1
|
Zhang K, Wang R, Wang H, Li M, Zhao P, Wang Y, Wang B, Shi H, Zhang W, Gao S, Huang Q. Electrooxidation of chlorophene and dichlorophen by reactive electrochemical membrane: Key determining factors of removal efficiency. ENVIRONMENTAL RESEARCH 2024; 241:117612. [PMID: 37951380 DOI: 10.1016/j.envres.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.
Collapse
Affiliation(s)
- Kehao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruifeng Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Pengbo Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaye Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| |
Collapse
|
2
|
Qiu Z, Chu C, Wang K, Shen J, Zhu X, Kamran MA, Chen B. Sequential anodic oxidation and cathodic electro-Fenton in the Janus electrified membrane for reagent-free degradation of pollutants. WATER RESEARCH 2023; 246:120674. [PMID: 37857008 DOI: 10.1016/j.watres.2023.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianjian Shen
- Dqchance. Science and Technology co Ltd, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
3
|
Barisci S, Suri R. Degradation of emerging per- and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132419. [PMID: 37651931 DOI: 10.1016/j.jhazmat.2023.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In recent years, shorter-chain fluorinated compounds have been manufactured as alternatives to legacy per- and polyfluoroalkyl substances (PFAS) after a global ban on some long-chain PFAS. This study is the first to investigate the degradability of emerging PFAS by an electrochemical plug flow reactor (EPFR). Ten different emerging PFAS, representing classes of fluorotelomer alcohol, perfluoroalkyl ether carboxylate, polyfluoroalkyl ethersulfonic acids, perfluoroalkyl ether/polyether carboxylates, perfluoroether sulfonate, N-alkyl perfluoroalkylsulfonamido carboxylate, fluoroalkyl phosphonic acid, and perfluoro alkane sulfonamide were investigated. The process kinetics was performed. The degradation of parent compounds increased with increasing retention time (RT). At 45.2 min of RT, the degradation of parent compounds ranged between 68%-100% with a current density of 17.2 mA/cm2. A linear increase in pseudo-first order rate constants was observed for all PFAS with increasing current density from 5.7 to 28.7 mA/cm2 (R2 > 0.91). The effect of pH, natural organic matter, and bicarbonate on the degradation, defluorination, and fluorine mass balance are reported. Alkaline pH (11) caused a decrease in degradation for all PFAS. While the presence of natural organic matter (NOM) significantly decreased the degradation and defluorination processes, the presence of bicarbonate at all studied concentrations (25, 50, and 100 mg/L) did not affect the process efficiency. The defluorination reduced to 34% from 81% with 15 mg/L NOM. The unknown/undetected fluorine fraction also increased in the presence of 15 mg/L NOM indicating the formation of NOM-PFAS complexes. Additionally, C2-C8 perfluoro carboxylic acids (PFCAs), one perfluoro sulfonic acid (PFSA), two H-PFCAs, and 4:2 fluorotelomer sulfonate (FTS) were identified as degradation byproducts in suspect screening. The electrical energy per order for PFAS ranged between 1.8 and 19.4 kWh/m3. This study demonstrates that emerging types of PFAS can potentially be degraded using an EPFR with relatively low electrical energy requirements.
Collapse
Affiliation(s)
- Sibel Barisci
- Temple University, Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, 1947 N 12th Street, Philadelphia, PA 19122, USA; Ege University, Bioengineering Department, Bornova, 35100 Izmir, Turkey
| | - Rominder Suri
- Temple University, Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, 1947 N 12th Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
4
|
do Vale-Júnior E, de Sousa RA, Antunes RA, do Nascimento JHO, Lima Santos JE, Martínez-Huitle CA, Dos Santos EV. Evaluating the catalytic effect of Fe@Fe 2O 3-modified granulated cork as an innovative heterogeneous catalyst in electro-Fenton degradation of benzoquinone in different aqueous matrices. CHEMOSPHERE 2023:139209. [PMID: 37315857 DOI: 10.1016/j.chemosphere.2023.139209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
This study investigated the potential of a novel biomass-derived cork as a suitable catalyst after its modification with Fe@Fe2O3 for in-situ application in heterogeneous electro-Fenton (HEF) process for benzoquinone (BQ) elimination from water. No attempts on the application of modified granulated cork (GC) as a suspended heterogeneous catalyst in the HEF process for water treatment have been published yet. GC was modified by sonification approach in a FeCl3 + NaBH4 solution to reduce the ferric ions to metallic iron in order to obtain Fe@Fe2O3-modified GC (Fe@Fe2O3/GC). Results clearly demonstrated that this catalyst exhibited excellent electrocatalytic properties, such as a high conductivity as well as relatively high redox current and possessed several active sites for water depollution applications. Using Fe@Fe2O3/GC as catalyst in HEF, 100% of BQ removal was achieved in synthetic solutions by applying 33.3 mA cm-2 after 120 min. Different experimental conditions were tested to determine that best possible conditions can be as follow: 50 mmol L-1 Na2SO4 and 10 mg L-1 of Fe@Fe2O3/GC catalyst using Pt/carbon-PTFE air diffusion cell by applying 33.3 mA cm-2. Nevertheless, when Fe@Fe2O3/GC was used in the HEF approach to depollute real water matrices, no complete BQ concentration was removal achieved after 300 min of treatment, achieving between 80 and 95% of effectiveness.
Collapse
Affiliation(s)
- Edilson do Vale-Júnior
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Rainy Alves de Sousa
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Renato Altobelli Antunes
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, 09210580, Brazil
| | - Jose Heriberto Oliveira do Nascimento
- Research Group on Innovation in Micro and Nanotechnology - Department of Textile Engineering, Federal University of Rio Grande Do Norte, Campus Universitario, 59072-970, Natal, RN, Brazil
| | - José Eudes Lima Santos
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil
| | - Carlos A Martínez-Huitle
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil.
| | - Elisama Vieira Dos Santos
- Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry, Federal University of Rio Grande Do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Mi-cropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil; School of Science and Technology, Federal University of Rio Grande Do Norte, Campus Universitario, 59072-970, Natal, Brazil.
| |
Collapse
|
5
|
Duan X, Wang Q, Ning Z, Tu S, Li Y, Sun C, Zhao X, Chang L. Fabrication and Characterization of PEG-In2O3 Modified PbO2 Anode for Electrochemical Degradation of Metronidazole. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Lu Z, Liu L, Gao W, Zhai Z, Song H, Chen B, Zheng Z, Yang B, Geng C, Liang J, Jiang X, Huang N. Manufacturing 3D nano-porous architecture for boron-doped diamond film to efficient abatement of organic pollutant: Synergistic effect of hydroxyl radical and sulfate radical. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, Lima TS, Moura JPC, Silva CR, Lucchetti LEB, Codognoto L, Robles I, Lanza MRV. Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes - A review on the relevance of materials and methods. CHEMOSPHERE 2022; 307:135763. [PMID: 35952792 DOI: 10.1016/j.chemosphere.2022.135763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.
Collapse
Affiliation(s)
- Mauro C Santos
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil.
| | - Vanessa S Antonin
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Felipe M Souza
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil; Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia Goiano, BR-153, Km 633, Zona Rural, CEP: 75650-000, Morrinhos, GO, Brazil
| | - Luci R Aveiro
- São Paulo Federal Institute of Education, Science and Technology, Rua Pedro Vicente, 625, Canindé São Paulo, CEP: 01109-010, SP, Brazil
| | - Victor S Pinheiro
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Tuani C Gentil
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Thays S Lima
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - João P C Moura
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Carolina R Silva
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
8
|
Performance of Ti/RuO2-IrO2 Electrodes and Comparison with BDD Electrodes in the Treatment of Textile Wastewater by Electro-Oxidation Process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
The versatile behavior of diamond electrodes — Electrochemical examination of the anti-psychotic drug olanzapine (OL) oxidation as a model organic aqueous solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Kazwini T, Yadav S, Ibrar I, Al-Juboori RA, Singh L, Ganbat N, Karbassiyazdi E, Samal AK, Subbiah S, Altaee A. Updated review on emerging technologies for PFAS contaminated water treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zaouak A, Chouchane H, Jelassi H. Gamma irradiation-induced degradation and mineralization of methocarbamol in aqueous solution. ENVIRONMENTAL TECHNOLOGY 2022:1-8. [PMID: 35200109 DOI: 10.1080/09593330.2022.2046646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Gamma irradiation degradation of the extensively used muscle relaxant in the world methocarbamol (MET) was studied. MET aqueous solutions were irradiated by gamma rays emitted by a Cobalt 60 source at doses of 1-4 kGy. Our findings demonstrated that gamma irradiation degraded more than 98.5% of MET. Absorption spectra analysis revealed that when increased irradiation dose, the absorption bands declined with complete disappearance at 4 kGy dose. Additionally, the most radiolytic degradation rate was recorded at neutral pH, marked by Total Organic Carbon (TOC) removal rate of 98% reflecting the total mineralization of MET at 4 kGy. In-depth spectrophotometric analyses advocated a pseudo-first-order type of MET degradation kinetics. The obtained apparent rate constant value was kapp, MET = (0.02167 ± 0.0006) min-1. Gas chromatography-mass spectrometry (GC-MS) allowed the detection of 3-(o-methoxyphenoxy)-1,2 propanediol,2-methoxyphenol, 1,2,3 propanetriol, 1,2-dihydroxybenzene and 1,2,4 benzentriol identified as by-products generated during radiolytic degradation. Finally, an outline of the degradation mechanism was suggested according to the obtained by-products.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| | - Habib Chouchane
- University Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| |
Collapse
|
12
|
Hao Y, Ma P, Ma H, Proietto F, Prestigiacomo C, Galia A, Scialdone O. Electrochemical treatment of synthetic wastewaters contaminated by organic pollutants at Ti4O7 anode: experimental results and theoretical modelling. ChemElectroChem 2022. [DOI: 10.1002/celc.202101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongyong Hao
- University of Palermo: Universita degli Studi di Palermo Ingegneria CHINA
| | - Pengfei Ma
- University of Palermo: Universita degli Studi di Palermo Ingegneria CHINA
| | - Hongrui Ma
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology School of environmental science and technology CHINA
| | - Federica Proietto
- University of Palermo: Universita degli Studi di Palermo Ingegneria ITALY
| | | | - Alessandro Galia
- University of Palermo: Universita degli Studi di Palermo Ingegneria ITALY
| | - Onofrio Scialdone
- Università Ingegneria Chimica Gestionale Informatica Meccanica viale delle Scienze 90128 Palermo ITALY
| |
Collapse
|
13
|
Oliveira RC, Buijnsters JG, Mateus MM, Bordado JC, Santos DM. On the electrooxidation of kraft black liquor on boron-doped diamond. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Bilge S, Karadurmus L, Bellur Atici E, Sınağ A, Ozkan S. Electrochemical investigation of ruxolitinib: Sensitive voltammetric assay in drug product and human serum by using different solid electrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Wang Q, Tu S, Wang W, Chen W, Duan X, Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Shi H, Chiang SYD, Wang Y, Wang Y, Liang S, Zhou J, Fontanez R, Gao S, Huang Q. An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147723. [PMID: 34034184 DOI: 10.1016/j.scitotenv.2021.147723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
This study examined the feasibility of a novel treatment train that combines electrocoagulation (EC) with electrooxidation (EO) treatment to remove and degrade per- and polyfluoroalkyl substances (PFASs) from water. Electrocoagulation with a zinc anode could effectively remove PFASs from water, and long-chain PFASs (C7-C10) tended to have a higher removal rate. Foam was generated when a relatively high current density (>1 mA cm-2) was applied to a relatively high PFAS concentration (each PFAS > 0.1 μM) during EC, which promoted the separation of PFASs from the bulk solution, especially for long-chain PFASs. Isotherm-like adsorption results indicated that competitive adsorption on floc occurred between PFASs when no foam was produced in a solution containing 10 different PFASs. Acid dissolution methods could recover and concentrate 10 PFASs in controlled volumes from both the floc and the foam, and it was also successfully applied in groundwater collected from a contaminated site. The concentrated PFASs in the acid solutions were efficiently destructed using EO treatment with a Ti4O7 anode at 10 mA cm-2, and no supplement of electrolyte was needed for the floc dissolved solution. This electrochemical-based process can economically separate, concentrate and destroy PFASs in groundwater and wastewater.
Collapse
Affiliation(s)
- Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | | | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Yifei Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Shangtao Liang
- AECOM Technical Services, Inc., Atlanta, GA 30309, United States
| | - Jing Zhou
- AECOM Technical Services, Inc., Atlanta, GA 30309, United States
| | - Raymond Fontanez
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States.
| |
Collapse
|
17
|
Ko JS, Le NQ, Schlesinger DR, Zhang D, Johnson JK, Xia Z. Novel niobium-doped titanium oxide towards electrochemical destruction of forever chemicals. Sci Rep 2021; 11:18020. [PMID: 34504266 PMCID: PMC8429446 DOI: 10.1038/s41598-021-97596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Electrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.
Collapse
Affiliation(s)
- Jesse S Ko
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Nam Q Le
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | | | - Dajie Zhang
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - James K Johnson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Zhiyong Xia
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA.
| |
Collapse
|
18
|
Uwayezu JN, Carabante I, Lejon T, van Hees P, Karlsson P, Hollman P, Kumpiene J. Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112573. [PMID: 33873022 DOI: 10.1016/j.jenvman.2021.112573] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/28/2023]
Abstract
Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be a promising technique for the treatment of water contaminated with per- and poly-fluoroalkyl substances (PFAS). Various studies have demonstrated that the extent of PFAS degradation is influenced by the composition of samples and electrochemical conditions. This study evaluated the significance of several factors, such as the current density, initial concentration of PFAS, concentration of electrolyte, treatment time, and their interactions on the degradation of PFAS. A 24 factorial design was applied to determine the effects of the investigated factors on the degradation of perfluorooctanoic acid (PFOA) and generation of fluoride in spiked water. The best-performing conditions were then applied to the degradation of PFAS in wastewater samples. The results revealed that current density and time were the most important factors for PFOA degradation. In contrast, a high initial concentration of electrolyte had no significant impact on the degradation of PFOA, whereas it decreased the generation of F-. The experimental design model indicated that the treatment of spiked water under a current density higher than 14 mA cm-2 for 3-4 h could degrade PFOA with an efficiency of up to 100% and generate an F- fraction of approximately 40-50%. The observed high PFOA degradation and a low concentration of PFAS degradation products indicated that the mineralization of PFOA was effective. Under the obtained best conditions, the degradation of PFOA in wastewater samples was 44-70%. The degradation efficiency for other PFAS in these samples was 65-80% for perfluorooctane sulfonic acid (PFOS) and 42-52% for 6-2 fluorotelomer sulfonate (6-2 FTSA). The presence of high total organic carbon (TOC) and chloride contents was found to be an important factor affecting the efficiency of PFAS electrochemical degradation in wastewater samples. The current study indicates that the tested method can effectively degrade PFAS in both water and wastewater and suggests that increasing the treatment time is needed to account for the presence of other oxidizable matrices.
Collapse
Affiliation(s)
- Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tore Lejon
- UiT-The Arctic University of Norway, Norway
| | | | | | | | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
19
|
Electrochemical Discrimination of Salbutamol from Its Excipients in Ventolin TM at Nanoporous Gold Microdisc Arrays. SENSORS 2021; 21:s21123975. [PMID: 34207616 PMCID: PMC8226559 DOI: 10.3390/s21123975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
Abstract
The emergence of specific drug–device combination products in the inhalable pharmaceutical industry demands more sophistication of device functionality in the form of an embedded sensing platform to increase patient safety and extend patent coverage. Controlling the nebuliser function at a miniaturised, integrated electrochemical sensing platform with rapid response time and supporting novel algorithms could deliver such a technology offering. Development of a nanoporous gold (NPG) electrochemical sensor capable of creating a unique fingerprint signal generated by inhalable pharmaceuticals provided the impetus for our study of the electrooxidation of salbutamol, which is the active bronchodilatory ingredient in VentolinTM formulations. It was demonstrated that, at NPG-modified microdisc electrode arrays, salbutamol is distinguishable from the chloride excipient present at 0.0154 M using linear sweep voltammetry and can be detected amperometrically. In contrast, bare gold microdisc electrode arrays cannot afford such discrimination, as the potential for salbutamol oxidation and chloride adsorption reactions overlap. The discriminative power of NPG originates from the nanoconfinement effect for chloride in the internal pores of NPG, which selectively enhances the electron transfer kinetics of this more sluggish reaction relative to that of the faster, diffusion-controlled salbutamol oxidation. Sensing was performed at a fully integrated three-electrode cell-on-chip using Pt as a quasi-reference electrode.
Collapse
|
20
|
Can OT, Tutun MM, Keyikoglu R. Anodic oxidation of bisphenol A by different dimensionally stable electrodes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1907-1919. [PMID: 33905361 DOI: 10.2166/wst.2021.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disrupter and was detected in surface waters. We investigated the mineralization of BPA by electrochemical oxidation. Six different types of electrodes, including the boron-doped diamond (BDD), platinum (Pt), and mixed metal oxide (MMO) electrodes; RuO2-IrO2, RuO2-TiO2, IrO2-Ta2O5, and Pt-IrO2, were compared as the anode material. Total organic carbon (TOC) was analyzed to monitor the mineralization efficiency of BPA. BDD achieved 100% BPA mineralization efficiency in 180 min and at a current density of 125 mA/cm2, whereas the TOC removal efficiency of Pt was 60.9% and the efficiency of MMO electrodes ranged between 48 and 54%. BDD exhibited much lower specific energy consumption, which corresponds to a lower energy cost (USD63.4 /kg TOC). The effect of operational parameters showed that the BDD anode was much more affected by the current density, initial BPA concentration, and electrolyte concentration than the other parameters such as the stirring speed and interelectrode distance.
Collapse
Affiliation(s)
- Orhan T Can
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ;
| | - Muhammed M Tutun
- Department of Environmental Engineering, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Ramazan Keyikoglu
- Department of Environmental Engineering, Bursa Technical University, 16310 Bursa, Turkey E-mail: ; ; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
21
|
Oliveira KSGC, Veroli AB, Ruotolo LAM. Using modulated current for energy minimization in the electrochemical treatment of effluents containing organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123053. [PMID: 32516650 DOI: 10.1016/j.jhazmat.2020.123053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Anodic oxidation of recalcitrant organic compounds suffers from loss of efficiency as the concentration decreases, leading to high energy consumption. Here, we propose a modulated current (MC) technique to control and maintain the applied current as close as possible to its limiting value throughout the electrolysis, thus ensuring high mineralization current efficiency. The efficacy of this technique was first validated for caffeic acid (CA) electrooxidation using a boron-doped diamond (BDD) anode and was then confirmed for the degradation of a wastewater containing phenolic compounds from wet coffee processing. Combining MC and constant current (CC) operation for CA electrolysis resulted in a substantial reduction of the specific energy consumption from 256 to 52.4 kWh kg-1 TOC, due to improvement of the mineralization current efficiency from 17.9 to 77.1%. The MC+CC technique was also successful in reducing the energy consumption for a real coffee processing wastewater mineralization, demonstrating its suitability as a simple and effective tool that can be used to reduce the energy costs in electrochemical treatment of effluents containing organic pollutants.
Collapse
Affiliation(s)
- K S G C Oliveira
- Federal University of São Carlos, Department of Chemical Engineering, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - A B Veroli
- Federal University of São Carlos, Department of Chemical Engineering, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - L A M Ruotolo
- Federal University of São Carlos, Department of Chemical Engineering, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
22
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Welter JB, da Silva SW, Schneider DE, Rodrigues MAS, Ferreira JZ. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix. CHEMOSPHERE 2020; 248:126062. [PMID: 32032880 DOI: 10.1016/j.chemosphere.2020.126062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Glucocorticoids are widely used to treat a variety of diseases. Consequently, these compounds have been found in water and wastewater matrix. Despite studies have proven its toxicity, just a few works investigate techniques to degrade and mineralize them. To solve this issue, this work presents the degradation and mineralization of prednisone (PRED) by electrochemical advanced oxidation (EAO) using a boron-doped diamond supported on niobium (Nb/BDD) anode in synthetic and real wastewater. Cyclic voltammetry (CV) was performed to investigate the PRED oxidation mechanisms. CV suggest that PRED will be oxidized via HO• and other oxidants generated from the ions present in the liquid matrix (S2O82-, SO4•-, HClO, ClO- etc.). Different EAO conditions as initial pH (3, 7 and 11) and applied current densities (5, 10 and 20 mA cm-2) were evaluated. The best result was obtained at alkaline pH (11) and a current density of 20 mA cm-2, achieving 78% of degradation and 42% of mineralization. Using the best conditions, the EAO was applied as a polishing treatment stage to remove PRED from a biological pre-treated municipal wastewater spiked with PRED. The results indicate that EAO applied in the real matrix provides better results than the synthetic solution, probably associated with the presence of ions that can be electrochemically converted into oxidant species, resulting in higher kinetic constant, mineralization current efficiency and lower energetic consumption. Therefore, the EAO process without the addition of chemicals has proven to be an effective alternative as a tertiary treatment of municipal wastewater contaminated with PRED.
Collapse
Affiliation(s)
- Júlia Bitencourt Welter
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Salatiel Wohlmuth da Silva
- UFRGS - Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| | - Daniela Eduarda Schneider
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | | | - Jane Zoppas Ferreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Shin YU, Yun ET, Kim J, Lee H, Hong S, Lee J. Electrochemical Oxidation-Membrane Distillation Hybrid Process: Utilizing Electric Resistance Heating for Distillation and Membrane Defouling through Thermal Activation of Anodically Formed Persulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1867-1877. [PMID: 31934752 DOI: 10.1021/acs.est.9b05141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study reports distillation-based salt removal by Ohmic heating in a hybrid process, in which electrochemical oxidation (EO) and direct contact membrane distillation (DCMD) are performed sequentially. In addition to anodically destructing the organics, the hybrid process also separated the sulfate-based electrolytes from treated water through distillation, without consuming external energy, owing to the temperature of the aqueous sulfate solution being elevated to 70 °C via resistive heating. The hybrid process treated organic compounds in a nonselective fashion, whereas DCMD alone did not completely reject (semi)volatile organics. Integrating EO with DCMD made the hybrid process resistant toward the wetting phenomenon; the process exhibited a steady distillate flux and salt rejection as the initial loading of amphiphilic sodium dodecyl sulfate was increased to 0.3 mM. Anodic persulfate formation from the sulfate and Ohmic heating caused an in situ yield of the sulfate radical in the feed solution; this eliminated membrane fouling, according to the observation that the water flux, which was drastically reduced upon adding alginate, was recovered immediately after an electric current was applied. The hybrid process concurrently decomposed spiked organics and removed naturally present inorganic ions in actual flue gas desulfurization wastewater, without an external supply of electrolyte and heat energy.
Collapse
Affiliation(s)
- Yong-Uk Shin
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
| | - Eun-Tae Yun
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
| | - Junghyun Kim
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
| | - Hongshin Lee
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
| | - Seungkwan Hong
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering , Korea University , Seoul 136-701 , Korea
- Energy Environmental Policy and Technology, Green School , Korea University-KIST , Seoul 136-701 , Korea
| |
Collapse
|
25
|
Shi H, Wang Y, Li C, Pierce R, Gao S, Huang Q. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14528-14537. [PMID: 31730354 DOI: 10.1021/acs.est.9b04148] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study investigated the degradation of perfluorooctanesulfonate (PFOS) in a reactive electrochemical membrane (REM) system in which a porous Magnéli phase titanium suboxide ceramic membrane served simultaneously as the anode and the membrane. Near complete removal (98.30 ± 0.51%) of PFOS was achieved under a cross-flow filtration mode at the anodic potential of 3.15 V vs standard hydrogen electrode (SHE). PFOS removal efficiency during the REM operation is much greater than that of the batch operation mode under the same anodic potential. A systematic reaction rate analysis in combination with electrochemical characterizations quantitatively elucidated the enhancement of PFOS removal in REM operation in relation to the increased electroactive surface area and improved interphase mass transfer. PFOS appeared to undergo rapid mineralization to CO2 and F-, with only trace levels of short-chain perfluorocarboxylic acids (PFCAs, C4-C8) identified as intermediate products. Density functional theory (DFT) simulations and experiments involving free radical scavengers indicated that PFOS degradation was initiated by direct electron transfer (DET) on anode to yield PFOS free radicals (PFOS•), which further react with hydroxyl radicals that were generated by water oxidation and adsorbed on the anode surface (•OHads). The attack of •OHads is essential to PFOS degradation, because, otherwise, PFOS• may react with water and revert to PFOS.
Collapse
Affiliation(s)
- Huanhuan Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Randall Pierce
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| |
Collapse
|
26
|
Ornelas Dávila O, Lacalle Bergeron L, Ruiz Gutiérrez P, Dávila Jiménez M, Sirés I, Brillas E, Roig Navarro A, Beltrán Arandes J, Sancho Llopis J. Electrochemical oxidation of dibenzothiophene compounds on BDD electrode in acetonitrile–water medium. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zhang C, Dong J, Liu M, Zhao W, Fu D. The role of nitrite in electrocatalytic oxidation of phenol: An unexpected nitration process relevant to groundwater remediation with boron-doped diamond electrode. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:547-557. [PMID: 30951999 DOI: 10.1016/j.jhazmat.2019.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Using boron-doped diamond (BDD) to mineralize recalcitrant organics has been one of the hottest areas of research interest in the field of water treatment. Here we report for the first time that, in the presence of nitrite ions (NO2-), the anodic oxidation of phenol with BDD electrode will lead to the formation of nitrated by-products of phenol. These by-products include 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 2,4,6-trinitrophenol, 2,3,4,6-tetranitrophenol, 2,3,4,5,6-pentanitrophenol, as well as a large number of dimers and trimers of nitrophenols. Increasing the concentration of NO2- will not only greatly affects the degradation and mineralization of phenol, but also enhances the formation of nitrophenols. The nitrated by-products are mainly generated via electrophilic substitution reactions mediated by nitrogen dioxide radicals and hydroxyl radicals, as well as via coupling reactions of phenol. In addition, it is found that several simple nitrophenols may also be formed in nitrate media. As a whole, formation of nitrated by-products is a novel phenomenon in anodic oxidation processes. Since nitrated aromatics are well known for their persistence in the environment, their formations in BDD anode cells should be carefully scrutinized before such technology is applied to groundwater remediation.
Collapse
Affiliation(s)
- Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | - Jiayue Dong
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Liu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjia Zhao
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
28
|
Mo C, Wei H, Wang T. Fabrication of a self‐doped TiO
2
nanotube array electrode for electrochemical degradation of methyl orange. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenghao Mo
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Huixian Wei
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Tongjun Wang
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
29
|
Zhang B, Chen M, Zhang C, He H. Electrochemical oxidation of gaseous benzene on a Sb-SnO 2/foam Ti nano-coating electrode in all-solid cell. CHEMOSPHERE 2019; 217:780-789. [PMID: 30453275 DOI: 10.1016/j.chemosphere.2018.10.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
An all-solid cell with a solid polymer electrolyte was applied to electrochemical oxidation of low-concentration indoor gaseous aromatic pollution. Antimony-doped tin dioxide nanocoatings deposited on a titanium foam substrate (Ti/Sb-SnO2) with different Sb/Sn ratios (4.8-14.0 mol%) and loading weight of Sb-SnO2 (4.4-7.7 mg cm-2) were used as dimensionally stable anodes. Sn and Sb were homogeneously dispersed on the substrate, and a crack-free nanocoating was built when the loading of nanocoating was increased to 6.3 mg cm-2. The activity tests for oxidation of benzene showed that 40 ppm gaseous benzene was converted to CO2 with high selectivity (85%) at the low cell voltage of 2.0 V in this all-solid cell. The conversion of benzene was greatly increased from 30% to 100% upon increasing the Sb/Sn ratio of the nanocoating from 4.7 mol% to 14.0 mol%. With the increase of nanocoating loading (Sb/Sn = 14.0 mol%) from 6.3 to 7.7 mg cm-2, the conversion of 100 ppm benzene was increased from 70% to 100%. Cyclic voltammetry revealed that high Sb content in the oxide nanocoating increased the overpotential and current intensity of the oxygen evolution reaction. The large outer charge qo∗ related to the electroactive surface of the SS-7.7/Ti3 electrode was up to 305.3 mC cm-2, which were responsible for its excellent electrochemical performance in the benzene oxidation process. Our studies provide a potential method for removal of indoor VOCs at ambient temperature.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
30
|
|
31
|
Gayen P, Chen C, Abiade JT, Chaplin BP. Electrochemical Oxidation of Atrazine and Clothianidin on Bi-doped SnO 2-Ti nO 2 n-1 Electrocatalytic Reactive Electrochemical Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12675-12684. [PMID: 30239187 DOI: 10.1021/acs.est.8b04103] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This research focused on improving mineralization rates during the advanced electrochemical oxidation treatment of agricultural water contaminants. For the first time, bismuth-doped tin oxide (BDTO) catalysts were deposited on Magnéli phase (Ti nO2 n-1, n = 4-6) reactive electrochemical membranes (REMs). Terephthalic acid (TA) was used as a OH• probe, whereas atrazine (ATZ) and clothianidin (CDN) were chosen as model agricultural water contaminants. The BDTO-deposited REMs (REM/BDTO) showed higher compound removal than the REM, due to enhanced OH• production. At 3.5 V/SHE, complete mineralization of TA, ATZ, and CDN was achieved for the REM/BDTO upon a single pass in the reactor (residence time ∼3.6 s). Energy consumption for REM/BDTO was as much as 31-fold lower than the REM, with minimal values per log removal of <0.53 kWh m-3 for TA (3.5 V/SHE), <0.42 kWh m-3 for ATZ (3.0 V/SHE), and 0.83 kWh m-3 for CDN (3.0 V/SHE). Density functional theory simulations provided potential dependent activation energy profiles for ATZ, CDN, and various oxidation products. Efficient mass transfer and a reaction mechanism involving direct electron transfer and reaction with OH• were responsible for the rapid and complete mineralization of ATZ and CDN at very short residence times.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S. Clinton St. , Chicago , Illinois 60607 , United States
| | - Chen Chen
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 W. Taylor St. , Chicago , Illinois 60607 , United States
| | - Jeremiah T Abiade
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 W. Taylor St. , Chicago , Illinois 60607 , United States
| | - Brian P Chaplin
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S. Clinton St. , Chicago , Illinois 60607 , United States
| |
Collapse
|
32
|
Facet‐Resolved Electrochemistry of Polycrystalline Boron‐Doped Diamond Electrodes: Microscopic Factors Determining the Solvent Window in Aqueous Potassium Chloride Solutions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Shen B, Wen X, Korshin GV. Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:943-955. [PMID: 29756621 DOI: 10.1039/c8em00122g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, the rotating disk electrode technique was used for the first time to investigate the effects of mass-transfer limitations and pH on the electrochemical oxidation of CPX, to determine the kinetics of CPX oxidation and to explore intrinsic mechanisms during the electron transfer process. Firstly, cyclic voltammetry revealed that an obvious irreversible CPX oxidation peak was observed within the potential window from 0.70 to 1.30 V at all pHs. Based on the Levich equation, the electrochemical oxidation of CPX in the electron transfer process was found to be controlled by both diffusion and kinetic processes when pH = 2, 5, 7 and 9; the diffusion coefficient of CPX at pH = 2 was calculated to be 1.5 × 10-7 cm2 s-1. Kinetic analysis indicated that the reaction on the electrode surface was adsorption-controlled compared to a diffusion process; the surface concentration of electroactive species was estimated to be 1.15 × 10-9 mol cm-2, the standard rate constant of the surface reaction was calculated to be 1.37 s-1, and CPX oxidation was validated to be a two-electron transfer process. Finally, a possible CPX oxidation pathway during the electron transfer process was proposed. The electrochemical degradation of CPX on a Ti-based anode was also conducted subsequently to investigate the electrochemical oxidation of CPX in the indirect oxidation process in bulk solutions. The effects of pH and current density were determined and compared to related literature results. The oxidation of CPX at different pHs is believed to be the result of a counterbalance between favorable and unfavorable factors, namely electromigration and side reactions of oxygen evolution, respectively. The effects of current density indicated a diffusion- and reaction-controlled process at low currents followed by a reaction-controlled process at high currents. The results presented in this study provide better understanding of the electrochemical oxidation of CPX and would enable the development of new treatment methods based on electrochemistry.
Collapse
Affiliation(s)
- Bo Shen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
34
|
Enhanced removal ability of phenol from aqueous solution using coal-based carbon membrane coupled with electrochemical oxidation process. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Gayen P, Chaplin BP. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27638-27648. [PMID: 28749130 DOI: 10.1021/acsami.7b06028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO4- formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO4- formation decreased from rates of 0.45 ± 0.03 mmol m-2 min-1 during 1 mM NaClO3 oxidation and 0.28 ± 0.01 mmol m-2 min-1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (<0.12 μmoles m-2 min-1) for the BDD electrode functionalized by a 1H,1H,2H,2H-perfluorodecyltrichlorosilane SAM. These decreases in rates corresponded to 99.94 and 99.85% decreases in selectivity for ClO4- formation during the electrolysis of 10 mM NaCl and 1 mM NaClO3 electrolytes, respectively. By contrast, the oxidation rates of phenol were reduced by only 16.3% in the NaCl electrolyte and 61% in a nonreactive 0.1 M KH2PO4 electrolyte. Cyclic voltammetry with Fe(CN)63-/4- and Fe3+/2+ redox couples indicated that the long fluorinated chains created a blocking layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH• production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m-2 min-1) for up to 10 consecutive NaClO3 oxidation experiments.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
36
|
Peleyeju MG, Umukoro EH, Tshwenya L, Moutloali R, Babalola JO, Arotiba OA. Photoelectrocatalytic water treatment systems: degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv 2017. [DOI: 10.1039/c7ra07399b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EG–TiO2 photoanode was applied for the photoelectrocatalytic degradation of sulfamethoxazole. Significant COD abatement was obtained and degradation route was proposed.
Collapse
Affiliation(s)
- Moses G. Peleyeju
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Eseoghene H. Umukoro
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
| | - Luthando Tshwenya
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Richard Moutloali
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | | | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| |
Collapse
|
37
|
Yang Y, Hoffmann MR. Synthesis and Stabilization of Blue-Black TiO 2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11888-11894. [PMID: 27648479 DOI: 10.1021/acs.est.6b03540] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient, inexpensive, and stable electrode materials are key components of commercially viable electrochemical wastewater treatment system. In this study, blue-black TiO2 nanotube array (BNTA) electrodes are prepared by electrochemical self-doping. The 1-D structure, donor state density, and Fermi energy level position are critical for maintaining the semimetallic functionality of the BNTA. The structural strength of the BNTA is enhanced by surface crack minimization, reinforcement of the BNTA-Ti metal interface, and stabilized by a protective overcoating with nanoparticulate TiO2 (Ti/EBNTA). Ti/EBNTA electrodes are employed as both anodes and cathodes with polarity switching at a set frequency. Oxidants are generated at the anode, while the doping levels are regenerated along with byproduct reduction at the cathode. The estimated maximum electrode lifetime is 16 895 h. Ti/EBNTA has comparable hydroxyl radical production activity (6.6 × 10-14 M) with boron-doped diamond (BDD, 7.4 × 10-14 M) electrodes. The chlorine production rate follows a trend with respective to electrode type of Ti/EBNTA > BDD > IrO2. Ti/EBNTA electrodes operated in a bipolar mode have a minimum energy consumption of 62 kWh/kg COD, reduced foam formation due to less gas bubble production, minimum scale formation, and lower chlorate production levels (6 mM vs 18 mM for BDD) during electrolytic wastewater treatment.
Collapse
Affiliation(s)
- Yang Yang
- Linde + Robinson Laboratories California Institute of Technology 1200 E. California Blvd. MC 131-24 Pasadena, California 91125, United States
| | - Michael R Hoffmann
- Linde + Robinson Laboratories California Institute of Technology 1200 E. California Blvd. MC 131-24 Pasadena, California 91125, United States
| |
Collapse
|
38
|
Medina-Sánchez M, Mayorga-Martinez CC, Watanabe T, Ivandini TA, Honda Y, Pino F, Nakata K, Fujishima A, Einaga Y, Merkoçi A. Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens Bioelectron 2016; 75:365-74. [DOI: 10.1016/j.bios.2015.08.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/05/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022]
|
39
|
Sornambikai S, Hin LQ, Marimuthu K, Abdul Kadir MR. Fish embryo toxicity assessment of o-dianisidine in Clarias gariepinus and its electrochemical treatment in aquatic samples using super conductive carbon black. RSC Adv 2016. [DOI: 10.1039/c6ra00158k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study tested fish embryo toxicity (FET) of o-dianisidine (o-dian) on African catfish (Clarias gariepinus) and its electrochemical treatment through electro-oxidation of real aquatic samples for the first time.
Collapse
Affiliation(s)
- Sundaram Sornambikai
- Medical Devices & Technology Group
- Faculty of Biosciences & Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| | - Lim Qing Hin
- Department of Biotechnology
- Faculty of Applied Sciences
- AIMST University
- Bedong
- Malaysia
| | - Kasi Marimuthu
- Department of Biotechnology
- Faculty of Applied Sciences
- AIMST University
- Bedong
- Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Medical Devices & Technology Group
- Faculty of Biosciences & Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| |
Collapse
|
40
|
He Y, Huang W, Chen R, Zhang W, Lin H, Li H. Anodic oxidation of aspirin on PbO 2 , BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
He Y, Dong Y, Huang W, Tang X, Liu H, Lin H, Li H. Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Vargas R, Borrás C, Méndez D, Mostany J, Scharifker BR. Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2984-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
The effects of surface oxidation and fluorination of boron-doped diamond anodes on perchlorate formation and organic compound oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Peckova-Schwarzova K, Zima J, Barek J. Determination of Aromatic Hydrocarbons and Their Derivatives. ENVIRONMENTAL ANALYSIS BY ELECTROCHEMICAL SENSORS AND BIOSENSORS 2015. [DOI: 10.1007/978-1-4939-1301-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Chen L, Campo P, Kupferle MJ. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:574-581. [PMID: 25464298 DOI: 10.1016/j.jhazmat.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5mM and 50mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl(-) led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, 701B ERC building, 2901 Woodside Dr., Cincinnati, OH 45221, United States
| | - Pablo Campo
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, 701B ERC building, 2901 Woodside Dr., Cincinnati, OH 45221, United States
| | - Margaret J Kupferle
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, 701B ERC building, 2901 Woodside Dr., Cincinnati, OH 45221, United States.
| |
Collapse
|
46
|
Kondo T, Tamura Y, Hoshino M, Watanabe T, Aikawa T, Yuasa M, Einaga Y. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode. Anal Chem 2014; 86:8066-72. [PMID: 25052688 DOI: 10.1021/ac500919k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chemical oxygen demand (COD) was measured directly with a simple electrochemical method using a boron-doped diamond (BDD) electrode. By applying a highly positive potential (+2.5 V vs Ag/AgCl) to an aqueous electrolyte containing potassium hydrogen phthalate, glucose, and lactic acid or sodium dodecylbenzenesulfonate using a BDD electrode, an anodic current corresponding to the electrolytic decomposition of these organic compounds was observed. No such current was seen on glassy carbon or platinum electrodes due to a significant background current caused by the oxygen evolution reaction. The electric charge for the anodic current observed at the BDD electrode was found to be consistent with the theoretical charge required for the electrolytic decomposition of the organic compounds to CO2 and was used to calculate COD. This analysis was performed by a simple I-t measurement at constant potential using a BDD electrode, and no calibration was needed. This new simple indicator, "ECOD" (electrochemical oxygen demand), will be useful for continuous monitoring of industrial wastewater with low protein concentrations and on-site instant analysis of natural water with a BDD electrode-based portable ECOD meter.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Zaky AM, Chaplin BP. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5857-5867. [PMID: 24766505 DOI: 10.1021/es5010472] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This research investigated the removal mechanisms of p-nitrophenol, p-methoxyphenol, and p-benzoquinone at a porous Ti4O7 reactive electrochemical membrane (REM) under anodic polarization. Cross-flow filtration experiments and density functional theory (DFT) calculations indicated that p-benzoquinone removal was primarily due to reaction with electrochemically formed OH(•), while the dominant removal mechanism of p-nitrophenol and p-methoxyphenol was a function of the anodic potential. At low anodic potentials (1.7-1.8 V/SHE), p-nitrophenol and p-methoxyphenol were removed primarily by an electrochemical adsorption/polymerization mechanism on the REM. Increasing anodic potentials (1.9-3.2 V/SHE) resulted in the electroassisted adsorption mechanism contributing far less to p-methoxyphenol removal compared to p-nitrophenol. DFT calculations indicated that an increase in anodic potential resulted in a shift in p-methoxyphenol removal from a 1e(-) direct electron transfer (DET) reaction that resulted in radical formation and significant adsorption/polymerization, to a 2e(-) DET reaction that formed nonadsorbing products (i.e., p-benzoquinone). However, the anodic potentials were too low for the 2e(-) DET reaction to be thermodynamically favorable for p-nitrophenol. The decreased COD adsorption for p-nitrophenol at higher anodic potentials was attributed to reaction of soluble/adsorbed organics with OH(•). These results provide the first mechanistic explanation for p-substituted phenolic compound removal during advanced electrochemical oxidation processes.
Collapse
Affiliation(s)
- Amr M Zaky
- Department of Chemical Engineering, University of Illinois at Chicago , 810 South Clinton Avenue, Chicago, Illinois 60607, United States
| | | |
Collapse
|
48
|
Chaplin BP. Critical review of electrochemical advanced oxidation processes for water treatment applications. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1182-203. [PMID: 24549240 DOI: 10.1039/c3em00679d] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH˙) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4(-) and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment.
Collapse
Affiliation(s)
- Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Ave., Chicago, IL 60607, USA.
| |
Collapse
|
49
|
Zhao J, Zhu C, Lu J, Hu C, Peng S, Chen T. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Stefanova A, Ayata S, Erem A, Ernst S, Baltruschat H. Mechanistic studies on boron-doped diamond: Oxidation of small organic molecules. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|