1
|
Taylor JM, Conboy JC. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. J Chem Phys 2024; 161:085104. [PMID: 39185850 DOI: 10.1063/5.0226075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Fluorescent lipid probes such as 1-palmitoyl-2-(6-[7-nitro-2-1,3-benzoxadiazol-4-yl]amino-hexanoyl)-sn-glycero-3-phosphocholine (C6 NBD-PC) have been used extensively to study the kinetics of lipid flip-flop. However, the efficacy of these probes as reliable reporters of native lipid translocation has never been tested. In this study, sum-frequency vibrational spectroscopy (SFVS) was used to measure the kinetics of C6 NBD-PC lipid flip-flop and the flip-flop of native lipids in planar supported lipid bilayers. C6 NBD-PC was investigated at concentrations of 1 and 3 mol. % in both chain-matched 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chain-mismatched 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) to assess the ability of C6 NBD-PC to mimic the behavior of the surrounding matrix lipids. It was observed that C6 NBD-PC exhibited faster flip-flop kinetics compared to the native lipids in both DPPC and DSPC matrices, with notably accelerated rates in the chain-mismatched DSPC system. SFVS was also used to measure the acyl chain orientation and gauche content of C6 NBD-PC in both DPPC and DSPC membranes. In the DSPC matrix (chain mismatched), C6 NBD-PC was more disordered in terms of both gauche content and acyl tilt, whereas it maintained an orientation similar to that of the native lipids in the DPPC matrix (chain matched). In addition, the flip-flop kinetics of C6 NBD-PC were also measured using second-harmonic generation (SHG) spectroscopy, by probing the motion of the NBD chromophore directly. The flip-flop kinetics measured by SHG were consistent with those obtained from SFVS. This study also marks the first instance of phospholipid flip-flop kinetics being measured via SHG. The results of this study clearly demonstrate that C6 NBD-PC does not adequately mimic the behavior of native lipids within a membrane. These findings also highlight the significant impact of the lipid matrix on the flip-flop behavior of the fluorescently labeled lipid, C6 NBD-PC.
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
3
|
Shultz MJ, Bisson P, Wang J, Marmolejos J, Davies RG, Gubbins E, Xiong Z. High phase resolution: Probing interactions in complex interfaces with sum frequency generation. Biointerphases 2023; 18:058502. [PMID: 37902617 DOI: 10.1116/6.0002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.
Collapse
Affiliation(s)
- Mary Jane Shultz
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Patrick Bisson
- Cambridge Polymer Group, Inc., 100 Trade Center Drive, Suite 200, Woburn, Massachusetts 01801
| | - Jing Wang
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Joam Marmolejos
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Rebecca G Davies
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Emma Gubbins
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Ziqing Xiong
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| |
Collapse
|
4
|
Zhang Y, Fan H, Wang Y, Zuo B, Zhang W, Wang S, Wang X. Influence of the linkage type between the polymer backbone and side groups on the surface segregation of methyl groups during film formation. SOFT MATTER 2015; 11:9168-9178. [PMID: 26415634 DOI: 10.1039/c5sm01504a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although poly(vinyl acetate) (PVAc) differs from poly(methyl acrylate) (PMA) only in the reversed position of the ester group, a large difference in the concentration dependence of the casting solution on the corresponding surface structure of the cast films of PVAc, PMA and poly(methyl methacrylate) (PMMA) was observed. The hydrophobicity of both PMA and PMMA films increased with increasing concentration of the corresponding polymer solution, whereas cast PVAc films showed the reverse trend. The surface structure of the cast films prepared with different concentrations of the casting solution, characterized by sum frequency generation (SFG) vibrational spectra, showed that the order of the methylene groups increased while that of the acetyl methyl group decreased on the surface of cast PVAc film with increasing concentration of casting solution. However, the order of the ester methyl group increased and that of methylene groups did not change for cast PMA films with increasing concentration of casting solution. The cast PMMA film showed a reverse trend compared with the corresponding PMA film. It is apparent that well-ordered ester or acetyl methyl groups on the surface, which are oriented away from the polymer film, rather than methylene groups, play an important role in determining surface hydrophobicity, as the latter shield the OC[double bond, length as m-dash]O groups of PVAc, PMA and PMMA film surfaces from being exposed, resulting in low surface free energy. The reason for this difference is attributed to the relatively low energy for ester methyl group reorientation, an ester group structure nearer to the trans state and more regular local configuration of segments in concentrated solutions of PMA and PMMA compared to that of PVAc.
Collapse
Affiliation(s)
- Yizhi Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Fan
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yuping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wei Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shunli Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Karnes JJ, Benjamin I. Mechanism and Dynamics of Molecular Exchange at the Silica/Binary Solvent Mixtures Interface. J Phys Chem A 2015; 119:12073-81. [DOI: 10.1021/acs.jpca.5b05097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- John J. Karnes
- Department
of Chemistry and
Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Ilan Benjamin
- Department
of Chemistry and
Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
6
|
Quast AD, Curtis AD, Horn BA, Goates SR, Patterson JE. Role of Nonresonant Sum-Frequency Generation in the Investigation of Model Liquid Chromatography Systems. Anal Chem 2012; 84:1862-70. [DOI: 10.1021/ac2032035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arthur D. Quast
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Alexander D. Curtis
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Brent A. Horn
- Department of Criminal Justice, Weber State University, Ogden, Utah 84408, United States
| | - Steven R. Goates
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - James E. Patterson
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| |
Collapse
|
7
|
Rumpel A, Novak M, Walter J, Braunschweig B, Halik M, Peukert W. Tuning the molecular order of C60 functionalized phosphonic acid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15016-15023. [PMID: 22044068 DOI: 10.1021/la203916h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mixed self-assembled monolayers (SAM) of alkyl phosphonic acids and C(60) functionalized octadecyl phosphonic acids (C(60)C(18)-PA) are deposited on alumina substrates from solution and are shown to form well-ordered structures with an insulating layer of alkyl chains and a semiconducting layer that comprises mainly C(60). Such an ordered structure is a necessity for the application of SAMs in organic transistors but is difficult to obtain since C(60)C(18)-PA without additional support do self-assemble in dense packaging but not in a well-ordered fashion. To avoid disordering of the SAM and to gain a better control of the interfacial properties we have investigated the stabilizing effects of fluorinated dodecyl phosphonic acids (FC(12)-PA) on the C(60)C(18)-PA monolayer. Vibrational sum-frequency (SFG) spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and electrical measurements were applied to study the mixed monolayers. Here, we make use of the differently labeled PA to determine surface coverages and molecular properties of the two species independently. Adsorption of FC(12)-PA gives rise to vibrational bands at 1344 cm(-1) and 1376 cm(-1) in SFG spectra, while a pronounced vibrational band centered at 1465 cm(-1) is attributable to C(60) vibrations. The coexistence of the bands is indicative for the presence of a mixed monolayer that is composed of both molecular species. Furthermore, a pronounced maximum in SFG intensity of the C(60) band is observed for SAMs, which are deposited from solutions with ~75% C(60)C(18)-PA and ~25% FC(12)-PA. The intensity maximum originates from successful stabilization of C(60) modified C(60)C(18)-PA by FC(12)-PA and a significantly improved molecular order. Conclusions from SFG spectra are corroborated by electric measurements that show best performance at these concentrations. Our results provide new information on the morphology and composition of C(60) modified SAMs and establish a route to fabricate well-defined layers for molecular scale organic electronics.
Collapse
Affiliation(s)
- Armin Rumpel
- Institute of Particle Technology (LFG), University of Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Borówko M, Sokołowski S, Staszewski T. A density functional approach to retention in chromatography with chemically bonded phases. J Chromatogr A 2011; 1218:711-20. [DOI: 10.1016/j.chroma.2010.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
9
|
Structural modifications and adsorption capability of C18-silica/binary solvent interphases studied by EPR and RP-HPLC. J Colloid Interface Sci 2010; 352:512-9. [PMID: 20884002 DOI: 10.1016/j.jcis.2010.08.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/29/2010] [Accepted: 08/31/2010] [Indexed: 11/23/2022]
Abstract
The structure of the octadecyl (C18) chain layer attached to a silica surface in the presence of binary solvents (acetonitrile/water; methanol/water) was investigated by electron paramagnetic resonance (EPR) and reverse-phase high-performance liquid chromatography (RP-HPLC), using 4-hydroxy-2,2,6,6 tetramethylpiperidine-N-oxyl (Tempol) to mimic the behavior of pollutants with medium-low polarity. The computer-aided analysis of the EPR spectra provided structural and dynamical information of the probe and its environments which clarified the modifications of the chain conformations that occur at different solvent compositions. Capacity factors, k', were calculated as a function of the percentage of water/organic solvent (mobile phase), and the retention behavior of the C18-functionalized silica surface (stationary phase) was compared with the results obtained with EPR analysis under static conditions. In particular, EPR analysis showed that, at percentages of ACN equal or higher than 50%, the chain layer assume a quite ordered structure, whereas at percentages lower than 50% the chains tend to collapse and fold on the silica surface. In this latter situation, the hydrophobic net of the C18 chains strongly limits Tempol mobility. In methanol/water mixtures, both EPR and RP-HPLC analysis showed that the probe was adsorbed into a poorly ordered interphase. If the residual silanols at the silica surface were bonded to a sililating agent (endcapping), both EPR and RP-HPLC analysis showed a decreased adsorption of the probe with respect to the non-endcapped silica at the same mobile phase composition.
Collapse
|
10
|
Zhong Q, Fourkas JT. Optical Kerr Effect Spectroscopy of Simple Liquids. J Phys Chem B 2008; 112:15529-39. [DOI: 10.1021/jp807730u] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Zhong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742
| | - John T. Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
11
|
Zhang L, Rafferty JL, Siepmann JI, Chen B, Schure MR. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. J Chromatogr A 2006; 1126:219-31. [PMID: 16820151 DOI: 10.1016/j.chroma.2006.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/24/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Many structural models for the stationary phase in reversed-phase liquid chromatography (RPLC) systems have been suggested from thermodynamic and spectroscopic measurements and theoretical considerations. To provide a molecular picture of chain conformation and solvent partitioning in a typical RPLC system, a particle-based Monte Carlo simulation study is undertaken for a dimethyl octadecyl (C(18)) bonded stationary phase on a model siliceous substrate in contact with mobile phases having different methanol/water concentrations. Following upon previous simulations for gas-liquid chromatography and liquid-liquid phase equilibria, the simulations are conducted using the configurational-bias Monte Carlo method in the Gibbs ensemble and the transferable potentials for phase equilibria force field. The simulations are performed for a chain surface density of 2.9 micromol/m(2), which is a typical bonded-phase coverage for mono-functional alkyl silanes. The solvent concentrations used here are pure water, approximately 33 and 67% mole fraction of methanol and pure methanol. The simulations show that the chain conformation depends only weakly on the solvent composition. Most chains are conformationally disordered and tilt away from the substrate normal. The interfacial width increases with increasing methanol content and, for mixtures, the solvent shows an enhancement of the methanol concentration in a 10 Angstrom region outside the Gibbs dividing surface. Residual surface silanol groups are found to provide hydrogen bonding sites that lead to the formation of substrate bound water and methanol clusters, including bridging clusters that penetrate from the solvent/chain interfacial region all the way to the silica surface.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | | | | | | | | |
Collapse
|
12
|
Ottaviani MF, Cangiotti M, Famiglini G, Cappiello A. Adsorption of Pure and Mixed Solvent Solutions of Spin Probes onto Stationary Phases. J Phys Chem B 2006; 110:10421-9. [PMID: 16722748 DOI: 10.1021/jp056516s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water, methanol (MeOH), acetonitrile (ACN), and binary MeOH-water and ACN-water solutions of different spin probes (nitroxides), selected to mimic the behavior of different pollutants, were adsorbed onto stationary phases usually used in reversed-phase high-performance liquid chromatography (RP-HPLC). These stationary phases are constituted by porous silica and differ from each other regarding the surface area, the pore size, the particle size, the surface functions (NH2, C8, and C18), and the percentage of functionalization. The electron paramagnetic resonance (EPR) spectra of the probe solutions adsorbed into the pores were analyzed by computer-aided computation of the spectral line shape, which provided structural and dynamical parameters of the probes and their environments. These parameters provided information on the surface properties of the stationary phases, such as alkyl chain density, solvent penetration, stationary-phase ordering, and residual silanol effects, which modify the retention times in HPLC. A different availability of polar surface groups in the pure and mixed solvents was found for the different stationary phases depending on (1) the different functionalization degree, (2) the surface-chain length, (3) the particle size, and (4) the polarity of both the probe and the solvent. The C8 functionalization rendered the surface more hydrophobic with respect to C18. The endcapping process of the residual silanols strongly enhanced the surface hydrophobicity tested by the probes. At the highest water content, the adsorption of the polar or charged probes onto the hydrophobic surface is the lowest and self-aggregation occurs. When the probes bear both hydrophilic and hydrophobic moieties, the adsorption is enhanced by a synergy between hydrophilic and hydrophobic bonds with the surface. A balance between the hydrophilic and hydrophobic forces leads to high adsorption and partial insertion of the surfactant probes in an ordered C18 chain layer at the solid surface which forms in the binary mixtures; this layer is ascertained between 40% and 70% of the less hydrophilic solvent, depending on the type of both the solid and the probe. This insertion and the response on the formation of the ordered layer were favored in ACN-water with respect to MeOH-water.
Collapse
Affiliation(s)
- M Francesca Ottaviani
- Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento, 6-61029, Urbino, Italy.
| | | | | | | |
Collapse
|
13
|
Srinivasan G, Sander LC, Müller K. Effect of surface coverage on the conformation and mobility of C18-modified silica gels. Anal Bioanal Chem 2005; 384:514-24. [PMID: 16315015 DOI: 10.1007/s00216-005-0161-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/29/2005] [Accepted: 09/29/2005] [Indexed: 11/26/2022]
Abstract
C18-modified silica gels with surface coverages of 2 to 8.2 micromol m(-2), were prepared by different synthetic pathways and characterized by Fourier Transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR) spectroscopy, and chromatographic measurements. The effects of temperature and bonding density on the conformational order of C18-modified silica gels were studied in detail by FTIR spectroscopy. The silane functionality and degree of cross-linking of silane ligands on the silica surface were evaluated by 29Si cross-polarization magic-angle spinning (CP/MAS) NMR and the structural order and mobility of the alkyl chains were investigated by 13C CP/MAS NMR spectroscopy. CH2 symmetric and anti-symmetric stretching bands and CH2 wagging bands were used as IR probes to monitor the conformational order and flexibility of the alkyl chains in the C18 phases. Qualitative information about the conformational order was obtained from frequency shifts of the CH2 symmetric and anti-symmetric stretching bands. The relative amounts of kink/gauche-trans-gauche, double-gauche, and end-gauche conformers in the alkyl chains were determined by analysis of CH2 wagging bands. These results indicate that surface coverage plays a dominant role in the conformational order of C18-modified silica gels. The FTIR and NMR data are discussed in the context of the chromatographic shape-selectivity differences.
Collapse
Affiliation(s)
- Gokulakrishnan Srinivasan
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | | | |
Collapse
|
14
|
Lippa KA, Sander LC, Mountain RD. Molecular Dynamics Simulations of Alkylsilane Stationary-Phase Order and Disorder. 1. Effects of Surface Coverage and Bonding Chemistry. Anal Chem 2005; 77:7852-61. [PMID: 16351130 DOI: 10.1021/ac0510843] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Shape-selective" polymeric alkylsilane stationary phases are routinely employed over the more common monomeric phases in reversed-phase liquid chromatography (RPLC) to improve the separation of geometric isomers of shape-constrained solutes. We have investigated the molecular dynamics of chromatographic models that represent both monomeric and polymeric stationary phases with alkylsilane surface coverages and bonding chemistries typical of actual materials in an effort to elucidate the molecular-level structural features that control shape-selective separations. The structural characterization of these models is consistent with previous experimental observations of alkyl chain order and disorder: (1) alkyl chain order increases with increased surface coverage; and (2) monomeric and polymeric phases with similar surface coverages yield similar alkyl chain order (although subtle differences exist). In addition, a significant portion of the alkyl chain proximal to the silica surface is disordered (primarily gauche conformations) and the distal end is most ordered. Models that represent shape-selective RPLC phases possess a significant region of distal end chain order with primarily trans dihedral angle conformations. This is consistent with the view that the alkyl chains comprising polymeric stationary phases contain a series of well-defined and rigid voids in which shape-constrained solutes can penetrate and hence be selectively retained.
Collapse
Affiliation(s)
- Katrice A Lippa
- Analytical Chemistry Division and Physical and Chemical Properties Division, Chemical Sciences and Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
| | | | | |
Collapse
|
15
|
Henry MC, Piagessi EA, Zesotarski JC, Messmer MC. Sum-frequency observation of solvent structure at model chromatographic interfaces: acetonitrile-water and methanol-water systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6521-6. [PMID: 15982061 DOI: 10.1021/la050424c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The adsorption of methanol-D2O and acetonitrile-D2O solutions at model chromatographic interfaces (octadecylsiloxane and quartz) was studied using sum-frequency spectroscopy. Methanol did not adsorb at either interface in detectable quantities, while acetonitrile adsorbs at the octadecylsiloxane- and quartz-solution interfaces in a concentration-dependent manner and is well ordered at the interface. Adsorption of acetonitrile was decreased by the addition of KCl at 10 and 100 mM. Acetonitrile adsorption was also observed during simulated gradient elution, demonstrating that adsorption of acetonitrile occurs on a time scale relevant to actual chromatographic separations. Examination of the OH stretch spectra of acetonitrile-H2O and methanol-H2O solutions at the interface revealed concentration-dependent changes in the acetonitrile-H2O spectra that are consistent with hydrogen bonding between interfacial water and acetonitrile, indicating that interfacial water is involved in mediating acetonitrile adsorption. The OH stretch spectra of methanol-H2O solutions showed no such changes.
Collapse
Affiliation(s)
- Matthew C Henry
- Department of Chemistry, Lehigh University, 7 Asa Drive, Bethlehem, Pennsylvania 18015, USA
| | | | | | | |
Collapse
|
16
|
Sander LC, Lippa KA, Wise SA. Order and disorder in alkyl stationary phases. Anal Bioanal Chem 2005; 382:646-68. [PMID: 15827723 DOI: 10.1007/s00216-005-3127-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/21/2005] [Accepted: 01/24/2005] [Indexed: 11/28/2022]
Abstract
Covalently modified surfaces represent a unique state of matter that is not well described by liquid or solid phase models. The chemical bond in tethered alkanes imparts order to the surface in the form of anisotropic properties that are evident in chromatographic and spectroscopic studies. An understanding of the structure, conformation, and organization of alkyl-modified surfaces is requisite to the design of improved materials and the optimal utilization of existing materials. In recent years, the study of alkyl-modified surfaces has benefited from advances in modern analytical instrumentation. Aspects of alkyl chain conformation and motion have been investigated through the use of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and neutron scattering studies. Chromatography provides complementary evidence of alkyl chain organization through interactions with solute probes. Computational simulations offer insights into the structure of covalently modified surfaces that may not be apparent through empirical observation. This manuscript reviews progress achieved in the study of the architecture of alkyl-modified surfaces.
Collapse
Affiliation(s)
- Lane C Sander
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8392, USA.
| | | | | |
Collapse
|