1
|
Sun JW, Thomas JS, Monkovic JM, Gibson H, Nagapurkar A, Frezzo JA, Katyal P, Punia K, Mahmoudinobar F, Renfrew PD, Montclare JK. Supercharged coiled-coil protein with N-terminal decahistidine tag boosts siRNA complexation and delivery efficiency of a lipoproteoplex. J Pept Sci 2024; 30:e3594. [PMID: 38499991 DOI: 10.1002/psc.3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non-palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non-viral materials, while offering safer and non-cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled-coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C-terminal decahistidine tags on α-helical secondary structure. Cross-correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.
Collapse
Affiliation(s)
- Jonathan W Sun
- Department of Chemistry, New York University, New York, New York, USA
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Joseph S Thomas
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Julia M Monkovic
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Halle Gibson
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Akash Nagapurkar
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Joseph A Frezzo
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Jin Kim Montclare
- Department of Chemistry, New York University, New York, New York, USA
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Biomaterials, NYU College of Dentistry, New York, New York, USA
| |
Collapse
|
2
|
Prasetyanto EA, Wasisto HS, Septiadi D. Cellular lasers for cell imaging and biosensing. Acta Biomater 2022; 143:39-51. [PMID: 35314365 DOI: 10.1016/j.actbio.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
The possibility to produce laser action involving biomaterials, in particular (single) biological cells, has fostered the development of cellular lasers as a novel approach in biophotonics. In this respect, cells that are engineered to carry gain medium (e.g., fluorescent dyes or proteins) are placed inside an optical cavity (i.e., typically a sandwich of highly reflective mirrors), allowing the generation of stimulated emission upon sufficient optical pumping. In another scenario, micron-sized optical resonators supporting whispering-gallery mode (WGM) or semiconductor-based laser probes can be internalized by the cells and support light amplification. This review summarizes the recent advances in the fields of biolasers and cellular lasers, and most importantly, highlights their potential applications in the fields of in vitro and in vivo cell imaging and analysis. They include biosensing (e.g., in vitro detection of sodium chloride (NaCl) concentration), cancer cell imaging, laser-emission-based microscope, cell tracking, cell distinction study, and tissue contraction monitoring in zebrafish. Lastly, several fundamental issues in developing cellular lasers including laser probe fabrication, biocompatibility of the system, and alteration of local refractive index of optical cavities due to protein absorption or probe aggregation are described. Cellular lasers are foreseen as a promising tool to study numerous biological and biophysical phenomena. STATEMENT OF SIGNIFICANCE: Biolasers are generation of laser involving biological materials. Biomaterials, including single cells, can be engineered to incorporate laser probes or fluorescent proteins or fluorophores, and the resulting light emission can be coupled to optical resonator, allowing generation of cellular laser emission upon optical pumping. Unlike fluorescence, this stimulated emission is very sensitive and is capable of detecting small alterations in the optical property of the cells and their environment. In this review, recent development and applications of cellular lasers in the fields of in vitro and in vivo cell imaging, cell tracking, biosensing, and cell/tissue analysis are highlighted. Several challenges in developing cellular lasers including probe fabrication and biocompatibility as well as alteration of cellular environment are explained.
Collapse
Affiliation(s)
- Eko Adi Prasetyanto
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University, Jl. Pluit Raya 2, Jakarta 14440, Indonesia
| | | | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland.
| |
Collapse
|
3
|
Fernández-Luna V, Coto PB, Costa RD. When Fluorescent Proteins Meet White Light-Emitting Diodes. Angew Chem Int Ed Engl 2018; 57:8826-8836. [DOI: 10.1002/anie.201711433] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pedro B. Coto
- Institut für Theoretische Physik; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Staudtstr. 7/ B2 91058 Erlangen Germany
- Current address: Department of Physical and Analytical Chemistry; Universidad de Oviedo; Avda. Julián Clavería 8 33006 Oviedo Spain) Department of Physical and Analytical Chemistry
| | - Rubén D. Costa
- IMDEA Materials Institute; C/ Eric Kandel, 2, Tecnogetafe 28906, Getafe Madrid Spain
| |
Collapse
|
4
|
Fernández-Luna V, Coto PB, Costa RD. Wenn fluoreszierende Proteine und Weißlicht emittierende Dioden aufeinandertreffen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Pedro B. Coto
- Institut für Theoretische Physik; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Staudtstraße 7/ B2 91058 Erlangen Deutschland
- Aktuelle Adresse: Department of Physical and Analytical Chemistry; Universidad de Oviedo; Avda. Julián Clavería 8 33006 Oviedo Spanien
| | - Rubén D. Costa
- IMDEA Materials Institute; C/ Eric Kandel, 2, Tecnogetafe 28906, Getafe Madrid Spanien
| |
Collapse
|
5
|
Humar M, Gather MC, Yun SH. Cellular dye lasers: lasing thresholds and sensing in a planar resonator. OPTICS EXPRESS 2015; 23:27865-79. [PMID: 26480446 PMCID: PMC4646517 DOI: 10.1364/oe.23.027865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biological cell lasers are promising novel building blocks of future biocompatible optical systems and offer new approaches to cellular sensing and cytometry in a microfluidic setting. Here, we demonstrate a simple method for providing optical gain by using a variety of standard fluorescent dyes. The dye gain medium can be located inside or outside a cell, or in both, which gives flexibility in experimental design and makes the method applicable to all cell types. Due to the higher refractive index of the cytoplasm compared to the surrounding medium, a cell acts as a convex lens in a planar Fabry-Perot cavity. Its effect on the stability of the laser cavity is analyzed and utilized to suppress lasing outside cells. The resonance modes depend on the shape and internal structure of the cell. As proof of concept, we show how the laser output modes are affected by the osmotic pressure.
Collapse
Affiliation(s)
- Matjaž Humar
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, USA
- Condensed Matter Department, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Malte C. Gather
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, USA
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, USA
- Harvard–MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Drane T, Bach H, Shapiro M, Milner V. Femtosecond lasing from a fluorescent protein in a one dimensional random cavity. BIOMEDICAL OPTICS EXPRESS 2015; 6:1885-1894. [PMID: 26137388 PMCID: PMC4467703 DOI: 10.1364/boe.6.001885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/12/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
We present evidence of random lasing from the fluorescent protein DsRed2 embedded in a random one-dimensional cavity. Lasing is achieved when a purified protein solution, placed inside a layered random medium, is optically excited with a femtosecond pump pulse in the direction perpendicular to the plane of random layers. We demonstrate that pumping with ultrashort pulses resulted in a lasing threshold two orders of magnitude lower than that found for nanosecond excitation.
Collapse
Affiliation(s)
- T.M. Drane
- Department of Chemistry, The University of British Columbia, Vancouver,
Canada
- The Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, Vancouver,
Canada
| | - H. Bach
- Department of Medicine, The University of British Columbia, Vancouver,
Canada
| | - M. Shapiro
- Department of Chemistry, The University of British Columbia, Vancouver,
Canada
- The Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, Vancouver,
Canada
| | - V. Milner
- Department of Physics & Astronomy, The University of British Columbia, Vancouver,
Canada
- The Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, Vancouver,
Canada
| |
Collapse
|
7
|
Vannahme C, Maier-Flaig F, Lemmer U, Kristensen A. Single-mode biological distributed feedback laser. LAB ON A CHIP 2013; 13:2675-8. [PMID: 23532260 DOI: 10.1039/c3lc50140j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two different grating periods are reported.
Collapse
Affiliation(s)
- Christoph Vannahme
- Department of Micro and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345B, 2800 Kongens Lyngby, Denmark.
| | | | | | | |
Collapse
|
8
|
Olsen S, McKenzie RH. Bond alternation, polarizability, and resonance detuning in methine dyes. J Chem Phys 2011; 134:114520. [PMID: 21428645 DOI: 10.1063/1.3563801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seth Olsen
- School of Mathematics and Physics and Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
9
|
|
10
|
He GS, Tan LS, Zheng Q, Prasad PN. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem Rev 2008; 108:1245-330. [PMID: 18361528 DOI: 10.1021/cr050054x] [Citation(s) in RCA: 1211] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Patnaik SS, Trohalaki S, Pachter R. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation. Biopolymers 2005; 75:441-52. [PMID: 15497152 DOI: 10.1002/bip.20156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular dynamics (MD) simulations were carried out to study the conformational rearrangement induced by deprotonation of the fluorescent chromophore in GFP, as well as the associated changes in the hydrogen-bonding network. For both the structures with either a neutral or an anionic chromophore, it was found that the beta-barrel was stable and rigid, and the conformation of the chromophore was consistent with the available x-ray structure. The conformational change in Thr203 due to deprotonation was also found to be consistent with the three-state isomerization model. Although GFP is highly fluorescent, denatured-GFP is nonfluorescent, indicating that the environment of the protein plays an important role in its fluorescence behavior. Our MD simulations, which explore the effect of the protein shell on the conformation of the chromophore, find the flexibility of the central chromophore to be significantly restricted due to the rigid nature of the protein shell. The hydrogen-bonding between the chromophore and neighboring residues was also shown to contribute to the chromophore rigidity. In addition to the MD studies, quantum mechanics/molecular mechanics (QM/MM) ONIOM calculations were carried out to investigate the effect of the beta-barrel on the internal rotation in the chromophore. Along with providing quantitative values for torsional rotation barriers about the bridging bond in the chromophore, the ONIOM calculations also validate our MD force field parameters.
Collapse
Affiliation(s)
- Soumya S Patnaik
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Bldg. 651, Wright-Patterson Air Force Base, OH 45433-7702, USA.
| | | | | |
Collapse
|
12
|
Putthanarat S, Eby R, Naik RR, Juhl SB, Walker MA, Peterman E, Ristich S, Magoshi J, Tanaka T, Stone MO, Farmer B, Brewer C, Ott D. Nonlinear optical transmission of silk/green fluorescent protein (GFP) films. POLYMER 2004. [DOI: 10.1016/j.polymer.2004.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|