reported. Free binding energy calculations also demonstrated that the union of 2G-BPs to the active site were 38 to 54 kcal mol-1 energetically more favourable than the union of the natural substrate, which is the basis of the inhibition potency of the hFPPS activity.
Collapse
|
34
|
Dobrev P, Donnini S, Groenhof G, Grubmüller H. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pK(a) Calculations. J Chem Theory Comput 2016; 13:147-160. [PMID: 27966355 DOI: 10.1021/acs.jctc.6b00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.
Collapse
Affiliation(s)
- Plamen Dobrev
- Theoretical & Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | - Helmut Grubmüller
- Theoretical & Computational Biophysics Department, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Chen Y, Roux B. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method. J Chem Theory Comput 2016; 11:3919-31. [PMID: 26300709 PMCID: PMC4535364 DOI: 10.1021/acs.jctc.5b00261] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
36
|
Donnini S, Ullmann RT, Groenhof G, Grubmüller H. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer. J Chem Theory Comput 2016; 12:1040-51. [PMID: 26881315 DOI: 10.1021/acs.jctc.5b01160] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.
Collapse
Affiliation(s)
- Serena Donnini
- Nanoscience Center and Department of Biological and Environmental Sciences, University of Jyväskylä , P. O. Box 35, 40014 Jyväskylä, Finland
| | - R Thomas Ullmann
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry , Am Faßberg 11, 37077 Göttingen, Germany
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä , P. O. Box 35, 40014 Jyväskylä, Finland
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry , Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. Accurate calculation of the absolute free energy of binding for drug molecules. Chem Sci 2016; 7:207-218. [PMID: 26798447 PMCID: PMC4700411 DOI: 10.1039/c5sc02678d] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol-1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol-1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets.
Collapse
Affiliation(s)
- Matteo Aldeghi
- Structural Bioinformatics and Computational Biochemistry , Department of Biochemistry , University of Oxford , South Parks Road , Oxford , OX1 3QU , UK . ; ; Tel: +44 (0)1865 613305
| | - Alexander Heifetz
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park , Abingdon , Oxfordshire OX14 4RZ , UK
| | - Michael J Bodkin
- Evotec (U.K.) Ltd , 114 Innovation Drive, Milton Park , Abingdon , Oxfordshire OX14 4RZ , UK
| | - Stefan Knapp
- Structural Genomics Consortium , Nuffield Department of Clinical Medicine , University of Oxford , Old Road Campus Research Building, Roosevelt Drive , Oxford OX3 7DQ , UK ; Target Discovery Institute , Nuffield Department of Clinical Medicine , University of Oxford , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry , Department of Biochemistry , University of Oxford , South Parks Road , Oxford , OX1 3QU , UK . ; ; Tel: +44 (0)1865 613305
| |
Collapse
|
38
|
Benay G, Wipff G. The effect of solvent heterogeneity on the solvation and complexation of alkali cations by 18-crown-6: a simulation study in the 90 : 10 chloroform/methanol mixture. NEW J CHEM 2016. [DOI: 10.1039/c5nj03527a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although chloroform is in excess over methanol in the mixture, the predicted ion binding affinities and selectivities are more “methanol-like” than “chloroform-like”.
Collapse
Affiliation(s)
- Gael Benay
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| | - Georges Wipff
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| |
Collapse
|
39
|
Gattuso H, Dumont E, Chipot C, Monari A, Dehez F. Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Phys Chem Chem Phys 2016; 18:33180-33186. [DOI: 10.1039/c6cp06078a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the investigation of the thermochemical properties of benzophenone interacting with B-DNA studied by all-atom molecular dynamic simulations.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation
- UMR 7565
- Structure et Réactivité des Systémes Moléculaires Complexes (SRSMC)
- Vandoeuvre-les-Nancy
| | - Elise Dumont
- Laboratoire de Chimie
- UMR 5182
- Ecole Normale Supérieure de Lyon
- Lyon
- France
| | - Christophe Chipot
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation
- UMR 7565
- Structure et Réactivité des Systémes Moléculaires Complexes (SRSMC)
- Vandoeuvre-les-Nancy
| | - Antonio Monari
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation
- UMR 7565
- Structure et Réactivité des Systémes Moléculaires Complexes (SRSMC)
- Vandoeuvre-les-Nancy
| | - François Dehez
- Université de Lorraine – Nancy
- Theory-Modeling-Simulation
- UMR 7565
- Structure et Réactivité des Systémes Moléculaires Complexes (SRSMC)
- Vandoeuvre-les-Nancy
| |
Collapse
|
40
|
Benay G, Wipff G. Liquid–liquid extraction of alkali cations by 18-crown-6: complexation and interface crossing studied by MD and PMF simulations. NEW J CHEM 2016. [DOI: 10.1039/c5nj02609a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 18C6/M+Pic−complexes form and adsorb “right at the nano-interface” where 18C6 prefers the K+guest.
Collapse
Affiliation(s)
- Gael Benay
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| | - Georges Wipff
- Laboratoire MSM
- UMR 7140
- Institut de Chimie
- 67000 Strasbourg
- France
| |
Collapse
|
41
|
Procacci P, Cardelli C. Fast Switching Alchemical Transformations in Molecular Dynamics Simulations. J Chem Theory Comput 2015; 10:2813-23. [PMID: 26586508 DOI: 10.1021/ct500142c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an efficient and rigorous implementation of the fast switching alchemical transformation for systems where electrostatic interactions are treated using the smooth particle mesh Ewald method. Free energies are computed using bidirectional nonequilibrium alchemical trajectories by applying the Crooks fluctuation theorem and the Bennett acceptance ratio to the collection of the final alchemical works. The technique is used for the evaluation of the 1-octanol/water partition coefficients for some selected organic molecules. Fast switching alchemical tranformations appear to be competitive, both in accuracy and in efficiency, with respect to the traditional methods based on independent equilibrium simulations of intermediate states.
Collapse
Affiliation(s)
- Piero Procacci
- Dipartimento di Chimica, Università di Firenze , Via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy
| | - Chiara Cardelli
- Dipartimento di Chimica, Università di Firenze , Via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy
| |
Collapse
|
42
|
Chipot C. Milestones in the Activation of a G Protein-Coupled Receptor. Insights from Molecular-Dynamics Simulations into the Human Cholecystokinin Receptor-1. J Chem Theory Comput 2015; 4:2150-9. [PMID: 26620486 DOI: 10.1021/ct800313k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of G protein-coupled receptors (GPCRs) obeys an allosteric mechanism triggered by ligand binding. To understand how the signal is transduced in the cell, identification of the milestones paving the pathway between the active and the inactive states of the receptor is necessary. A model of the human cholecystokinin receptor-1 (CCK1R) has been proposed recently. The complex formed by CCK1R and an agonist ligand will serve as a paradigm of an active conformation to capture milestones in GPCR activation. To reach this goal, assuming microreversibility, the initial step toward the inactivation of CCK1R was modeled using free energy calculations, whereby the ligand is removed from the binding pocket. However accurate the reproduction of the experimental affinity constant, this simulation only represents an embryonic stage of the inactivation process. Starting from the apo receptor, an unprecedented 0.1-μs molecular dynamics trajectory was generated, bereft of experimental biases, bringing into the light key events in the inactivation of CCK1R, chief among which the hydration of its internal cavity, concomitant with the spatial rearrangement of the transmembrane helical segments. Hydration is intimately related to the isomerization of the highly conserved residue W326 of helix VI, acting as a two-state toggle switch, and of residue M121 of helix III. In the active state, the former residue obstructs the crevice, thereby preventing water leakage, which would otherwise trigger the disruption of an ionic lock between helices II and III involving the signature E/DRY motif ubiquitous to GPCRs.
Collapse
Affiliation(s)
- Christophe Chipot
- Equipe de dynamique des assemblages membranaires, UMR No 7565, Nancy Université BP 239, 54506 Vandœuvre-lès-Nancy cedex, France
| |
Collapse
|
43
|
Morgan BR, Massi F. Accurate Estimates of Free Energy Changes in Charge Mutations. J Chem Theory Comput 2015; 6:1884-93. [PMID: 26615847 DOI: 10.1021/ct900565e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to determine the effect of charge changes on the free energy is necessary for fundamental studies of the electrostatic contribution to protein binding and stability. Currently, calculations of differences in free energy for charge mutations carried out in systems with periodic boundary conditions must include an approximate self-energy correction that can be on the same order of magnitude as the calculated free energy change. Here, a new method for accurately calculating the free energy change associated with any alchemical mutation, regardless of charge, is presented. In this method, paired mutations of opposite charge exactly cancel the self-energy term because of its quadratic charge dependence. Since the self-energy term implicitly cancels within the method, a correction never needs to be applied, and the statistical uncertainty associated is thereby removed. An implementation procedure is described and applied to the free energy of ionic hydration and a charged amino acid mutation.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Physics, Clark University, 950 Main Street, Worcester, Massachusetts 01610 and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Francesca Massi
- Department of Physics, Clark University, 950 Main Street, Worcester, Massachusetts 01610 and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, 55 Lake Avenue North, Worcester, Massachusetts 01655
| |
Collapse
|
44
|
Rashid MH, Heinzelmann G, Kuyucak S. Calculation of free energy changes due to mutations from alchemical free energy simulations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633615500236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How a mutation affects the binding free energy of a ligand is a fundamental problem in molecular biology/biochemistry with many applications in pharmacology and biotechnology, e.g. design of drugs and enzymes. Free energy change due to a mutation can be determined most accurately by performing alchemical free energy calculations in molecular dynamics (MD) simulations. Here we discuss the necessary conditions for success of free energy calculations using toxin peptides that bind to ion channels as examples. We show that preservation of the binding mode is an essential requirement but this condition is not always satisfied, especially when the mutation involves a charged residue. Otherwise problems with accuracy of results encountered in mutation of charged residues can be overcome by performing the mutation on the ligand in the binding site and bulk simultaneously and in the same system. The proposed method will be useful in improving the affinity and selectivity profiles of drug leads and enzymes via computational design and protein engineering.
Collapse
Affiliation(s)
- M. Harunur Rashid
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Germano Heinzelmann
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Serdar Kuyucak
- Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
45
|
Semino R, Zaldívar G, Calvo EJ, Laria D. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures. J Chem Phys 2014; 141:214509. [DOI: 10.1063/1.4902837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
46
|
Chen W, Shen JK. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics. J Comput Chem 2014; 35:1986-96. [PMID: 25142416 PMCID: PMC4165709 DOI: 10.1002/jcc.23713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/20/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022]
Abstract
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Jana K. Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
47
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
48
|
Meyer AG, Sawyer SL, Ellington AD, Wilke CO. Analyzing machupo virus-receptor binding by molecular dynamics simulations. PeerJ 2014; 2:e266. [PMID: 24624315 PMCID: PMC3940602 DOI: 10.7717/peerj.266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions.
Collapse
Affiliation(s)
- Austin G. Meyer
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sara L. Sawyer
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O. Wilke
- Department of Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
49
|
Heinzelmann G, Chen PC, Kuyucak S. Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2. J Phys Chem B 2014; 118:1813-24. [PMID: 24479628 DOI: 10.1021/jp412195m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurate calculation of the binding affinity of small molecules to proteins has the potential to become an important tool in rational drug design. In this study, we use the free energy perturbation (FEP) method with restraints to calculate the standard binding free energy of five ligands (ACPA, AMPA, CNQX, DNQX, and glutamate) to the glutamate receptor GluA2, which plays an essential role in synaptic transmission. To deal with the convergence problem in FEP calculations with charged ligands, we use a protocol where the ligand is coupled in the binding site while it is decoupled in bulk solution simultaneously. The contributions from the conformational, rotational, and translational entropies to the standard binding free energy are determined by applying/releasing respective restraints to the ligand in bulk/binding site. We also employ the confine-and-release approach, which helps to resolve convergence problems in FEP calculations. Our results are in good agreement with the experimental values for all five ligands, including the charged ones which are often problematic in FEP calculations. We also analyze the different contributions to the binding free energy of each ligand to GluA2 and discuss the nature of these interactions.
Collapse
|
50
|
Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 2013; 139:184103. [PMID: 24320250 PMCID: PMC3838431 DOI: 10.1063/1.4826261] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/30/2013] [Indexed: 01/12/2023] Open
Abstract
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Collapse
Affiliation(s)
- Gabriel J Rocklin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA
| | | | | | | |
Collapse
|