1
|
Sokolov M, Cui Q. Impact of Fluctuations in the Peridinin-Chlorophyll a-Protein on the Energy Transfer: Insights from Classical and QM/MM Molecular Dynamics Simulations. Biochemistry 2025; 64:879-894. [PMID: 39903904 DOI: 10.1021/acs.biochem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The peridinin-chlorophyll a-protein is a light-harvesting complex found in dinoflagellates, which has an unusually high fraction of carotenoids. The carotenoids are directly involved in the energy transfer to chlorophyll with high efficiency. The detailed mechanism of energy transfer and the roles of the protein in the process remain debated in the literature, in part because most calculations have focused on a limited number of chromophore structures. Here we investigate the magnitude of the fluctuations of the site energies of individual and coupled chromophores, as the results are essential to the understanding of experimental spectra and the energy transfer mechanism. To this end, we sampled conformations of the PCP complex by means of classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. Subsequently we performed (supermolecular) excitation energy calculations on a statistically significant number of snapshots using TD-LC-DFT/CAM-B3LYP and the semiempirical time-dependent long-range corrected density functional tight binding (TD-LC-DFTB2) as the QM method. We observed that the magnitude of the site energy fluctuations is large compared to the differences of the site energies between the chromophores, and this also holds for the coupled chromophores. We also investigated the composition of the coupled states, the effect of coupling on the absorption spectra, as well as transition dipole moment orientations and the possibility of delocalized states with Chl a. Our study thus complements previous computational studies relying on a single structure and establishes the most prominent features of the coupled chromophores that are essential to the robustness of the energy transfer process.
Collapse
Affiliation(s)
- Monja Sokolov
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Schulte T, Magdaong NCM, Di Valentin M, Agostini A, Tait CE, Niedzwiedzki DM, Carbonera D, Hofmann E. Structural and spectroscopic characterization of the peridinin-chlorophyll a-protein (PCP) complex from Heterocapsa pygmaea (HPPCP). BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149510. [PMID: 39321862 DOI: 10.1016/j.bbabio.2024.149510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll a protein (PCP) from the free living dinoflagellate Heterocapsa pygmaea. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from Amphidinium carterae to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer. Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6-2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.
Collapse
Affiliation(s)
- Tim Schulte
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17121 Solna, Sweden
| | | | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
3
|
Liu Z, Ni W, Huang Y, Gurzadyan G, Chen X. Experimental evidence of the S x state and fluorescence emission from the intramolecular charge transfer states in fucoxanthin. Phys Chem Chem Phys 2024; 26:29879-29886. [PMID: 39611228 DOI: 10.1039/d4cp03749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Fucoxanthin is a typical carotenoid that absorbs light in the blue region of the visible spectrum, and its detailed electronic structures remain to be clarified. It is well known that carotenoids harvest energy from sunlight and transfer it to chlorophylls (Chls) and/or bacteriochlorophylls (BChls) through its excited states as the intermediate states; however, some excited states still need evidence to be definitely confirmed. Through steady-state fluorescence emission spectroscopy and femtosecond time-resolved fluorescence up-conversion technique, we provide new evidence for the identification of the excited Sx state in fucoxanthin, a representative of carotenoids. The fluorescence emission from the intramolecular charge transfer (ICT) states was also observed and identified for the first time according to our limited survey. Our findings suggest that fucoxanthin absorbs the blue light and transfers most of the energy to BChls via Sx and ICT1 states for certain bacteria, while releasing them via the ICT1 state to protect against light-induced damage for algae.
Collapse
Affiliation(s)
- Zhengtang Liu
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, Shandong, China.
| | - Wenjun Ni
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yin Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Gagik Gurzadyan
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Seki S, Yoshida K, Sugisaki M, Yamano N, Fujii R. Characterization of the Ultraviolet-B Absorption Band of Carotenoids Using Solvent-dependent Shifts in Steady-State and Transient Absorption Spectra. J Phys Chem B 2024; 128:5623-5629. [PMID: 38833602 DOI: 10.1021/acs.jpcb.4c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The versatile functions of carotenoids in biological systems are associated with the extended π-electron conjugation system. Strong visible absorption resulting from the optically allowed S2 (1Bu+) state and the low-lying optically forbidden S1 (2Ag-) state examined. Carotenoids also exhibit an absorption band in the ultraviolet-B region; however, the origin of this band (hereafter referred to as Suv state) is not well characterized. The Suv state is a candidate for the destination level of the well-known S1 → Sn transient absorption; however, an obvious energy mismatch has been observed. In this study, we examined the steady-state and picosecond transient absorption spectra of lycopene in various solvents. The Suv absorption of carotenoids with diverse conjugation lengths was also examined. The dependence of the energies on solvent polarizability and conjugation length revealed that both Suv and Sn are the "second" Bu+ state. The absorption spectrum for lycopene at 200 K revealed an additional vibrational band, which may be the vibrational origin of the S0 → Suv band. Considering the slow vibrational relaxation of the 2Ag- state, the S1 → Sn transition may represent the 2Ag- (v = 1) → 2Bu+ (v = 0) transition, and the energetic contradiction can be resolved.
Collapse
Affiliation(s)
- Soichiro Seki
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazuhiro Yoshida
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuru Sugisaki
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Ritsuko Fujii
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
6
|
Özcan E, Kuznetsova V, Keşan G, Fuciman M, Litvín R, Polívka T. Ultrafast Excited States Dynamics of Metal Ion Complexes of the Carotenoid Astaxanthin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Kosumi D, Kusumoto T, Hashimoto H. Unique ultrafast excited states dynamics of artificial short-polyene carotenoid analog 2-(all-trans-β-ionylideneetinylidene)-indan-1,3-dione. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
9
|
Marcolin G, Collini E. Solvent-Dependent Characterization of Fucoxanthin through 2D Electronic Spectroscopy Reveals New Details on the Intramolecular Charge-Transfer State Dynamics. J Phys Chem Lett 2021; 12:4833-4840. [PMID: 33999637 PMCID: PMC8279730 DOI: 10.1021/acs.jpclett.1c00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 05/27/2023]
Abstract
The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.
Collapse
|
10
|
Gacek DA, Holleboom CP, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2020; 143:19-30. [PMID: 31659623 DOI: 10.1007/s11120-019-00676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
Collapse
Affiliation(s)
- Daniel A Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Pen-Nan Liao
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Marco Negretti
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany.
| |
Collapse
|
11
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
12
|
Fiedor L, Dudkowiak A, Pilch M. The origin of the dark S 1 state in carotenoids: a comprehensive model. J R Soc Interface 2019; 16:20190191. [PMID: 31480924 DOI: 10.1098/rsif.2019.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In carotenoids, by analogy to polyenes, the symmetry of the π-electron system is often invoked to explain their peculiar electronic features, in particular the inactivity of the S0 → S1 transition in one-photon excitation. In this review, we verify whether the molecular symmetry of carotenoids and symmetry of their π-electron system are supported in experimental and computational studies. We focus on spectroscopic techniques which are sensitive to the electron density distribution, including the X-ray crystallography, electronic absorption, two-photon techniques, circular dichroism, nuclear magnetic resonance, Stark and vibrational spectroscopies, and on this basis we seek for the origin of inactivity of the S1 state. We come across no experimental and computational evidence for the symmetry effects and the existence of symmetry restrictions on the electronic states of carotenoids. They do not possess an inversion centre and the C2h symmetry approximation of carotenoid structure is by no means justified. In effect, the application of symmetry rules (and notification) to the electronic states of carotenoids in this symmetry group may lead to a wrong interpretation of experimental data. This conclusion together with the results summarized in the review allows us to advance a consistent model that explains the inactivity of the S0 → S1 transition. Within this model, S1 is never accessible from S0 due to the negative synergy of (i) the contributions of double excitations of very low probability, which elevate S1 energy, and (ii) a non-verticality of the S0 → S1 transition, due to the breaking of Born-Oppenheimer approximation. Certainly, our simple model requires a further experimental and theoretical verification.
Collapse
Affiliation(s)
- Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Kraków, Poland
| | - Alina Dudkowiak
- Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, 60965 Poznan, Poland
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30387 Kraków, Poland.,Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Kraków, Poland
| |
Collapse
|
13
|
Excited State Properties of Fucoxanthin Aggregates. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
|
15
|
|
16
|
Roscioli JD, Ghosh S, LaFountain AM, Frank HA, Beck WF. Structural Tuning of Quantum Decoherence and Coherent Energy Transfer in Photosynthetic Light Harvesting. J Phys Chem Lett 2018; 9:5071-5077. [PMID: 30118229 DOI: 10.1021/acs.jpclett.8b01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photosynthetic organisms capture energy from solar photons by constructing light-harvesting proteins containing arrays of electronic chromophores. Collective excitations (excitons) arise when energy transfer between chromophores is coherent, or wavelike, in character. Here we demonstrate experimentally that coherent energy transfer to the lowest-energy excitons is principally controlled in a light-harvesting protein by the temporal persistence of quantum coherence rather than by the strength of vibronic coupling. In the peridinin-chlorophyll protein from marine dinoflagellates, broad-band two-dimensional electronic spectroscopy reveals that replacing the native chlorophyll a acceptor chromophores with chlorophyll b slows energy transfer from the carotenoid peridinin to chlorophyll despite narrowing the donor-acceptor energy gap. The formyl substituent on the chlorophyll b macrocycle hastens decoherence by sensing the surrounding electrostatic noise. These findings demonstrate how quantum coherence enhances the efficiency of energy transfer despite being very short lived in light-harvesting proteins at physiological temperatures.
Collapse
Affiliation(s)
- Jerome D Roscioli
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Soumen Ghosh
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Amy M LaFountain
- Department of Chemistry , University of Connecticut , Hartford , Connecticut 06103 , United States
| | - Harry A Frank
- Department of Chemistry , University of Connecticut , Hartford , Connecticut 06103 , United States
| | - Warren F Beck
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
17
|
West RG, Fuciman M, Staleva-Musto H, Šebelík V, Bína D, Durchan M, Kuznetsova V, Polívka T. Equilibration Dependence of Fucoxanthin S1 and ICT Signatures on Polarity, Proticity, and Temperature by Multipulse Femtosecond Absorption Spectroscopy. J Phys Chem B 2018; 122:7264-7276. [DOI: 10.1021/acs.jpcb.8b04217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Robert G. West
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Hristina Staleva-Musto
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Václav Šebelík
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Milan Durchan
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
18
|
Niedzwiedzki DM, Blankenship RE. Excited-state properties of the central-cis isomer of the carotenoid peridinin. Arch Biochem Biophys 2018; 649:29-36. [DOI: 10.1016/j.abb.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
|
19
|
Llansola-Portoles MJ, Pascal AA, Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J R Soc Interface 2018; 14:rsif.2017.0504. [PMID: 29021162 DOI: 10.1098/rsif.2017.0504] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are among the most important organic compounds present in Nature and play several essential roles in biology. Their configuration is responsible for their specific photophysical properties, which can be tailored by changes in their molecular structure and in the surrounding environment. In this review, we give a general description of the main electronic and vibrational properties of carotenoids. In the first part, we describe how the electronic and vibrational properties are related to the molecular configuration of carotenoids. We show how modifications to their configuration, as well as the addition of functional groups, can affect the length of the conjugated chain. We describe the concept of effective conjugation length, and its relationship to the S0 → S2 electronic transition, the decay rate of the S1 energetic level and the frequency of the ν1 Raman band. We then consider the dependence of these properties on extrinsic parameters such as the polarizability of their environment, and how this information (S0 → S2 electronic transition, ν1 band position, effective conjugation length and polarizability of the environment) can be represented on a single graph. In the second part of the review, we use a number of specific examples to show that the relationships can be used to disentangle the different mechanisms tuning the functional properties of protein-bound carotenoids.
Collapse
Affiliation(s)
- Manuel J Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Andrew A Pascal
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
20
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Kinashi N, Katsumura S, Shinada T, Sakaguchi K. Stereocontrolled Synthesis of 19'-Deoxyperidinin. Org Lett 2018; 20:582-585. [PMID: 29368931 DOI: 10.1021/acs.orglett.7b03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereocontrolled convergent synthesis of 19'-deoxyperidinin, 2, which might be a useful peridinin analog to understand the ICT characteristics, was efficiently achieved by sequential Pd-catalyzed cross-coupling reactions using bidirectionally extensible conjugated C5 olefin segments. The crucial 5(2H)-ylidenedihydrofuran function of 2 was successfully constructed by the Au-catalyzed regio- and stereoselective 5-exo-dig etherification.
Collapse
Affiliation(s)
- Naoto Kinashi
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazuhiko Sakaguchi
- Graduate School of Science, Osaka City University , 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
22
|
Guberman-Pfeffer MJ, Greco JA, Birge RR, Frank HA, Gascón JA. Light Harvesting by Equally Contributing Mechanisms in a Photosynthetic Antenna Protein. J Phys Chem Lett 2018; 9:563-568. [PMID: 29337581 DOI: 10.1021/acs.jpclett.7b03211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report supramolecular quantum mechanics/molecular mechanics simulations on the peridinin-chlorophyll a protein (PCP) complex from the causative algal species of red tides. These calculations reproduce for the first time quantitatively the distinct peridinin absorptions, identify multichromophoric molecular excitations, and elucidate the mechanisms regulating the strongly allowed S0 (11Ag-) → S2 (11Bu+) absorptions of the bound peridinins that span a 58 nm spectral range in the region of maximal solar irradiance. We discovered that protein binding site-imposed conformations, local electrostatics, and electronic coupling contribute equally to the spectral inhomogeneity. Electronic coupling causes coherent excitations among the densely packed pigments. Complementary pairing of tuning mechanisms is the result of a competition between pigment-pigment and pigment-environment interactions. We found that the aqueous solvent works in concert with the charge distribution of PCP to produce a strong correlation between peridinin spectral bathochromism and the local dielectric environment.
Collapse
Affiliation(s)
| | - Jordan A Greco
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Robert R Birge
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
23
|
Greco JA, Wagner NL, Frank HA, Birge RR. The Forbidden 1 1B u– Excited Singlet State in Peridinin and Peridinin Analogues. J Phys Chem A 2018; 122:130-139. [DOI: 10.1021/acs.jpca.7b10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jordan A. Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Nicole L. Wagner
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Robert R. Birge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
24
|
Jiang LL, Liu WL, Yang YQ. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Li-lin Jiang
- Teaching Affairs Office, Hezhou University, Hezhou 542899, China
| | - Wei-long Liu
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yan-qiang Yang
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
25
|
Gacek DA, Moore AL, Moore TA, Walla PJ. Two-Photon Spectra of Chlorophylls and Carotenoid–Tetrapyrrole Dyads. J Phys Chem B 2017; 121:10055-10063. [DOI: 10.1021/acs.jpcb.7b08502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| | - Ana L. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School
of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department of Biophysical
Chemistry, Gaußstraße.
17, 38106 Braunschweig, Germany
| |
Collapse
|
26
|
Roscioli JD, Ghosh S, LaFountain AM, Frank HA, Beck WF. Quantum Coherent Excitation Energy Transfer by Carotenoids in Photosynthetic Light Harvesting. J Phys Chem Lett 2017; 8:5141-5147. [PMID: 28968122 DOI: 10.1021/acs.jpclett.7b01791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It remains an open question whether quantum coherence and molecular excitons created by delocalization of electronic excited states are essential features of the mechanisms that enable efficient light capture and excitation energy transfer to reaction centers in photosynthetic organisms. The peridinin-chlorophyll a protein from marine dinoflagellates is an example of a light-harvesting system with tightly clustered antenna chromophores in which quantum coherence has long been suspected, but unusually it features the carotenoid peridinin as the principal light absorber for mid-visible photons. We report that broad-band two-dimensional electronic spectroscopy indeed reveals the initial presence of exciton relaxation pathways that enable transfer of excitation from peridinin to chlorophyll a in <20 fs, but the quantum coherence that permits this is very short-lived. Strongly coupled excited-state vibrational distortions of the peridinins trigger a dynamic transition of the electronic structure of the system and a rapid conversion to incoherent energy transfer mechanisms.
Collapse
Affiliation(s)
- Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
27
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Martin EC, Bocian DF, Hunter CN, Holten D. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2017; 131:291-304. [PMID: 27854005 PMCID: PMC5313593 DOI: 10.1007/s11120-016-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (11B u+ ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u+ ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u+ ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u+ ) → S0 (11A g- ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
28
|
Kosumi D, Kajikawa T, Sakaguchi K, Katsumura S, Hashimoto H. Excited state properties of β-carotene analogs incorporating a lactone ring. Phys Chem Chem Phys 2017; 19:3000-3009. [PMID: 28079227 DOI: 10.1039/c6cp06828f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids possessing a carbonyl group along their polyene backbone exhibit unique excited state properties due to the occurrence of intramolecular charge transfer (ICT) in the excited state. In fact, the ICT characteristics of naturally occurring carbonyl carotenoids play an essential role in the highly efficient energy transfer that proceeds in aquatic photosynthetic antenna systems. In the present study, we synthesized two short-chain polyene carotenoids incorporating a lactone ring, denoted as BL-7 and BL-8, having seven and eight conjugated double bonds (n = 7 and 8), respectively. The excited state properties of these compounds were directly compared to those of their non-carbonyl counterparts to clarify the role of the carbonyl group in the generation of ICT. The energies of the optically allowed S2 states for BL-7 and BL-8 were found to be more than 0.3 eV (2400 cm-1) below those of non-carbonyl short β-carotene homologs. Ultrafast spectroscopic data demonstrated various solvent polarity-induced effects, including the appearance of stimulated emission in the near-IR region in the case of BL-7, and significant lifetime shortening of the lowest-lying singlet S1 excited states of both BL-7 and BL-8. These results suggest that these compounds exhibit ICT characteristics.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Takayuki Kajikawa
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Sakaguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan and Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University, Japan.
| |
Collapse
|
29
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein. J Phys Chem Lett 2017; 8:463-469. [PMID: 28042923 DOI: 10.1021/acs.jpclett.6b02881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excitation energy transfer from peridinin to chlorophyll (Chl) a is unusually efficient in the peridinin-chlorophyll a protein (PCP) from dinoflagellates. This enhanced performance is derived from the long intrinsic lifetime of 4.4 ps for the S2 (11Bu+) state of peridinin in PCP, which arises from the electron-withdrawing properties of its carbonyl substituent. Results from heterodyne transient grating spectroscopy indicate that S2 serves as the donor for two channels of energy transfer: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process initiated by dynamic exciton localization, which accompanies the formation of a conformationally distorted intermediate in 45 fs. The lifetime of the S2 state is lengthened in PCP by its intramolecular charge-transfer character, which increases the system-bath coupling and slows the torsional motions that promote nonradiative decay to the S1 (21Ag-) state.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
30
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
31
|
Jia Y, Shi Y, Wang P, Zhang JP. Triplet excitation dynamics of β -carotene studied in three solvents by ns flash photolysis spectroscopy. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Šlouf V, Kuznetsova V, Fuciman M, de Carbon CB, Wilson A, Kirilovsky D, Polívka T. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 131:105-117. [PMID: 27612863 DOI: 10.1007/s11120-016-0302-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
Collapse
Affiliation(s)
- Václav Šlouf
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
33
|
Ghosh S, Roscioli JD, Bishop MM, Gurchiek JK, LaFountain AM, Frank HA, Beck WF. Torsional Dynamics and Intramolecular Charge Transfer in the S2 (1(1)Bu(+)) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting. J Phys Chem Lett 2016; 7:3621-3626. [PMID: 27571487 DOI: 10.1021/acs.jpclett.6b01642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Of the carotenoids known in photosynthetic organisms, peridinin exhibits one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors. The mechanism for this enhanced performance involves an order-of-magnitude slowing of the S2 (1(1)Bu(+)) → S1 (2(1)Ag(-)) nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with optical heterodyne detection, we have obtained the first evidence that the nonradiative decay of the S2 state of peridinin is promoted by large-amplitude torsional motions. The decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jerome D Roscioli
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Michael M Bishop
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Jason K Gurchiek
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Harry A Frank
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3036, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
34
|
Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. J Phys Chem B 2016; 120:3601-14. [DOI: 10.1021/acs.jpcb.5b12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036 United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322 United States
| |
Collapse
|
35
|
Abstract
The design of optimal light-harvesting (supra)molecular systems and materials is one of the most challenging frontiers of science. Theoretical methods and computational models play a fundamental role in this difficult task, as they allow the establishment of structural blueprints inspired by natural photosynthetic organisms that can be applied to the design of novel artificial light-harvesting devices. Among theoretical strategies, the application of quantum chemical tools represents an important reality that has already reached an evident degree of maturity, although it still has to show its real potentials. This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.
Collapse
Affiliation(s)
- Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
36
|
Greco JA, LaFountain AM, Kinashi N, Shinada T, Sakaguchi K, Katsumura S, Magdaong NCM, Niedzwiedzki DM, Birge RR, Frank HA. Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. J Phys Chem B 2016; 120:2731-44. [DOI: 10.1021/acs.jpcb.6b00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jordan A. Greco
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Naoto Kinashi
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazuhiko Sakaguchi
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Graduate
School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Nikki Cecil M. Magdaong
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130, United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130, United States
| | - Robert R. Birge
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
37
|
Ghosh S, Bishop MM, Roscioli JD, Mueller JJ, Shepherd NC, LaFountain AM, Frank HA, Beck WF. Femtosecond Heterodyne Transient-Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of β-Carotene: Contributions from Dark Intermediates and Double-Quantum Coherences. J Phys Chem B 2015; 119:14905-24. [DOI: 10.1021/acs.jpcb.5b09405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Michael M. Bishop
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Warren F. Beck
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
38
|
Premvardhan L, Robert B, Hiller RG. Pigment organisation in the membrane-intrinsic major light-harvesting complex of Amphidinium carterae: Structural characterisation of the peridinins and chlorophylls a and c2 by resonance Raman spectroscopy and from sequence analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1187-99. [DOI: 10.1016/j.bbabio.2015.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/05/2023]
|
39
|
Götze JP, Karasulu B, Patil M, Thiel W. Vibrational relaxation as the driving force for wavelength conversion in the peridinin-chlorophyll a-protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1509-17. [PMID: 26231454 DOI: 10.1016/j.bbabio.2015.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
We present a computationally derived energy transfer model for the peridinin-chlorophyll a-protein (PCP), which invokes vibrational relaxation in the two lowest singlet excited states rather than internal conversion between them. The model allows an understanding of the photoinduced processes without assuming further electronic states or a dependence of the 2Ag state character on the vibrational sub-state. We report molecular dynamics simulations (CHARMM22 force field) and quantum mechanics/molecular mechanics (QM/MM) calculations on PCP. In the latter, the QM region containing a single peridinin (Per) chromophore or a Per-Chl a (chlorophyll a) pair is treated by density functional theory (DFT, CAM-B3LYP) for geometries and by DFT-based multireference configuration interaction (DFT/MRCI) for excitation energies. The calculations show that Per has a bright, green light absorbing 2Ag state, in addition to the blue light absorbing 1Bu state found in other carotenoids. Both states undergo a strong energy lowering upon relaxation, leading to emission in the red, while absorbing in the blue or green. The orientation of their transition dipole moments indicates that both states are capable of excited-state energy transfer to Chl a, without preference for either 1Bu or 2Ag as donor state. We propose that the commonly postulated partial intramolecular charge transfer (ICT) character of a donating Per state can be assigned to the relaxed 1Bu state, which takes on ICT character. By assuming that both 1Bu and 2Ag are able to donate to the Chl a Q band, one can explain why different chlorophyll species in PCP exhibit different acceptor capabilities.
Collapse
Affiliation(s)
- Jan P Götze
- School of Chemistry, North Haugh, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| | - Bora Karasulu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Mahendra Patil
- Center for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098, Maharashtra, India
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
40
|
Li L, Hu F, Chang YQ, Zhou Y, Wang P, Zhang JP. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Holleboom CP, Gacek DA, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid-chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2015; 124:171-180. [PMID: 25744389 DOI: 10.1007/s11120-015-0113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 05/28/2023]
Abstract
It is known that aggregation of isolated light-harvesting complex II (LHCII) in solution results in high fluorescence quenching, reduced chlorophyll fluorescence lifetime, and increased electronic coupling of carotenoid (Car) S1 and chlorophyll (Chl) Qy states, as determined by two-photon studies. It has been suggested that this behavior of aggregated LHCII mimics aspects of non-photochemical quenching processes of higher plants and algae. However, several studies proposed that the minor photosystem II proteins CP24 and CP29 also play a significant role in regulation of photosynthesis. Therefore, we use a simple protocol that allows gradual aggregation also of CP24 and CP29. Similarly, as observed for LHCII, aggregation of CP24 and CP29 also leads to increasing fluorescence quenching and increasing electronic Car S1-Chl Qy coupling. Furthermore, a direct comparison of the three proteins revealed a significant higher electronic coupling in the two minor proteins already in the absence of any aggregation. These differences become even more prominent upon aggregation. A red-shift of the Qy absorption band known from LHCII aggregation was also observed for CP29 but not for CP24. We discuss possible implications of these results for the role of CP24 and CP29 as potential valves for excess excitation energy in the regulation of photosynthetic light harvesting.
Collapse
Affiliation(s)
- Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Str. 10, 38106, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Beck WF, Bishop MM, Roscioli JD, Ghosh S, Frank HA. Excited state conformational dynamics in carotenoids: Dark intermediates and excitation energy transfer. Arch Biochem Biophys 2015; 572:175-183. [DOI: 10.1016/j.abb.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
|
43
|
Ragnoni E, Di Donato M, Iagatti A, Lapini A, Righini R. Mechanism of the Intramolecular Charge Transfer State Formation in all-trans-β-Apo-8′-carotenal: Influence of Solvent Polarity and Polarizability. J Phys Chem B 2014; 119:420-32. [DOI: 10.1021/jp5093288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Ragnoni
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Mariangela Di Donato
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessandro Iagatti
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
| | - Andrea Lapini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberto Righini
- LENS (European
Laboratory for Non-Linear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (Florence) Italy
- INO (Istituto
Nazionale di Ottica), Largo Fermi 6, 50125 Firenze, Italy
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, via della
Lastruccia 13, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
44
|
Magdaong N, LaFountain AM, Greco JA, Gardiner AT, Carey AM, Cogdell RJ, Gibson GN, Birge RR, Frank HA. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions. J Phys Chem B 2014; 118:11172-89. [PMID: 25171303 PMCID: PMC4174993 DOI: 10.1021/jp5070984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/26/2014] [Indexed: 12/03/2022]
Abstract
Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.
Collapse
Affiliation(s)
- Nikki
M. Magdaong
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Amy M. LaFountain
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jordan A. Greco
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alastair T. Gardiner
- Institute
of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow G12 8TA, Scotland
| | - Anne-Marie Carey
- Institute
of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard J. Cogdell
- Institute
of Molecular Cell and Systems Biology, University
of Glasgow, Glasgow G12 8TA, Scotland
| | - George N. Gibson
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Robert R. Birge
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Harry A. Frank
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
45
|
Di Donato M, Segado Centellas M, Lapini A, Lima M, Avila F, Santoro F, Cappelli C, Righini R. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids. J Phys Chem B 2014; 118:9613-30. [PMID: 25050938 DOI: 10.1021/jp505473j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.
Collapse
Affiliation(s)
- Mariangela Di Donato
- LENS (European Laboratory for Nonlinear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bricker WP, Lo CS. Excitation Energy Transfer in the Peridinin-Chlorophyll a-Protein Complex Modeled Using Configuration Interaction. J Phys Chem B 2014; 118:9141-54. [DOI: 10.1021/jp5017054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William P. Bricker
- Department
of Energy, Environmental
and Chemical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | - Cynthia S. Lo
- Department
of Energy, Environmental
and Chemical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
47
|
De Re E, Schlau-Cohen GS, Leverenz RL, Huxter VM, Oliver TAA, Mathies RA, Fleming GR. Insights into the structural changes occurring upon photoconversion in the orange carotenoid protein from broadband two-dimensional electronic spectroscopy. J Phys Chem B 2014; 118:5382-9. [PMID: 24779893 DOI: 10.1021/jp502120h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. Here, we use broadband two-dimensional electronic spectroscopy to study the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.
Collapse
Affiliation(s)
- Eleonora De Re
- Applied Science and Technology Graduate Group, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE. Spectroscopic properties of the Chlorophyll a-Chlorophyll c 2-Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. PHOTOSYNTHESIS RESEARCH 2014; 120:125-139. [PMID: 23361658 DOI: 10.1007/s11120-013-9794-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a-chlorophyll c 2-peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA,
| | | | | | | |
Collapse
|
49
|
Coccia E, Varsano D, Guidoni L. Ab Initio Geometry and Bright Excitation of Carotenoids: Quantum Monte Carlo and Many Body Green's Function Theory Calculations on Peridinin. J Chem Theory Comput 2014; 10:501-6. [PMID: 26580027 PMCID: PMC4864508 DOI: 10.1021/ct400943a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this letter, we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) Å, larger than the values obtained by DFT (PBE, B3LYP, and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu(+)-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu(+)-like state for the VMC structure (VMC/MBGFT) provide an excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.
Collapse
Affiliation(s)
- Emanuele Coccia
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, via Vetoio, 67110 L’Aquila, Italy
| | - Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, via Vetoio, 67110 L’Aquila, Italy
| |
Collapse
|
50
|
Pavlovich VS. Gas-phase energy of the S2←S0 transition and electrostatic properties of the S2 state of carotenoid peridinin via a solvatochromic shift and orientation broadening of the absorption spectrum. Photochem Photobiol Sci 2014; 13:1444-55. [DOI: 10.1039/c4pp00124a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvent effect on the position and the shape of the absorption spectrum of peridinin for 12 protic and aprotic solvents as well as the temperature effect for methanol were studied using a solvatochromic theory based on the Onsager sphere cavity model.
Collapse
Affiliation(s)
- Vladimir S. Pavlovich
- Division of Higher Mathematics and Physics
- Military Academy of Belarus
- Minsk 220057, Belarus
| |
Collapse
|