1
|
Effah CY, Ding L, Tan L, He S, Li X, Yuan H, Li Y, Liu S, Sun T, Wu Y. A SERS bioassay based on vancomycin-modified PEI-interlayered nanocomposite and aptamer-functionalized SERS tags for synchronous detection of Acinetobacter baumannii and Klebsiella pneumoniae. Food Chem 2023; 423:136242. [PMID: 37196408 DOI: 10.1016/j.foodchem.2023.136242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Klebsiella pneumoniae (KP) and Acinetobacter baumannii (AB) are two important gram-negative bacteria that cause pneumonia and have been recently known to be associated with food. The rapid detection of these pathogens in food is important to minimize their colonization of the gut and stop new threats of the disease from spreading across the food chain. Herein, a double-edged sword aptasensor was developed for the synchronous detection of KP and AB in food and clinical samples. A highly sensitive, selective, specific, and synchronous detection of the target bacteria was achieved, and the limit of detection (LOD) was 10 cells/mL with a liner range of 50 to 105 cells/mL. The total assay time was 1.5 h. This study does not only provide a new tool for the detection of the target bacteria, but also serves as a promising tool for food safety and pneumonia diagnosis.
Collapse
Affiliation(s)
- Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Longlong Tan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Li
- Department of Laboratory, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Yamashita S, Mizuno M, Mizutani Y. High suitability of tryptophan residues as a spectroscopic thermometer for local temperature in proteins under nonequilibrium conditions. J Chem Phys 2022; 156:075101. [DOI: 10.1063/5.0079797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Qu LL, Ying YL, Yu RJ, Long YT. In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochim Acta 2021; 188:201. [PMID: 34041602 PMCID: PMC8154335 DOI: 10.1007/s00604-021-04864-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023]
Abstract
The incidence of disease arising from food-borne pathogens is increasing continuously and has become a global public health problem. Rapid and accurate identification of food-borne pathogens is essential for adopting disease intervention strategies and controlling the spread of epidemics. Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest due to the attractive features including simplicity, rapid measurement, and high sensitivity. It can be used for rapid in situ sensing of single and multicomponent samples within the nanostructure-based confined space by providing molecular fingerprint information and has been demonstrated to be an effective detection strategy for pathogens. This article aims to review the application of SERS to the rapid sensing of food-borne pathogens in food matrices. The mechanisms and advantages of SERS, and detection strategies are briefly discussed. The latest progress on the use of SERS for rapid detection of food-borne bacteria and viruses is considered, including both the labeled and label-free detection strategies. In closing, according to the current situation regarding detection of food-borne pathogens, the review highlights the challenges faced by SERS and the prospects for new applications in food safety. In this review, the advances on the SERS detection of pathogens over the past decades have been reviewed, focusing on the improvements in sensitivity, reproducibility, specificity, and the performance of the SERS-based assay in complex analytical scenarios. ![]()
Collapse
Affiliation(s)
- Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, 221116, Xuzhou, People's Republic of China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
5
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Shelby ML, Wildman A, Hayes D, Mara MW, Lestrange PJ, Cammarata M, Balducci L, Artamonov M, Lemke HT, Zhu D, Seideman T, Hoffman BM, Li X, Chen LX. Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations. Proc Natl Acad Sci U S A 2021; 118:e2018966118. [PMID: 33782122 PMCID: PMC8040624 DOI: 10.1073/pnas.2018966118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultrafast structural dynamics with different spatial and temporal scales were investigated during photodissociation of carbon monoxide (CO) from iron(II)-heme in bovine myoglobin during the first 3 ps following laser excitation. We used simultaneous X-ray transient absorption (XTA) spectroscopy and X-ray transient solution scattering (XSS) at an X-ray free electron laser source with a time resolution of 80 fs. Kinetic traces at different characteristic X-ray energies were collected to give a global picture of the multistep pathway in the photodissociation of CO from heme. In order to extract the reaction coordinates along different directions of the CO departure, XTA data were collected with parallel and perpendicular relative polarizations of the laser pump and X-ray probe pulse to isolate the contributions of electronic spin state transition, bond breaking, and heme macrocycle nuclear relaxation. The time evolution of the iron K-edge X-ray absorption near edge structure (XANES) features along the two major photochemical reaction coordinates, i.e., the iron(II)-CO bond elongation and the heme macrocycle doming relaxation were modeled by time-dependent density functional theory calculations. Combined results from the experiments and computations reveal insight into interplays between the nuclear and electronic structural dynamics along the CO photodissociation trajectory. Time-resolved small-angle X-ray scattering data during the same process are also simultaneously collected, which show that the local CO dissociation causes a protein quake propagating on different spatial and temporal scales. These studies are important for understanding gas transport and protein deligation processes and shed light on the interplay of active site conformational changes and large-scale protein reorganization.
Collapse
Affiliation(s)
- Megan L Shelby
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Andrew Wildman
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Dugan Hayes
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60437
| | - Michael W Mara
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | | | - Marco Cammarata
- Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France
| | - Lodovico Balducci
- Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France
| | - Maxim Artamonov
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Henrik T Lemke
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60437
| |
Collapse
|
7
|
Ultrafast dynamics of heme distortion in the O 2-sensor of a thermophilic anaerobe bacterium. Commun Chem 2021; 4:31. [PMID: 36697566 PMCID: PMC9814294 DOI: 10.1038/s42004-021-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023] Open
Abstract
Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond.
Collapse
|
8
|
Short-lived metal-centered excited state initiates iron-methionine photodissociation in ferrous cytochrome c. Nat Commun 2021; 12:1086. [PMID: 33597529 PMCID: PMC7889893 DOI: 10.1038/s41467-021-21423-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kβ) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.
Collapse
|
9
|
|
10
|
Bacellar C, Kinschel D, Mancini GF, Ingle RA, Rouxel J, Cannelli O, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Spin cascade and doming in ferric hemes: Femtosecond X-ray absorption and X-ray emission studies. Proc Natl Acad Sci U S A 2020; 117:21914-21920. [PMID: 32848065 PMCID: PMC7486745 DOI: 10.1073/pnas.2009490117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kβ X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Rouxel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Claudio Cirelli
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | | | - Samuel Menzi
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Georgios Pamfilidis
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | - Wojciech Gawelda
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Mykola Biednov
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
| | | | - Christopher A Arrell
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Christopher J Milne
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
11
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|
12
|
Harder-Viddal C, Roshko RM, Stetefeld J. Energy flow and intersubunit signalling in GSAM: A non-equilibrium molecular dynamics study. Comput Struct Biotechnol J 2020; 18:1651-1663. [PMID: 32670505 PMCID: PMC7338781 DOI: 10.1016/j.csbj.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Non-equilibrium molecular dynamics simulations of vibrational energy flow induced by the imposition of a thermal gradient have been performed on the μ2-dimeric enzyme glutamate-1-semialdehyde aminomutase (GSAM), the key enzyme in the biosynthesis of chlorophyll, in order to identify energy transport pathways and to elucidate their role as potential allosteric communication networks for coordinating functional dynamics, specifically the negative cooperativity observed in the motion of the two active site gating loops. Fully atomistic MD simulations of thermal diffusion were executed with a GROMACS simulation package on a fully solvated GSAM enzyme by heating various active site target ligands (initially, catalytic intermediates and cofactors) to 300K while holding the remainder of the protein and the solvent bath at 10K and monitoring the temperature T(t) of all the enzyme residues as a function of time over a 1ns observation window. Energy is observed to be deposited in a relatively small number of discrete chains of residues most of which contribute to specific structural or biochemical functionality. Thermal linkages between all thermally active chains were established by isolating a specific pair of chains and performing a thermal diffusion simulation on the pair, one held at 300K and the other at 10K, with the rest of the protein frozen in its initial atomic configuration and thus thermally unresponsive. Proceeding in this way, it was possible to map out multiple pathways of vibrational energy flow leading from one of the active sites through a network of contiguous residues, many of which were evolutionarily conserved and linked by hydrogen bonds, into the other active site and ultimately to the other gating loop.
Collapse
Affiliation(s)
- C Harder-Viddal
- Department of Chemistry and Physics, Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, Manitoba, Canada
| | - R M Roshko
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, Winnipeg, Manitoba, Canada
| | - J Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba, Canada.,Center for Oil and Gas Research and Development (COGRAD), Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Canada.,Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| |
Collapse
|
13
|
Mizuno M, Mizutani Y. Role of atomic contacts in vibrational energy transfer in myoglobin. Biophys Rev 2020; 12:511-518. [PMID: 32206983 DOI: 10.1007/s12551-020-00681-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022] Open
Abstract
Heme proteins are ideal systems to investigate vibrational energy flow at the atomic level. Upon photoexcitation, a large amount of excess vibrational energy is selectively deposited on heme due to extremely fast internal conversion. This excess energy is redistributed to the surrounding protein moiety and then to water. Vibrational energy flow in myoglobin (Mb) was examined using picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) spectroscopy. We used the Trp residue directly contacting the heme group as a selective probe for vibrationally excited populations. Trp residues were placed at different position close to the heme by site-directed mutagenesis. This technique allows us to monitor the excess energy on residue-to-residue basis. Anti-Stokes UVRR measurements for Mb mutants suggest that the dominant channel for energy transfer in Mb is the pathway through atomic contacts between heme and nearby amino acid residues as well as that between the protein and solvent water. It is found that energy flow through proteins is analogous to collisional exchange processes in solutions.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
14
|
Govind C, Paul M, Karunakaran V. Ultrafast Heme Relaxation Dynamics Probing the Unfolded States of Cytochrome c Induced by Liposomes: Effect of Charge of Phospholipids. J Phys Chem B 2020; 124:2769-2777. [DOI: 10.1021/acs.jpcb.9b11957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Megha Paul
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Ferrante C, Batignani G, Pontecorvo E, Montemiglio LC, Vos MH, Scopigno T. Ultrafast Dynamics and Vibrational Relaxation in Six-Coordinate Heme Proteins Revealed by Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:2285-2292. [PMID: 31917551 PMCID: PMC7735705 DOI: 10.1021/jacs.9b10560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Identifying
the structural rearrangements during photoinduced reactions is a fundamental
challenge for understanding from a microscopic perspective the dynamics
underlying the functional mechanisms of heme proteins. Here, femtosecond
stimulated Raman spectroscopy is applied to follow the ultrafast evolution
of two different proteins, each bearing a six-coordinate heme with
two amino acid axial ligands. By exploiting the sensitivity of Raman
spectra to the structural configuration, we investigate the effects
of photolysis and the binding of amino acid residues in cytochrome c and neuroglobin. By comparing the system response for
different time delays and Raman pump resonances, we show how detailed
properties of atomic motions and energy redistribution can be unveiled.
In particular, we demonstrate substantially faster energy flow from
the dissociated heme to the protein moiety in cytochrome c, which we assign to the presence of covalent heme–protein
bonds.
Collapse
Affiliation(s)
- Carino Ferrante
- Center for Life Nano Science @Sapienza , Istituto Italiano di Tecnologia , Rome I-00161 , Italy
| | | | | | | | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Tullio Scopigno
- Center for Life Nano Science @Sapienza , Istituto Italiano di Tecnologia , Rome I-00161 , Italy
| |
Collapse
|
16
|
Cao HY, Ma YQ, Gao LX, Tang Q, Zheng XF. Photo induced reaction of myoglobins with energy transferred from excited free tryptophan. RSC Adv 2020; 10:43853-43858. [PMID: 35519687 PMCID: PMC9058398 DOI: 10.1039/d0ra09341f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023] Open
Abstract
Despite being one of the most studied proteins in biology, the photolysis mechanism of myoglobin heme affected by endogenous substances free amino acids is still in controversy. The transient absorption and kinetic processes of photo-excited myoglobin in three forms and the effects of free excited tryptophan on redox reaction of myoglobin were monitored by laser flash photolysis. With dual energy superposition of direct light irradiation and indirect energy transferred from the free excited tryptophan, the variation value in optical density (ΔOD) of MetMb increased by 66.7%, from 0.9 to 1.5. The ΔOD value of MbO2 in ferrous form increased from 0.9 to 1.25, while the ΔOD value of DeoxyMb increased from 0.75 to 1.2. The decay time of excited DeoxyMb was prolonged obviously with the excited tryptophan, while the decay time of excited MbO2 and MetMb was shortened significantly. The excited tryptophan could promote laser induced reaction processes of myoglobin in different forms by intermolecular energy transfer to one final similar photo reaction state. The possible photo induced reaction mechanisms of DeoxyMb, MbO2, MetMb with and without free tryptophan were also proposed. The dual energy superposition of direct light irradiation and indirect energy transferred from the free excited tryptophan promoted the photo induced reaction of myoglobin.![]()
Collapse
Affiliation(s)
- Hong-Yu Cao
- College of Life Science and Biotechnology
- Dalian University
- Dalian 116622
- China
- Liaoning Key Laboratory of Bio-Organic Chemistry
| | - Yu-Qi Ma
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- China
| | - Ling-Xing Gao
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- China
| | - Qian Tang
- College of Life Science and Biotechnology
- Dalian University
- Dalian 116622
- China
- Liaoning Key Laboratory of Bio-Organic Chemistry
| | - Xue-Fang Zheng
- College of Environmental and Chemical Engineering
- Dalian University
- Dalian 116622
- China
- Liaoning Key Laboratory of Bio-Organic Chemistry
| |
Collapse
|
17
|
Wiley TE, Miller NA, Miller WR, Sofferman DL, Lodowski P, Toda MJ, Jaworska M, Kozlowski PM, Sension RJ. Off to the Races: Comparison of Excited State Dynamics in Vitamin B12 Derivatives Hydroxocobalamin and Aquocobalamin. J Phys Chem A 2018; 122:6693-6703. [DOI: 10.1021/acs.jpca.8b06103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theodore E. Wiley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A. Miller
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - William R. Miller
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Danielle L. Sofferman
- Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Maria Jaworska
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen J. Hallera, 107, 80-416 Gdansk, Poland
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
18
|
Yamashita S, Mizuno M, Tran DP, Dokainish H, Kitao A, Mizutani Y. Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins. J Phys Chem B 2018; 122:5877-5884. [DOI: 10.1021/acs.jpcb.8b03518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hisham Dokainish
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
19
|
Govind C, Karunakaran V. Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling. J Phys Chem B 2017; 121:3111-3120. [DOI: 10.1021/acs.jpcb.7b01416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chinju Govind
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Venugopal Karunakaran
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| |
Collapse
|
20
|
Molesky BP, Guo Z, Cheshire TP, Moran AM. Perspective: Two-dimensional resonance Raman spectroscopy. J Chem Phys 2016; 145:180901. [DOI: 10.1063/1.4966194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
21
|
Ferrante C, Pontecorvo E, Cerullo G, Vos MH, Scopigno T. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat Chem 2016; 8:1137-1143. [PMID: 27874865 DOI: 10.1038/nchem.2569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022]
Abstract
Determining the initial pathway for ultrafast energy redistribution within biomolecules is a challenge, and haem proteins, for which energy can be deposited locally in the haem moiety using short light pulses, are suitable model systems to address this issue. However, data acquired using existing experimental techniques that fail to combine sufficient structural sensitivity with adequate time resolution have resulted in alternative hypotheses concerning the interplay between energy flow among highly excited vibrational levels and potential concomitant electronic processes. By developing a femtosecond-stimulated Raman set-up, endowed with the necessary tunability to take advantage of different resonance conditions, here we visualize the temporal evolution of energy redistribution over different vibrational modes in myoglobin. We establish that the vibrational energy initially stored in the highly excited Franck-Condon manifold is transferred with different timescales into low- and high-frequency modes, prior to slow dissipation through the protein. These findings demonstrate that a newly proposed mechanism involving the population dynamics of specific vibrational modes settles the controversy on the existence of transient electronic intermediates.
Collapse
Affiliation(s)
- C Ferrante
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy
| | - E Pontecorvo
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy
| | - G Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN-CNR), Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - M H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | - T Scopigno
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
22
|
Molesky BP, Guo Z, Cheshire TP, Moran AM. Two-dimensional resonance Raman spectroscopy of oxygen- and water-ligated myoglobins. J Chem Phys 2016; 145:034203. [DOI: 10.1063/1.4958625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas P. Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
23
|
Lambert C, Moos M, Schmiedel A, Holzapfel M, Schäfer J, Kess M, Engel V. How fast is optically induced electron transfer in organic mixed valence systems? Phys Chem Chem Phys 2016; 18:19405-11. [DOI: 10.1039/c6cp03053j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optically induced electron transfer is about 3–4 orders of magnitude faster than thermally induced ET in organic mixed valence compounds.
Collapse
Affiliation(s)
- C. Lambert
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - M. Moos
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - A. Schmiedel
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - M. Holzapfel
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - J. Schäfer
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - M. Kess
- Institute of Physical and Theoretical Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - V. Engel
- Institute of Physical and Theoretical Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
24
|
Karunakaran V. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation. Chemphyschem 2015; 16:3974-83. [DOI: 10.1002/cphc.201500672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Venugopal Karunakaran
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 001 India
| |
Collapse
|
25
|
Gluyas JBG, Sobolev AN, Moore EG, Low PJ. Broad-Band NIR Transient Absorption Spectroscopy of an “All-Carbon”-Bridged Bimetallic Radical Cation Complex. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Evan G. Moore
- School
of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
26
|
Molesky BP, Guo Z, Moran AM. Femtosecond stimulated Raman spectroscopy by six-wave mixing. J Chem Phys 2015; 142:212405. [DOI: 10.1063/1.4914095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
27
|
Rury AS, Wiley TE, Sension RJ. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc Chem Res 2015; 48:860-7. [PMID: 25741574 DOI: 10.1021/ar5004016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.
Collapse
Affiliation(s)
- Aaron S. Rury
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J. Sension
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
28
|
Fujii N, Mizuno M, Ishikawa H, Mizutani Y. Observing Vibrational Energy Flow in a Protein with the Spatial Resolution of a Single Amino Acid Residue. J Phys Chem Lett 2014; 5:3269-73. [PMID: 26276344 DOI: 10.1021/jz501882h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the challenges in physical chemistry has been understanding how energy flows in a condensed phase from the microscopic viewpoint. To address this, space-resolved information at the molecular scale is required but has been lacking due to experimental difficulties. We succeeded in the real-time mapping of the vibrational energy flow in a protein with the spatial resolution of a single amino acid residue by combining time-resolved resonance Raman spectroscopy and site-directed single-Trp mutagenesis. Anti-Stokes Raman intensities of the Trp residues at different sites exhibited different temporal evolutions, reflecting propagation of the energy released by the heme group. A classical heat transport model was not able to reproduce the entire experimental data set, showing that we need a molecular-level description to explain the energy flow in a protein. The systematic application of our general methodology to proteins with different structural motifs may provide a greatly increased understanding of the energy flow in proteins.
Collapse
Affiliation(s)
- Naoki Fujii
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
29
|
Consani C, Auböck G, Bräm O, van Mourik F, Chergui M. A cascade through spin states in the ultrafast haem relaxation of met-myoglobin. J Chem Phys 2014; 140:025103. [PMID: 24437919 DOI: 10.1063/1.4861467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report on a study of the early relaxation processes of met-Myoglobin in aqueous solution, using a combination of ultrafast broadband fluorescence detection and transient absorption with a broad UV-visible continuum probe at different pump energies. Reconstruction of the spectra of the transient species unravels the details of the haem photocycle in the absence of photolysis. Besides identifying a branching in the ultrafast relaxation of the haem, we show clear evidence for an electronic character of the intermediates, contrary to the commonly accepted idea that the early time relaxation of the haem is only due to cooling. The decay back to the ground state proceeds partially as a cascade through iron spin states, which seems to be a general characteristic of haem systems.
Collapse
Affiliation(s)
- Cristina Consani
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gerald Auböck
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Olivier Bräm
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Frank van Mourik
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, ISIC, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Ramos-Alvarez C, Yoo BK, Pietri R, Lamarre I, Martin JL, Lopez-Garriga J, Negrerie M. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata. Biochemistry 2013; 52:7007-21. [PMID: 24040745 DOI: 10.1021/bi400745a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemoglobin HbI from the clam Lucina pectinata is involved in H2S transport, whereas homologous heme protein HbII/III is involved in O2 metabolism. Despite similar tertiary structures, HbI and HbII/III exhibit very different reactivity toward heme ligands H2S, O2, and NO. To investigate this reactivity at the heme level, we measured the dynamics of ligand interaction by time-resolved absorption spectroscopy in the picosecond to nanosecond time range. We demonstrated that H2S can be photodissociated from both ferric and ferrous HbI. H2S geminately rebinds to ferric and ferrous out-of-plane iron with time constants (τgem) of 12 and 165 ps, respectively, with very different proportions of photodissociated H2S exiting the protein (24% in ferric and 80% in ferrous HbI). The Gln(E7)His mutation considerably changes H2S dynamics in ferric HbI, indicating the role of Gln(E7) in controling H2S reactivity. In ferric HbI, the rate of diffusion of H2S from the solvent into the heme pocket (kentry) is 0.30 μM(-1) s(-1). For the HbII/III-O2 complex, we observed mainly a six-coordinate vibrationally excited heme-O2 complex with O2 still bound to the iron. This explains the low yield of O2 photodissociation and low koff from HbII/III, compared with those of HbI and Mb. Both isoforms behave very differently with regard to NO and O2 dynamics. Whereas the amplitude of geminate rebinding of O2 to HbI (38.5%) is similar to that of myoglobin (34.5%) in spite of different distal heme sites, it appears to be much larger for HbII/III (77%). The distal Tyr(B10) side chain present in HbII/III increases the energy barrier for ligand escape and participates in the stabilization of bound O2 and NO.
Collapse
Affiliation(s)
- Cacimar Ramos-Alvarez
- Department of Chemistry, University of Puerto Rico , Mayagüez Campus, Mayagüez 00680, Puerto Rico
| | | | | | | | | | | | | |
Collapse
|
31
|
Russell HJ, Hardman SJO, Heyes DJ, Hough MA, Greetham GM, Towrie M, Hay S, Scrutton NS. Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range. FEBS J 2013; 280:6070-82. [PMID: 24034856 PMCID: PMC4163637 DOI: 10.1111/febs.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Abstract
The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O2 completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time‐resolved spectroscopy techniques that span the entire femtosecond–second temporal range in the UV‐vis spectrum, and the femtosecond–nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild‐type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs–s), in contrast to wild‐type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild‐type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range.
Collapse
Affiliation(s)
- Henry J Russell
- Faculty of Life Sciences, Manchester Institute of Biotechnology and Photon Science Institute, The University of Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rury AS, Sension RJ. Broadband ultrafast transient absorption of iron (III) tetraphenylporphyrin chloride in the condensed phase. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Kumar S, Kumar V, Jain DC. Laser Raman Spectroscopic Studies on Hemeproteins in Epileptic Children. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojapps.2013.31018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Marcelli A, Jelovica Badovinac I, Orlic N, Salvi PR, Gellini C. Excited-state absorption and ultrafast relaxation dynamics of protoporphyrin IX and hemin. Photochem Photobiol Sci 2013; 12:348-55. [DOI: 10.1039/c2pp25247c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Marcelli A, Abbruzzetti S, Bustamante JP, Feis A, Bonamore A, Boffi A, Gellini C, Salvi PR, Estrin DA, Bruno S, Viappiani C, Foggi P. Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca. PLoS One 2012; 7:e39884. [PMID: 22792194 PMCID: PMC3391200 DOI: 10.1371/journal.pone.0039884] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
Collapse
Affiliation(s)
- Agnese Marcelli
- LENS, European Laboratory for Non-linear Spectroscopy, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nicoletti FP, Droghetti E, Boechi L, Bonamore A, Sciamanna N, Estrin DA, Feis A, Boffi A, Smulevich G. Fluoride as a Probe for H-Bonding Interactions in the Active Site of Heme Proteins: The Case of Thermobifida fusca Hemoglobin. J Am Chem Soc 2011; 133:20970-80. [DOI: 10.1021/ja209312k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Francesco P. Nicoletti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Enrica Droghetti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Alessandra Bonamore
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Natascia Sciamanna
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Alberto Boffi
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
37
|
Fujii N, Mizuno M, Mizutani Y. Direct Observation of Vibrational Energy Flow in Cytochrome c. J Phys Chem B 2011; 115:13057-64. [DOI: 10.1021/jp207500b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoki Fujii
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Takayanagi M, Nagaoka M. Incipient structural and vibrational relaxation process of photolyzed carbonmonoxy myoglobin: statistical analysis by perturbation ensemble molecular dynamics method. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ye S, Markelz A. Hydration Effects on Energy Relaxation of Ferric Cytochrome C Films after Soret-Band Photoexcitation. J Phys Chem B 2010; 114:15151-7. [DOI: 10.1021/jp104217j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China 230026, and Department of Physics, University at Buffalo, SUNY, 239 Fronczak Hall, Buffalo, New York 14260-1500, United States
| | - Andrea Markelz
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China 230026, and Department of Physics, University at Buffalo, SUNY, 239 Fronczak Hall, Buffalo, New York 14260-1500, United States
| |
Collapse
|
40
|
Yabushita A, Kobayashi T. Ultrafast Spectroscopy of Oxyhemoglobin during Photodissociation. J Phys Chem B 2010; 114:11654-8. [DOI: 10.1021/jp103593q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan; ICORP, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Applied Physics and Chemistry and Institute for Laser Science, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan; and Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0971, Japan
| | - Takayoshi Kobayashi
- Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan; ICORP, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Applied Physics and Chemistry and Institute for Laser Science, University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan; and Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0971, Japan
| |
Collapse
|
41
|
Park J, Lee T, Lim M. Viscosity-Dependent Dynamics of CO Rebinding to Microperoxidase-8 in Glycerol/Water Solution. J Phys Chem B 2010; 114:10897-904. [DOI: 10.1021/jp1050436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| |
Collapse
|
42
|
Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins. Proc Natl Acad Sci U S A 2010; 107:13678-83. [PMID: 20643970 DOI: 10.1073/pnas.0912938107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the ultrafast structural transitions of the heme induced by nitric oxide (NO) binding for several heme proteins by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We probed the heme iron motion by the evolution of the iron-histidine Raman band intensity after NO photolysis. Unexpectedly, we found that the heme response and iron motion do not follow the kinetics of NO rebinding. Whereas NO dissociation induces quasi-instantaneous iron motion and heme doming (<0.6 ps), the reverse process results in a much slower picosecond movement of the iron toward the planar heme configuration after NO binding. The time constant for this primary domed-to-planar heme transition varies among proteins (approximately 30 ps for myoglobin and its H64V mutant, approximately 15 ps for hemoglobin, approximately 7 ps for dehaloperoxidase, and approximately 6 ps for cytochrome c) and depends upon constraints exerted by the protein structure on the heme cofactor. This observed phenomenon constitutes the primary structural transition in heme proteins induced by NO binding.
Collapse
|
43
|
Karunakaran V, Benabbas A, Sun Y, Zhang Z, Singh S, Banerjee R, Champion PM. Investigations of low-frequency vibrational dynamics and ligand binding kinetics of cystathionine beta-synthase. J Phys Chem B 2010; 114:3294-306. [PMID: 20155941 DOI: 10.1021/jp909700r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vibrational coherence spectroscopy is used to study the low frequency dynamics of the truncated dimer of human cystathionine beta-synthase (CBS). CBS is a pyridoxal-5'-phosphate-dependent heme enzyme with cysteine and histidine axial ligands that catalyzes the condensation of serine and homocysteine to form cystathionine. A strong correlation between the "detuned" coherence spectrum (which probes higher frequencies) and the Raman spectrum is demonstrated, and a rich pattern of modes below 200 cm(-1) is revealed. Normal coordinate structural decomposition (NSD) of the ferric CBS crystal structure predicts the enhancement of normal modes with significant heme "doming", "ruffling", and "saddling" content, and they are observed in the coherence spectra near approximately 40, approximately 60, and approximately 90 cm(-1). When pH is varied, the relative intensities and frequencies of the low frequency heme modes indicate the presence of a unique protein-induced heme structural perturbation near pH 7 that differs from what is observed at higher or lower pH. For ferric CBS, we observe a new mode near approximately 25 cm(-1), possibly involving the response of the protein, which exhibits a phase jump of approximately pi for excitation on the blue and red side of the Soret band maximum. The low frequency vibrational coherence spectrum of ferrous CBS is also presented, along with our efforts to probe its NO-bound complex. The CO geminate rebinding kinetics of CBS are similar to the CO-bound form of the gene activator protein CooA, but with the appearance of a significant additional kinetic inhomogeneity. Analysis of this inhomogeneity suggests that it arises from the two subunits of CBS and leads to a factor of approximately 20 for the ratio of the average CO geminate rebinding rates of the two subunits.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mehlenbacher RD, Lyons B, Wilson KC, Du Y, McCamant DW. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy. J Chem Phys 2009; 131:244512. [DOI: 10.1063/1.3276684] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Zhang Z, Benabbas A, Ye X, Yu A, Champion PM. Measurements of heme relaxation and ligand recombination in strong magnetic fields. J Phys Chem B 2009; 113:10923-33. [PMID: 19588986 DOI: 10.1021/jp9031805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 T). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O(2)), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O(2) binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the nonradiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the "spin-forbidden" CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor ( approximately 10(9) s(-1)) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Physics and Center for interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Kobayashi T, Yabushita A. Dynamics of vibrational and electronic coherences in the electronic excited state studied in a negative-time range. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Zhang Y, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models. J Chem Phys 2009; 130:215101. [PMID: 19508100 DOI: 10.1063/1.3147704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The time scales and pathways of vibrational energy relaxation (VER) of the nu(4) and nu(7) modes of three nickel porphyrin models, nickel porphine (NiP), nickel protoporphyrin IX (Ni-heme), and nickel octaethylporphyrin (NiOEP), were studied using a non-Markovian time-dependent perturbation theory at the B3LYP/6-31G(d) level. When NiP is calculated with D(4h) symmetry, it has the planar structure and the same VER properties as ferrous iron porphine (FeP). The porphine cores of both Ni-heme and NiOEP were distorted from a planar geometry, assuming a nonplanar structure, similar to that of the heme structure in cytochrome c. The VER time scales of Ni-heme are found to be similar to those predicted for a planar iron heme, but the derived pathways have distinctly different features. In particular, the strong coupling between the nu(7) mode and the overtone of the approximately 350 cm(-1) gamma(7) mode, observed for planar porphyrins, is absent in both nonplanar nickel porphyrins. Direct energy exchange between the nu(4) and nu(7) modes is not observed in NiOEP, but is found to play an essential role in the VER of the nu(4) mode in Ni-heme. The Ni-heme isopropionate groups are involved in the dominant VER pathways of both the nu(4) and nu(7) modes of Ni-heme. However, in contrast with VER pathways derived in planar iron heme, the isopropionate groups are not observed to play an essential role relative to other side chains in spatially directing the vibrational energy flow.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
48
|
Zhang Y, Straub JE. Diversity of solvent dependent energy transfer pathways in heme proteins. J Phys Chem B 2009; 113:825-30. [PMID: 19115811 DOI: 10.1021/jp807499y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The time scales and pathways of heme cooling in both reduced cytochrome c and oxidized cytochrome c following heme photoexcitation were studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol, and a nonpolar solvent, were used in the simulation. Single exponential decay of the excess kinetic energy of the heme following photoexcitation was observed in all systems studied. The simulated time scale for heme cooling in normal water agrees with recent experimental results. In contrast to heme cooling in myoglobin, no solvent dependence was observed for the time scale for heme cooling in cytochrome c. The diversity of solvent dependence results from the different local heme environments in the two proteins. In myoglobin, it has been established that the dominant mechanism for heme cooling is direct energy transfer from the heme to the solvent. In cytochrome c, direct interaction between heme and protein residues forms the dominant energy transfer pathway. This distinction is dictated by protein topology and linked to function.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, USA
| | | |
Collapse
|
49
|
Zhang Y, Fujisaki H, Straub JE. Mode-Specific Vibrational Energy Relaxation of Amide I′ and II′ Modes in N-Methylacetamide/Water Clusters: Intra- and Intermolecular Energy Transfer Mechanisms. J Phys Chem A 2009; 113:3051-60. [DOI: 10.1021/jp8109995] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Hiroshi Fujisaki
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
50
|
Zhang Y, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. II. The ν4 and ν7 modes of iron-protoporphyrin IX and iron porphine. J Chem Phys 2009; 130:095102. [DOI: 10.1063/1.3086080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|