1
|
Liu J, Yang J, Dou Y, Liu X, Chen S, Wang D. Deactivation Mechanism and Mitigation Strategies of Single-Atom Site Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420383. [PMID: 40223412 DOI: 10.1002/adma.202420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Single-atom site electrocatalysts (SACs), with maximum atom efficiency, fine-tuned coordination structure, and exceptional reactivity toward catalysis, energy, and environmental purification, have become the emerging frontier in recent decade. Along with significant breakthroughs in activity and selectivity, the limited stability and durability of SACs are often underemphasized, posing a grand challenge in meeting the practical requirements. One pivotal obstacle to the construction of highly stable SACs is the heavy reliance on empirical rather than rational design methods. A comprehensive review is urgently needed to offer a concise overview of the recent progress in SACs stability/durability, encompassing both deactivation mechanism and mitigation strategies. Herein, this review first critically summarizes the SACs degradation mechanism and induction factors at the atomic-, meso- and nanoscale, mainly based on but not limited to oxygen reduction reaction. Subsequently, potential stability/durability improvement strategies by tuning catalyst composition, structure, morphology and surface are delineated, including construction of robust substrate and metal-support interaction, optimization of active site stability, fabrication of porosity and surface modification. Finally, the challenges and prospects for robust SACs are discussed. This review facilitates the fundamental understanding of catalyst degradation mechanism and provides efficient design principles aimed at overcoming deactivation difficulties for SACs and beyond.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Yuan R, Zhao J, Chen X, Qiu X, Wang X. Inhibiting carbon corrosion of cobalt-nitrogen-carbon materials via Mn sites for highly durable oxygen reduction reaction in acidic media. J Colloid Interface Sci 2024; 680:712-722. [PMID: 39580923 DOI: 10.1016/j.jcis.2024.11.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Cobalt-nitrogen-carbon (CoNxC) materials are regarded as promising low-cost electrocatalysts for the oxygen reduction reaction (ORR). However, their susceptibility to deactivation and poor stability in acidic media limits their practical applications. In this study, we develop cobalt (Co) and manganese (Mn) embedded in nitrogen-doped carbon (CoMnNxC) dual-site catalysts by incorporating Mn into CoNxC and leverage a synergistic dual-catalysis strategy to optimize both activity and stability. The dynamic evolution of *OOH intermediate on the catalyst surface is monitored via in situ Raman spectroscopy, confirming that Mn introduction modulates the reaction pathway. Due to electron transfer from Mn to the Co-Nx center in CoMnNxC, *OOH activation on the surface is enhanced, and the two-electron ORR process is inhibited. Consequently, the CoMnNxC catalyst exhibits excellent ORR activity (E1/2 = 0.76 V vs. reversible hydrogen electrode) and a very low hydrogen peroxide (H2O2) yield (<2.9 %) in acidic electrolyte. Additionally, the dynamic evolution of *OH on the Mn-Nx site confirms that Mn-Nx can serve as a potential catalytic site for the hydrogen peroxide reduction reaction (HPRR), facilitating H2O2 decomposition. Differential electrochemical mass spectrometry (DEMS) demonstrates that this parallel catalytic pathway effectively weaks the oxidative corrosion of H2O2 on the carbon carrier. The results indicate that the negative half-wave potential shift of CoMnNxC catalysts in acidic electrolyte after 10,000 accelerated durability tests (ADT) is only 11 mV. The synergistic dual-catalytic strategy proposed in this work offers a novel approach for designing high-efficiency and stable transition metal-nitrogen-carbon catalysts.
Collapse
Affiliation(s)
- Ruipeng Yuan
- College of Materials Science and Engineering, Taiyuan University of Technology, 030024, PR China
| | - Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, 030024, PR China
| | - Xu Chen
- College of Materials Science and Engineering, Taiyuan University of Technology, 030024, PR China
| | - Xiaoming Qiu
- College of Materials Science and Engineering, Taiyuan University of Technology, 030024, PR China; Shanxi Key Laboratory of Energy Storage Material Innovation and Integration, PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, 030024, PR China; Shanxi Key Laboratory of Energy Storage Material Innovation and Integration, PR China.
| |
Collapse
|
3
|
Bates JS, Martinez JJ, Hall MN, Al-Omari AA, Murphy E, Zeng Y, Luo F, Primbs M, Menga D, Bibent N, Sougrati MT, Wagner FE, Atanassov P, Wu G, Strasser P, Fellinger TP, Jaouen F, Root TW, Stahl SS. Chemical Kinetic Method for Active-Site Quantification in Fe-N-C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods. J Am Chem Soc 2023; 145:26222-26237. [PMID: 37983387 PMCID: PMC10782517 DOI: 10.1021/jacs.3c08790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Jesse J. Martinez
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Melissa N. Hall
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Abdulhadi A. Al-Omari
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Mathias Primbs
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Davide Menga
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
| | - Nicolas Bibent
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Friedrich E. Wagner
- Department of Physics, Technische Universität München (TUM), 85748 Garching, Germany
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Tim-Patrick Fellinger
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12203 Berlin, Germany
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thatcher W. Root
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Ma F, Liu X, Wang X, Liang J, Huang J, Priest C, Liu J, Jiao S, Wang T, Wu G, Huang Y, Li Q. Atomically dispersed Zn-Co-N-C catalyst boosting efficient and robust oxygen reduction catalysis in acid via stabilizing Co-N bonds. FUNDAMENTAL RESEARCH 2023; 3:909-917. [PMID: 38933015 PMCID: PMC11197814 DOI: 10.1016/j.fmre.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Transition metal supported N-doped carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) are viewed as the promising candidate to replace Pt-group metal (PGM) for proton exchange membrane fuel cells (PEMFCs). However, the stability of M-N-C is extremely challenging due to the demetalation, H2O2 attack, etc. in the strongly oxidative conditions of PEMFCs. In this study, we demonstrate the universal effect of Zn on promoting the stability of atomically dispersed M-Nx/C (M = Co, Fe, Mn) catalysts and the enhancement mechanism is unveiled for the first time. The best-performing dual-metal-site Zn-Co-N-C catalyst exhibits a high half-wave potential (E 1/2) value of 0.81 V vs. reversible hydrogen electrode (RHE) in acid and outstanding durability with no activity decay after 15,000 accelerated degradation test (ADT) cycles at 60 °C, surpassing most reported Co-based PGM-free catalysts in acid media. For comparison, the Co-N-C in the absence of Zn suffers from a rapid degradation after ADT due to the demetalation and higher H2O2 yield. X-ray adsorption spectroscopy (XAS) and density functional theory (DFT) calculations suggest the more negative formation energy (by 1.2 eV) and increased charge transfer of Zn-Co dual-site structure compared to Co-N-C could strength the Co-N bonds against the demetalation and the optimized d-band center accounts for the improved ORR kinetics.
Collapse
Affiliation(s)
- Feng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing 101400, China
| | - Shuhong Jiao
- Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion Chinese Academy of Science (CAS), University of Science and Technology of China, Hefei 230026, China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem Rev 2023; 123:9265-9326. [PMID: 37432676 DOI: 10.1021/acs.chemrev.2c00685] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
One bottleneck hampering the widespread use of fuel cell vehicles, in particular of proton exchange membrane fuel cells (PEMFCs), is the high cost of the cathode where the oxygen reduction reaction (ORR) occurs, due to the current need of precious metals to catalyze this reaction. Electrochemists tackle this issue in the short/medium term by developing catalysts with improved utilization or efficiency of platinum, and in the longer term, by developing catalysts based on Earth-abundant elements. Considerable progress has been achieved in the initial performance of Metal-nitrogen-carbon (Metal-N-C) catalysts for the ORR, especially with Fe-N-C materials. However, until now, this high performance cannot be maintained for a sufficiently long time in an operating PEMFC. The identification and mitigation of the degradation mechanisms of Metal-N-C electrocatalysts in the acidic environment of PEMFCs has therefore become an important research topic. Here, we review recent advances in the understanding of the degradation mechanisms of Metal-N-C electrocatalysts, including the recently identified importance of combined oxygen and electrochemical potential. Results obtained in a liquid electrolyte and a PEMFC device are discussed, as well as insights gained from in situ and operando techniques. We also review the mitigation approaches that the scientific community has hitherto investigated to overcome the durability issues of Metal-N-C electrocatalysts.
Collapse
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
6
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
8
|
Ricciardi B, Mecheri B, da Silva Freitas W, Ficca VCA, Placidi E, Gatto I, Carbone A, Capasso A, D'Epifanio A. Porous Iron‐Nitrogen‐Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem 2023. [DOI: 10.1002/celc.202201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Beatrice Ricciardi
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Mecheri
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Williane da Silva Freitas
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Valerio C. A. Ficca
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Ernesto Placidi
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Irene Gatto
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Alessandra Carbone
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory (INL) Braga 4715-330 Portugal
| | - Alessandra D'Epifanio
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
9
|
Kinkelin SJ, Steimecke M, Dieterich E, Bron M. Structural, morphological and electrochemical characterization of the degradation processes during the oxygen reduction reaction of iron(II) phthalocyanine supported on carbon nanotubes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Dai Y, Kong F, Tai X, Zhang Y, Liu B, Cai J, Gong X, Xia Y, Guo P, Liu B, Zhang J, Li L, Zhao L, Sui X, Wang Z. Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ni L, Gallenkamp C, Wagner S, Bill E, Krewald V, Kramm UI. Identification of the Catalytically Dominant Iron Environment in Iron- and Nitrogen-Doped Carbon Catalysts for the Oxygen Reduction Reaction. J Am Chem Soc 2022; 144:16827-16840. [PMID: 36036727 DOI: 10.1021/jacs.2c04865] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms. In FeNC catalysts, the active site is an iron ion coordinated by nitrogen atoms embedded in an extended graphene sheet. Herein, we build an active site model from in situ and operando 57Fe Mössbauer spectroscopy and quantum chemistry. A Mössbauer signal newly emerging under operando conditions, D4, is correlated with the loss of other Mössbauer signatures (D2, D3a, D3b), implying a direct structural correspondence. Pyrrolic N-coordination, i.e., FeN4C12, is found as a spectroscopically and thermodynamically consistent model for the entire catalytic cycle, in contrast to pyridinic nitrogen coordination. These findings thus overcome the previously conflicting structural assignments for the active site and, moreover, identify and structurally assign a previously unknown intermediate in the oxygen reduction reaction at FeNC catalysts.
Collapse
Affiliation(s)
- Lingmei Ni
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Charlotte Gallenkamp
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.,Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Stephan Wagner
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Ulrike I Kramm
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.,Graduate School of Excellence Energy Science and Engineering, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Sun M, Yuan F, Li R, Dong S, Zhao Y, Zhong W, Shen C, Wu J, Zheng H. Fe-Fe 3C Functionalized Few-Layer Graphene Sheet Nanocomposites for an Efficient Electrocatalyst of the Oxygen Reduction Reaction. ACS OMEGA 2022; 7:25458-25465. [PMID: 35910184 PMCID: PMC9330168 DOI: 10.1021/acsomega.2c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Preparation of a high-efficiency, low-cost, and environmentally friendly non-precious metal catalyst for the oxygen reduction reaction (ORR) is highly desirable in fuel cells. Herein, a Fe-Fe3C-functionalized few-layer graphene sheet (Fe/Fe3C/FLG) nanocomposite was fabricated through the vacuum heat treatment technique using ferric nitrate and glucose as the precursors and exhibited a high-performance ORR electrocatalyst. Multiple characterizations confirm that the nanosized Fe particles with the Fe3C interface are uniformly distributed in the FLGs. Electrocatalytic kinetics investigation of the nanocomposite indicates that the electron transfer process is a four-electron pathway. The formation of the Fe3C interface between the Fe nanoparticles and FLGs may promote the electron transfer from the Fe to FLGs. Furthermore, the Fe/Fe3C/FLG nanocomposite not only exhibits high ORR catalytic activity but also displays desirable stability. Consequently, the obtained Fe/Fe3C/FLG nanocomposite might be a promising non-precious, cheap, and high-efficiency catalyst for fuel cells.
Collapse
|
13
|
Nematollahi P, Barbiellini B, Bansil A, Lamoen D, Qingying J, Mukerjee S, Neyts EC. Identification of a Robust and Durable FeN 4C x Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Parisa Nematollahi
- Research Group PLASMANT, NANO Lab Center of Excellence, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp B-2610, Belgium
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Arun Bansil
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dirk Lamoen
- EMAT & NanoLab Center of Excellence, Department of Physics, University of Antwerp, Wilrijk, Antwerp B-2610, Belgium
| | - Jia Qingying
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Erik C. Neyts
- Research Group PLASMANT, NANO Lab Center of Excellence, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp B-2610, Belgium
| |
Collapse
|
14
|
Shah SSA, Najam T, Bashir MS, Javed MS, Rahman AU, Luque R, Bao SJ. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106279. [PMID: 35338585 DOI: 10.1002/smll.202106279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Recent progress in synthetic strategies, analysis techniques, and computational modeling assist researchers to develop more active catalysts including metallic clusters to single-atom active sites (SACs). Metal coordinated N-doped carbons (M-N-C) are the most auspicious, with a large number of atomic sites, markedly performing for a series of electrochemical reactions. This perspective sums up the latest innovative and computational comprehension, while giving credit to earlier/pioneering work in carbonaceous assembly materials towards robust electrocatalytic activity for proton exchange membrane fuel cells via inclusive performance assessment of the oxygen reduction reaction (ORR). M-Nx -Cy are exclusively defined active sites for ORR, so there is a unique possibility to intellectually design the relatively new catalysts with much improved activity, selectivity, and durability. Moreover, some SACs structures provide better performance in fuel cells testing with long-term durability. The efforts to understand the connection in SACs based M-Nx -Cy moieties and how these relate to catalytic ORR performance are also conveyed. Owing to comprehensive practical application in the field, this study has covered very encouraging aspects to the current durability status of M-N-C based catalysts for fuel cells followed by degradation mechanisms such as macro-, microdegradation, catalytic poisoning, and future challenges.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Aziz-Ur Rahman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, Cordoba, E14014, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str, Moscow, 117198, Russian Federation
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
15
|
Carbon materials functionalized by nitrogenous ligands for dual application in energy storage and production: Fuel cells and supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gao C, Mu S, Yan R, Chen F, Ma T, Cao S, Li S, Ma L, Wang Y, Cheng C. Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. SMALL 2022; 18:e2105409. [PMID: 35023628 DOI: 10.1002/smll.202105409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/13/2021] [Indexed: 02/05/2023]
Abstract
Exploring highly active, stable electrocatalysts with earth-abundant metal centers for the oxygen reduction reaction (ORR) is essential for sustainable energy conversion. Due to the high cost and scarcity of platinum, it is a general trend to develop metal-N-C (M-N-C) electrocatalysts, especially those prepared from the zeolite imidazolate framework (ZIF) to replace/minimize usage of noble metals in ORR electrocatalysis for their amazingly high catalytic efficiency, great stability, and readily-tuned electronic structure. In this review, the most pivotal advances in mechanisms leading to declined catalytic performance, synthetic strategies, and design principles in engineering ZIF-derived M-N-C for efficient ORR catalysis, are presented. Notably, this review focuses on how to improve intrinsic ORR activity, such as M-Nx -Cy coordination structures, doping metal-free heteroatoms in M-N-C, dual/multi-metal sites, hydrogen passivation, and edge-hosted M-Nx . Meanwhile, how to increase active sites density, including formation of M-N complex, spatial confinement effects, and porous structure design, are discussed. Thereafter, challenges and future perspectives of M-N-C are also proposed. The authors believe this instructive review will provide experimental and theoretical guidance for designing future, highly active ORR electrocatalysts, and facilitate their applications in diverse ORR-related energy technologies.
Collapse
Affiliation(s)
- Chen Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, 610041, China
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Ding J, Xue H, Xiao R, Xu Y, Song L, Gong H, Fan X, Chang K, Huang X, Wang T, He J. Atomically dispersed Fe-N x species within a porous carbon framework: an efficient catalyst for Li-CO 2 batteries. NANOSCALE 2022; 14:4511-4518. [PMID: 35266479 DOI: 10.1039/d1nr08354f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Li-CO2 batteries are a promising energy storage system, while their practical application is still restricted by a lack of high-performance electrocatalysts for CO2 reduction and evolution reaction. Herein, we propose a metal-organic-framework-derived Fe-N-C electrocatalyst for Li-CO2 batteries. Within the Fe-N-C electrocatalyst, abundant Fe-Nx active sites at the molecular level were formed in the porous carbon framework, profiting from a host-guest chemistry strategy between Fe-mIm nanoclusters and metal organic framework precursors in the pyrolysis process. The confinement effect of the metal organic framework host was beneficial to limit the Fe-mIm nanoclusters at the molecular level, thus resulting in the formation of Fe-Nx sites with the high catalytic activity. Moreover, the as-prepared Fe-N-C catalyst is composed of dodecahedral nanoparticles stacking to form a unique three-dimensional structure with a large specific surface area and sufficient space, which not only favored the electron transport and CO2/Li+ diffusion but also promoted the deposition of discharge product Li2CO3 to ensure a high capacity. Therefore, the Fe-N-C based Li-CO2 battery exhibits high specific capacity (13 238 mA h g-1), good rate capability and excellent cyclability (140 cycles). Therefore, these encouraging results suggest an effective approach to obtain high-performance Fe-N-C electrocatalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Junchao Ding
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Hairong Xue
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Rui Xiao
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Yunyun Xu
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Li Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, 211167 Nanjing, P. R. China
| | - Kun Chang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Xianli Huang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Tao Wang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Jianping He
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
18
|
Chang F, Ma Y, Su P, Liu J. Synthesis of graphitized hierarchical porous carbon supported transition-metal for electrochemical conversion. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01561c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon materials supported metal with high graphitization and hierarchical pore structure are emerging as promising catalysts in electrochemical conversion areas. However, a facile method to prepare this class of catalysts...
Collapse
|
19
|
Qu Y, Zhang W, Li D, Yang H, Xiao Y, Liu Y. In situ synthesis of Fe‐N co‐doped porous carbon nanospheres by extended Stӧber method for oxygen reduction in both alkaline and acidic media. ChemElectroChem 2021. [DOI: 10.1002/celc.202101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yongfang Qu
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Dahuan Li
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Hao Yang
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Yahui Xiao
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Liu
- Henan University College of Chemistry and Chemical Engineering Jinming Street 475004 Kaifeng CHINA
| |
Collapse
|
20
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
21
|
Li Y, Xu Z, Sun X, Han J, Guo R. Fe, P, N- and FeP, N-doped carbon hollow nanospheres: A comparison study toward oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 2021; 602:376-383. [PMID: 34139535 DOI: 10.1016/j.jcis.2021.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
In recent years, carbon materials co-doped with transition metals and heteroatoms have been widely used in the oxygen reduction reaction (ORR) as an alternative to platinum/carbon catalysts because of their high efficiency, low price, and appropriate sustainability. Herein, we report the synthesis of FeP, N-doped carbon (FeP, N-Carbon) hollow nanospheres (HNSs) and Fe, P, N-doped carbon (Fe, P, N-Carbon) HNSs. The FeP, N-Carbon was obtained via the pyrolysis of poly(o-phenylenediamine) (PoPD) HNSs in the presence of Fe(NO3)3 and phytic acid (PA), whereas Fe, P, N-Carbon was obtained by first pyrolyzing PoPD HNSs with Fe(NO3)3, followed by another cycle of pyrolysis with PA. Fe, P, N-Carbon exhibited a better ORR performance than FeP, N-Carbon, with an onset potential of 1.03 V, a half-wave potential of 0.89 V and a limiting current density of 5.75 mA cm-2. The findings will provide insights into the controlled synthesis of transition-metal-heteroatom-codoped carbon nanomaterials for the development of advanced ORR electrocatalysts.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| |
Collapse
|
22
|
Miao Z, Wang X, Zhao Z, Zuo W, Chen S, Li Z, He Y, Liang J, Ma F, Wang HL, Lu G, Huang Y, Wu G, Li Q. Improving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cells through M-N Bond Length and Coordination Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006613. [PMID: 34396608 DOI: 10.1002/adma.202006613] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/11/2021] [Indexed: 06/13/2023]
Abstract
An effective and universal strategy is developed to enhance the stability of the non-noble-metal M-Nx /C catalyst in proton exchange membrane fuel cells (PEMFCs) by improving the bonding strength between metal ions and chelating polymers, i.e., poly(acrylic acid) (PAA) homopolymer and poly(acrylic acid-maleic acid) (P(AA-MA)) copolymer with different AA/MA ratios. Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) reveal that the optimal P(AA-MA)-Fe-N catalyst with a higher Fe3+ -polymer binding constant possesses longer FeN bonds and exclusive Fe-N4 /C moiety compared to PAA-Fe-N, which consists of ≈15% low-coordinated Fe-N2 /N3 structures. The optimized P(AA-MA)-Fe-N catalyst exhibits outstanding ORR activity and stability in both half-cell and PEMFC cathodes, with the retention rate of current density approaching 100% for the first 37 h at 0.55 V in an H2 -air fuel cell. Density functional theory (DFT) calculations suggest that the Fe-N4 /C site could optimize the difference between the adsorption energy of the Fe atoms on the support (Ead ) and the bulk cohesive energy (Ecoh ) relative to Fe-N2 /N3 moieties, thereby strongly stabilizing Fe centers against demetalation.
Collapse
Affiliation(s)
- Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Zhonglong Zhao
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Wenbin Zuo
- Key Laboratory of Artificial Micro, and Nano-Materials of Ministry of Education and Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shaoqing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiqiang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
23
|
Wang Y, Cui X, Peng L, Li L, Qiao J, Huang H, Shi J. Metal-Nitrogen-Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100997. [PMID: 34218474 DOI: 10.1002/adma.202100997] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) material with specifically coordinated configurations is a promising alternative to costly Pt-based catalysts. In the past few years, great progress is made in the studies of M-N-C materials, including the structure modulation and local coordination environment identification via advanced synthetic strategies and characterization techniques, which boost the electrocatalytic performances and deepen the understanding of the underlying fundamentals. In this review, the most recent advances of M-N-C catalysts with specifically coordinated configurations of M-Nx (x = 1-6) are summarized as comprehensively as possible, with an emphasis on the synthetic strategy, characterization techniques, and applications in typical electrocatalytic reactions of the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction, etc., along with mechanistic exploration by experiments and theoretical calculations. Furthermore, the challenges and potential perspectives for the future development of M-N-C catalysts are discussed.
Collapse
Affiliation(s)
- Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China
| | - Haitao Huang
- Department of Applied Physics, Hong Kong Polytechnic University, 11 Yucai road, Kowloon, Hong Kong, 999077, China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| |
Collapse
|
24
|
Fe, Cu-codoped metal-nitrogen-carbon catalysts with high selectivity and stability for the oxygen reduction reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Ebner K, Ni L, Saveleva VA, Le Monnier BP, Clark AH, Krumeich F, Nachtegaal M, Luterbacher JS, Kramm UI, Schmidt TJ, Herranz J. 57Fe-Enrichment effect on the composition and performance of Fe-based O2-reduction electrocatalysts. Phys Chem Chem Phys 2021; 23:9147-9157. [DOI: 10.1039/d1cp00707f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we study how the performance and composition of platinum-group metal free catalysts of the Fe–N–C type are affected upon employing 57Fe-enriched precursors in their synthesis.
Collapse
Affiliation(s)
| | - Lingmei Ni
- TU Darmstadt
- Department of Chemistry and Department of Materials- and Earth Sciences
- Catalysts and Electrocatalysts Group
- 64287 Darmstadt
- Germany
| | | | | | | | - Frank Krumeich
- ETH Zürich
- Laboratory of Inorganic Chemistry
- 8093 Zürich
- Switzerland
| | | | - Jeremy S. Luterbacher
- EPFL Lausanne
- Laboratoire des Procédés Durables et Catalytiques
- 1015 Lausanne
- Switzerland
| | - Ulrike I. Kramm
- TU Darmstadt
- Department of Chemistry and Department of Materials- and Earth Sciences
- Catalysts and Electrocatalysts Group
- 64287 Darmstadt
- Germany
| | - Thomas J. Schmidt
- Paul Scherrer Institut
- 5232 Villigen PSI
- Switzerland
- ETH Zürich
- Laboratory of Physical Chemistry
| | - Juan Herranz
- Paul Scherrer Institut
- 5232 Villigen PSI
- Switzerland
| |
Collapse
|
26
|
Zhou Y, Yu Y, Ma D, Foucher AC, Xiong L, Zhang J, Stach EA, Yue Q, Kang Y. Atomic Fe Dispersed Hierarchical Mesoporous Fe–N–C Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03496] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Zhou
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanan Yu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Ma
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Alexandre C. Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lei Xiong
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiahao Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Eric A. Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yijin Kang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
27
|
Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Fruehwald HM, Ebralidze II, Zenkina OV, Easton EB. Effect of Transition Metals on the Oxygen Reduction Reaction Activity at Metal‐N
3
/C Active Sites. ChemElectroChem 2020. [DOI: 10.1002/celc.202000954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Holly M. Fruehwald
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - Iraklii I. Ebralidze
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - Olena V. Zenkina
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - E. Bradley Easton
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| |
Collapse
|
29
|
Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 2020; 120:12217-12314. [DOI: 10.1021/acs.chemrev.0c00594] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pengfei Xie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengke Zhao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Xiaojing Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
30
|
A pyridinic Fe-N 4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat Commun 2020; 11:5283. [PMID: 33077736 PMCID: PMC7572418 DOI: 10.1038/s41467-020-18969-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells; however, their active site structures remain poorly understood. A leading postulate is that the iron-containing active sites exist primarily in a pyridinic Fe-N4 ligation environment, yet, molecular model catalysts generally feature pyrrolic coordination. Herein, we report a molecular pyridinic hexaazacyclophane macrocycle, (phen2N2)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for ORR to a typical Fe-N-C material and prototypical pyrrolic iron macrocycles. N 1s XPS and XAS signatures for (phen2N2)Fe are remarkably similar to those of Fe-N-C. Electrochemical studies reveal that (phen2N2)Fe has a relatively high Fe(III/II) potential with a correlated ORR onset potential within 150 mV of Fe-N-C. Unlike the pyrrolic macrocycles, (phen2N2)Fe displays excellent selectivity for four-electron ORR, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data demonstrate that (phen2N2)Fe is a more effective model of Fe-N-C active sites relative to the pyrrolic iron macrocycles, thereby establishing a new molecular platform that can aid understanding of this important class of catalytic materials.
Collapse
|
31
|
Luo F, Wagner S, Onishi I, Selve S, Li S, Ju W, Wang H, Steinberg J, Thomas A, Kramm UI, Strasser P. Surface site density and utilization of platinum group metal (PGM)-free Fe-NC and FeNi-NC electrocatalysts for the oxygen reduction reaction. Chem Sci 2020; 12:384-396. [PMID: 34168745 PMCID: PMC8179675 DOI: 10.1039/d0sc03280h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Pyrolyzed iron-based platinum group metal (PGM)-free nitrogen-doped single site carbon catalysts (Fe-NC) are possible alternatives to platinum-based carbon catalysts for the oxygen reduction reaction (ORR). Bimetallic PGM-free M1M2-NC catalysts and their active sites, however, have been poorly studied to date. The present study explores the active accessible sites of mono- and bimetallic Fe-NC and FeNi-NC catalysts. Combining CO cryo chemisorption, X-ray absorption and 57Fe Mössbauer spectroscopy, we evaluate the number and chemical state of metal sites at the surface of the catalysts along with an estimate of their dispersion and utilization. Fe L3,2-edge X-ray adsorption spectra, Mössbauer spectra and CO desorption all suggested an essentially identical nature of Fe sites in both monometallic Fe-NC and bimetallic FeNi-NC; however, Ni blocks the formation of active sites during the pyrolysis and thus causes a sharp reduction in the accessible metal site density, while with only a minor direct participation as a catalytic site in the final catalyst. We also use the site density utilization factor, ϕ SDsurface/bulk , as a measure of the metal site dispersion in PGM-free ORR catalysts. ϕ SDsurface/bulk enables a quantitative evaluation and comparison of distinct catalyst synthesis routes in terms of their ratio of accessible metal sites. It gives guidance for further optimization of the accessible site density of M-NC catalysts.
Collapse
Affiliation(s)
- Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Stephan Wagner
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | | | - Sören Selve
- Technische Universität Berlin, Center for Electron Microscopy (ZELMI) Straße des 17. Juni 135 10623 Berlin Germany
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technical Universität Berlin Hardenbergstr. 40 Berlin 10623 Germany
| | - Wen Ju
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Huan Wang
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Julian Steinberg
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| | - Arne Thomas
- Functional Materials, Department of Chemistry, Technical Universität Berlin Hardenbergstr. 40 Berlin 10623 Germany
| | - Ulrike I Kramm
- Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts Group, Technical University of Darmstadt Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin Straße des 17. 10623 Berlin Germany
| |
Collapse
|
32
|
Mercado R, Wahl C, En Lu J, Zhang T, Lu B, Zhang P, Lu JQ, Allen A, Zhang JZ, Chen S. Nitrogen‐Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem 2020. [DOI: 10.1002/cctc.201902324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rene Mercado
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Carolin Wahl
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Jia En Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Tianjun Zhang
- Department of Chemistry Dalhousie University 6274 Coburg Road Halifax, Nova Scotia B3H 4R2 Canada
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University 6274 Coburg Road Halifax, Nova Scotia B3H 4R2 Canada
| | - Jennifer Q. Lu
- School of Engineering University of California 5200 North Lake Road Merced, CA-95343 USA
| | - A'Lester Allen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA-95064 USA
| |
Collapse
|
33
|
Liu M, Zhang H, Li Y, Su H, Zhou W, Zhao X, Cheng W, Liu Q. Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide. Chem Commun (Camb) 2020; 56:5299-5302. [PMID: 32271333 DOI: 10.1039/d0cc00139b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a semiconducting metal-organic graphene analog, Ni3(HITP)2, with an adjustable crystalline structure for mediating efficient selectivity toward hydrogen peroxide. The as-prepared 5-Ni3(HITP)2 catalyst with low crystallinity can electrocatalyze O2 to H2O2 with a high selectivity of 80% over a wide potential range of 0.2-0.6 V vs. RHE and with a large mass activity of 292 A gNi-1 at 0.25 V in 0.1 M KOH.
Collapse
Affiliation(s)
- Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang J, Chen J, Fu C, Cai P, Li Y, Cao L, Liu W, Yu P, Wei S, Wen Z, Li J. 2 D Hybrid of Ni-LDH Chips on Carbon Nanosheets as Cathode of Zinc-Air Battery for Electrocatalytic Conversion of O 2 into H 2 O 2. CHEMSUSCHEM 2020; 13:1496-1503. [PMID: 31609066 DOI: 10.1002/cssc.201902429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
It remains great challenge to develop precious-metal-free electrocatalysts to implement high-activity electrochemical conversion of O2 into value-added hydroperoxide species (HO2 - ), which are vulnerable when exposed to various transition-metal-based catalysts. A strategy based on steric hindrance and layered nickel-based layered double hydroxide (Ni-LDH) induction has been developed for one-pot inlaying high-density ultrathin 2 D Ni-LDH chips on in situ-grown carbon nanosheets (Ni-LDH C/CNSs). The resulting material exhibits high electrocatalytic selectivity with a faradaic efficiency up to 95 % for oxygen reduction into peroxide and attains a fairly high mass activity of approximately 22.2 A g-1 , outperforming most metal-based catalysts reported previously. Systematic studies demonstrate that the greatly increased defect concentration at Ni edge sites of Ni-LDH chips results in more active sites, which contributes a favorable thermodynamically neutral adsorption of OOH* and adsorbed H2 O2 molecules relatively weakly. Additionally, the modified CNSs effectively suppress H2 O2 decomposition and avoid O-O bond cleavage to produce H2 O by steric effects. The synergistic effect of CNSs and Ni-LDH chips therefore leads to high activity and high selectivity in a two-electron pathway. A proof-of-concept zinc-air fuel cell is proposed and set up to demonstrate the feasibility of green synthesis of peroxide, generating an impressive H2 O2 production rate of 5239.67 mmol h-1 gcat. -1 .
Collapse
Affiliation(s)
- Junheng Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Changle Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Pingwei Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Yan Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Peng Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P.R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
35
|
Han H, Zhang Y, Cong Y, Qin J, Zhai Z, Wang X, Gao R, Zhang G, Guo X, Song Y. Pyrolysis-driven synthesis of nanoscale carambola-like carbon decorated with atomically dispersed Fe sites toward efficient oxygen reduction reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01735c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the pyrolysis-driven structural evolution of nanocapsule-shaped FeIII porphyrin MOFs into nanocarambolas decorated with atomically dispersed Fe suitable for the ORR.
Collapse
|
36
|
He Y, Liu S, Priest C, Shi Q, Wu G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 2020; 49:3484-3524. [DOI: 10.1039/c9cs00903e] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review provides a comprehensive understanding of the atomically dispersed metal–nitrogen–carbon cathode catalysts for proton-exchange membrane fuel cell applications.
Collapse
Affiliation(s)
- Yanghua He
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Shengwen Liu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Cameron Priest
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Qiurong Shi
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| | - Gang Wu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo
- USA
| |
Collapse
|
37
|
Chen LN, Yu WS, Wang T, Yang XD, Yang HJ, Chen ZX, Wang T, Tian N, Zhou ZY, Sun SG. Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9635-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Chen J, Yan X, Fu C, Feng Y, Lin C, Li X, Shen S, Ke C, Zhang J. Insight into the Rapid Degradation Behavior of Nonprecious Metal Fe-N-C Electrocatalyst-Based Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37779-37786. [PMID: 31539220 DOI: 10.1021/acsami.9b13474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the past few years, great progress has been made in nonprecious metal catalysts, which hold the potential as alternative materials to replace platinum in proton exchange membrane fuel cells. One type of nonprecious metal catalyst, Fe-N-C, has displayed similar catalytic activity as platinum in rotating disk electrode tests; however, rapid degradation of Fe-N-C catalyst-based fuel cells is always observed, which limits its practical application. Although considerable research has been devoted to study the degradation of the catalyst itself, rather less attention has been paid to the membrane electrode assembly that makes the mechanism of fuel cell degradation remain unclear. In this work, a high-performance Fe-N-C catalyst-based membrane electrolyte assembly is prepared and used to study its degradation mechanism. The fuel cell performs with an initial peak power density as high as 1.1 W cm-2 but suffers a current loss of 52% at 0.4 V over 20 h only. The experimental and DFT calculation results indicate that Fe at active sites of catalysts is attacked by hydroxyl free radicals decomposed from H2O2, which is further leached out, causing an increase in activity loss. The ionomer of the catalyst layer and the membrane is further contaminated by the leached Fe ions, which results in an enlarged membrane resistance and cathode catalyst layer proton conduction resistance, greatly influencing the cell performance. In addition, it has been assumed in previous studies that the quick performance loss of Fe-N-C-based fuel cells is caused by water flooding within the catalyst layer, which is proved to be incorrect in our study through a dry-out experiment.
Collapse
Affiliation(s)
- Junren Chen
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
- MOE Key Laboratory of Power Machinery and Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Cehuang Fu
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Yan Feng
- Advanced Technology Department , SAIC Motor Corporation Limited , 201804 Shanghai , China
| | - Chen Lin
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Xiaolin Li
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
- MOE Key Laboratory of Power Machinery and Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Changchun Ke
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
- MOE Key Laboratory of Power Machinery and Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
- MOE Key Laboratory of Power Machinery and Engineering , Shanghai Jiao Tong University , Dongchuan Road , 800 Shanghai , China
| |
Collapse
|
40
|
Wang W, Jia Q, Mukerjee S, Chen S. Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02583] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wang Wang
- Hubei Electrochemical Power Sources Key Laboratory, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Department of Chemistry and Chemical Biology, Northeastern University Center for Renewable Energy Technology, 317 Egan Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University Center for Renewable Energy Technology, 317 Egan Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology, Northeastern University Center for Renewable Energy Technology, 317 Egan Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shengli Chen
- Hubei Electrochemical Power Sources Key Laboratory, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Mineva T, Matanovic I, Atanassov P, Sougrati MT, Stievano L, Clémancey M, Kochem A, Latour JM, Jaouen F. Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and 57Fe Mössbauer Spectroscopy. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02586] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tzonka Mineva
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université Montpellier, ENSCM, Montpellier 34090, France
| | - Ivana Matanovic
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Plamen Atanassov
- The Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
- Chemical & Biomolecular Engineering and National Fuel Cell Research Center, University of California, Irvine, California 92697-2580, United States
| | - Moulay-Tahar Sougrati
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université Montpellier, ENSCM, Montpellier 34090, France
| | - Lorenzo Stievano
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université Montpellier, ENSCM, Montpellier 34090, France
| | - Martin Clémancey
- Université Grenoble Alpes CNRS, CEA, DRF/IRIG/LCBM/pmb, 17 rue des Martyrs, Grenoble 38000, France
| | - Amélie Kochem
- Université Grenoble Alpes CNRS, CEA, DRF/IRIG/LCBM/pmb, 17 rue des Martyrs, Grenoble 38000, France
| | - Jean-Marc Latour
- Université Grenoble Alpes CNRS, CEA, DRF/IRIG/LCBM/pmb, 17 rue des Martyrs, Grenoble 38000, France
| | - Frédéric Jaouen
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université Montpellier, ENSCM, Montpellier 34090, France
| |
Collapse
|
42
|
Martinez U, Komini Babu S, Holby EF, Chung HT, Yin X, Zelenay P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806545. [PMID: 30790368 DOI: 10.1002/adma.201806545] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Development of alternative energy sources is crucial to tackle challenges encountered by the growing global energy demand. Hydrogen fuel, a promising way to store energy produced from renewable power sources, can be converted into electrical energy at high efficiency via direct electrochemical conversion in fuel cells, releasing water as the sole byproduct. One important drawback to current fuel-cell technology is the high content of platinum-group-metal (PGM) electrocatalysts required to perform the sluggish oxygen reduction reaction (ORR). Addressing this challenge, remarkable progress has been made in the development of low-cost PGM-free electrocatalysts synthesized from inexpensive, earth-abundant, and easily sourced materials such as iron, nitrogen, and carbon (Fe-N-C). PGM-free Fe-N-C electrocatalysts now exhibit ORR activities approaching that of PGM electrocatalysts but at a fraction of the cost, promising to significantly reduce overall fuel-cell technology costs. Herein, recent developments in PGM-free electrocatalysis, demonstrating increased fuel-cell performance, as well as efforts aimed at understanding the key limiting factor, i.e., the nature of the PGM-free active site, are summarized. Further improvements will be accomplished through the controlled and/or rationally designed synthesis of materials with higher active-site densities, while at the same time establishing methods to mitigate catalyst degradation.
Collapse
Affiliation(s)
- Ulises Martinez
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Siddharth Komini Babu
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Edward F Holby
- Sigma Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Hoon T Chung
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Xi Yin
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
43
|
Shao Y, Dodelet JP, Wu G, Zelenay P. PGM-Free Cathode Catalysts for PEM Fuel Cells: A Mini-Review on Stability Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807615. [PMID: 30779384 DOI: 10.1002/adma.201807615] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/15/2018] [Indexed: 06/09/2023]
Abstract
In recent years, significant progress has been achieved in the development of platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) catalysts for proton exchange membrane (PEM) fuel cells. At the same time the limited durability of these catalysts remains a great challenge that needs to be addressed. This mini-review summarizes the recent progress in understanding the main causes of instability of PGM-free ORR catalysts in acidic environments, focusing on transition metal/nitrogen codoped systems (M-N-C catalysts, M: Fe, Co, Mn), particularly MNx moiety active sites. Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M-N-C catalysts/cathodes degradation.
Collapse
Affiliation(s)
- Yuyan Shao
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jean-Pol Dodelet
- INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2, Canada
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Piotr Zelenay
- Los Alamos National Laboratory, Materials Physics and Applications Division, Los Alamos, NM, 87545, USA
| |
Collapse
|
44
|
Kramm UI, Ni L, Wagner S. 57 Fe Mössbauer Spectroscopy Characterization of Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805623. [PMID: 30773742 DOI: 10.1002/adma.201805623] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/11/2019] [Indexed: 05/06/2023]
Abstract
This work addresses the importance of Mössbauer spectroscopy for the characterization of iron-containing electrocatalysts. The most important aspects of electrocatalysis and Mössbauer spectroscopy are summarized. Next, Fe-N-C catalysts and important conclusions made by this technique on preparation, active site identification and degradation are summarized. Furthermore, recent highlights derived for other iron-containing electrocatalysts are summarized.
Collapse
Affiliation(s)
- Ulrike I Kramm
- TU Darmstadt, Department of Chemistry and Department of Materials- and Earth Sciences, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Lingmei Ni
- TU Darmstadt, Department of Chemistry and Department of Materials- and Earth Sciences, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Stephan Wagner
- TU Darmstadt, Department of Chemistry and Department of Materials- and Earth Sciences, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| |
Collapse
|
45
|
Wagner S, Auerbach H, Tait CE, Martinaiou I, Kumar SCN, Kübel C, Sergeev I, Wille H, Behrends J, Wolny JA, Schünemann V, Kramm UI. Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear‐ and Electron‐Resonance Techniques. Angew Chem Int Ed Engl 2019; 58:10486-10492. [DOI: 10.1002/anie.201903753] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Stephan Wagner
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Hendrik Auerbach
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Claudia E. Tait
- Freie Universität BerlinBerlin Joint EPR Lab, Department of Physics Arnimallee 14 14195 Berlin Germany
| | - Ioanna Martinaiou
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Chemistry Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Shyam C. N. Kumar
- Karlsruhe Institute of Technology (KIT)Institute for NanotechnologyCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
- Karlsruhe Institute of Technology (KIT)Institute for NanotechnologyCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT)Nano Micro FacilityCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ilya Sergeev
- Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany
| | | | - Jan Behrends
- Freie Universität BerlinBerlin Joint EPR Lab, Department of Physics Arnimallee 14 14195 Berlin Germany
| | - Juliusz A. Wolny
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Volker Schünemann
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Ulrike I. Kramm
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Chemistry Otto-Berndt-Str. 3 64287 Darmstadt Germany
| |
Collapse
|
46
|
Wagner S, Auerbach H, Tait CE, Martinaiou I, Kumar SCN, Kübel C, Sergeev I, Wille H, Behrends J, Wolny JA, Schünemann V, Kramm UI. Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear‐ and Electron‐Resonance Techniques. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Wagner
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Hendrik Auerbach
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Claudia E. Tait
- Freie Universität BerlinBerlin Joint EPR Lab, Department of Physics Arnimallee 14 14195 Berlin Germany
| | - Ioanna Martinaiou
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Chemistry Otto-Berndt-Str. 3 64287 Darmstadt Germany
| | - Shyam C. N. Kumar
- Karlsruhe Institute of Technology (KIT)Institute for NanotechnologyCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
- Karlsruhe Institute of Technology (KIT)Institute for NanotechnologyCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT)Nano Micro FacilityCampus North Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ilya Sergeev
- Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany
| | | | - Jan Behrends
- Freie Universität BerlinBerlin Joint EPR Lab, Department of Physics Arnimallee 14 14195 Berlin Germany
| | - Juliusz A. Wolny
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Volker Schünemann
- TU KaiserslauternDepartment of Physics, Biophysics and Medical Physics Erwin-Schrödinger-Strasse 46 67663 Kaiserslautern Germany
| | - Ulrike I. Kramm
- TU DarmstadtGraduate School Energy Science and Engineering Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Material and Earth Sciences Otto-Berndt-Str. 3 64287 Darmstadt Germany
- TU DarmstadtDepartment of Chemistry Otto-Berndt-Str. 3 64287 Darmstadt Germany
| |
Collapse
|
47
|
|
48
|
Kashyap V, Anand A, Soni R, Sreekumar K. Medium Modulated Oxygen Reduction Activity of Fe/Co Active Centre‐engrafted Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201900260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Varchaswal Kashyap
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| | - Aljo Anand
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
| | - Roby Soni
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| | - Kurungot Sreekumar
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| |
Collapse
|
49
|
Zhai LF, Kong SY, Zhang H, Tian W, Sun M, Sun H, Wang S. Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
50
|
Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by Metal-Organic Framework for Oxygen Reduction Reactions. Catalysts 2018. [DOI: 10.3390/catal8120607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Here we report a nitrogen-doped graphene modified metal-organic framework (N-G/MOF) catalyst, a promising metal-free electrocatalyst exhibiting the potential to replace the noble metal catalyst from the electrochemical systems; such as fuel cells and metal-air batteries. The catalyst was synthesized with a planetary ball milling method, in which the precursors nitrogen-functionalized graphene (N-G) and ZIF-8 are ground at an optimized grinding speed and time. The N-G/MOF catalyst not only inherited large surface area from the ZIF-8 structure, but also had chemical interactions, resulting in an improved Oxygen Reduction Reaction (ORR) electrocatalyst. Thermogravimetric Analysis (TGA) curves revealed that the N-G/MOF catalyst still had some unreacted ZIF-8 particles, and the high catalytic activity of N-G particles decreased the decomposition temperature of ZIF-8 in the N-G/MOF catalyst. Also, we present the durability study of the N-G/MOF catalyst under a saturated nitrogen and oxygen environment in alkaline medium. Remarkably, the catalyst showed no change in the performance after 2000 cycles in the N2 environment, exhibiting strong resistance to the corrosion. In the O2 saturated electrolyte, the performance loss at lower overpotentials was as low compared to higher overpotentials. It is expected that the catalyst degradation mechanism during the potential cycling is due to the oxidative attack of the ORR intermediates.
Collapse
|