1
|
Motovilov KA, Mostert AB. Melanin: Nature's 4th bioorganic polymer. SOFT MATTER 2024; 20:5635-5651. [PMID: 39012013 DOI: 10.1039/d4sm00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The pigments known as the melanins are widely recognized for their responsibility in the coloration of human skin, eyes, hair, and minimising the harmful effects of solar ultraviolet radiation. But specialists are aware that the melanins are present in all living kingdoms, barring viruses, and have functionality that extends beyond neutralizing ionising radiation. The ubiquitous presence of melanin in almost all human organs, recognized in recent years, as well as the presence of melanin in organisms that are evolutionarily distant from each other, indicate the fundamental importance of this class of material for all life forms. In this review, we argue for the need to accept melanins as the fourth primordial class of biological polymers, along with nucleic acids, proteins and polysaccharides. We consistently compare the properties of these canonical biological polymers with the properties of melanin and highlight key features that fundamentally distinguish melanins, their function and its mysteries.
Collapse
Affiliation(s)
- K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141701, Moscow Region, Russia.
| | - A B Mostert
- Department of Physics and Centre for Integrative Semiconductor Materials, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
| |
Collapse
|
2
|
Wang X, Kinziabulatova L, Bortoli M, Manickoth A, Barilla MA, Huang H, Blancafort L, Kohler B, Lumb JP. Indole-5,6-quinones display hallmark properties of eumelanin. Nat Chem 2023; 15:787-793. [PMID: 37037912 DOI: 10.1038/s41557-023-01175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Melanins are ubiquitous biopolymers produced from phenols and catechols by oxidation. They provide photoprotection, pigmentation and redox activity to most life forms, and inspire synthetic materials with desirable optical, electronic and mechanical properties. The chemical structures of melanins remain elusive, however, creating uncertainty about their roles, and preventing the design of synthetic mimics with tailored properties. Indole-5,6-quinone (IQ) has been implicated as a biosynthetic intermediate and structural subunit of mammalian eumelanin pigments, but its instability has prevented its isolation and unambiguous characterization. Here we use steric shielding to stabilize IQ and show that 'blocked' derivatives exhibit eumelanin's characteristic ultrafast nonradiative decay and its ability to absorb light from the ultraviolet to the near-infrared. These new compounds are also redox-active and a source of paramagnetism, emulating eumelanin's unique electronic properties, which include persistent radicals. Blocked IQs are atomistically precise and tailorable molecules that can offer a bottom-up understanding of emergent properties in eumelanin and have the potential to advance the rational design of melanin-inspired materials.
Collapse
Affiliation(s)
- Xueqing Wang
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Lilia Kinziabulatova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Marco Bortoli
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Anju Manickoth
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Marisa A Barilla
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Haiyan Huang
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain.
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
|
4
|
Mostert AB. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers (Basel) 2021; 13:1670. [PMID: 34065580 PMCID: PMC8161012 DOI: 10.3390/polym13101670] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
Today, western society is facing challenges to create new medical technologies to service an aging population as well as the ever-increasing e-waste of electronic devices and sensors. A key solution to these challenges will be the use of biomaterials and biomimetic systems. One material that has been receiving serious attention for its biomedical and device applications is eumelanin. Eumelanin, or commonly known as melanin, is nature's brown-black pigment and is a poly-indolequinone biopolymer, which possess unique physical and chemical properties for material applications. Presented here is a review, aimed at polymer and other materials scientists, to introduce eumelanin as a potential material for research. Covered here are the chemical and physical structures of melanin, an overview of its unique physical and chemical properties, as well as a wide array of applications, but with an emphasis on device and sensing applications. The review is then finished by introducing interested readers to novel synthetic protocols and post synthesis fabrication techniques to enable a starting point for polymer research in this intriguing and complex material.
Collapse
Affiliation(s)
- A Bernardus Mostert
- Department of Chemistry, Swansea University, Singleton Park, Wales SA2 8PP, UK
| |
Collapse
|
5
|
Ghosh P, Ghosh D. Effect of Dimerization on the Nonradiative Processes of Eumelanin Monomer. J Phys Chem B 2021; 125:547-556. [PMID: 33410319 DOI: 10.1021/acs.jpcb.0c10555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eumelanin is a polymeric structure made of dihydroxyindole (DHI) as the basic motif. Since the oxidative polymerization of DHI forms the core of eumelanin, understanding the effect of polymerization on its optical and photoprotective properties is crucial to elucidate the structure-function relationship of eumelanin. In this work, we investigate the effect of dimerization of DHI on the photoprocesses of eumelanin. We observe that there are several low-energy conical intersections and energetically favorable pathways for deactivation of photoexcited dimeric DHI species. While the original deactivation modes of the monomers are still important, in dimers the intermonomer dihedral angles seem to play a central role.
Collapse
Affiliation(s)
- Paulami Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
15N NMR Shifts of Eumelanin Building Blocks in Water: A Combined Quantum Mechanics/Statistical Mechanics Approach. Molecules 2020; 25:molecules25163616. [PMID: 32784827 PMCID: PMC7465604 DOI: 10.3390/molecules25163616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Theoretical results for the magnetic shielding of protonated and unprotonated nitrogens of eumelanin building blocks including monomers, dimers, and tetramers in gas phase and water are presented. The magnetic property in water was determined by carrying out Monte Carlo statistical mechanics sampling combined with quantum mechanics calculations based on the gauge-including atomic orbitals approach. The results show that the environment polarization can have a marked effect on nitrogen magnetic shieldings, especially for the unprotonated nitrogens. Large contrasts of the oligomerization effect on magnetic shielding show a clear distinction between eumelanin building blocks in solution, which could be detected in nuclear magnetic resonance experiments. Calculations for a π-stacked structure defined by the dimer of a tetrameric building block indicate that unprotonated N atoms are significantly deshielded upon π stacking, whereas protonated N atoms are slightly shielded. The results stress the interest of NMR experiments for a better understanding of the eumelanin complex structure.
Collapse
|
7
|
Li W, Wang Z, Xiao M, Miyoshi T, Yang X, Hu Z, Liu C, Chuang SSC, Shawkey MD, Gianneschi NC, Dhinojwala A. Mechanism of UVA Degradation of Synthetic Eumelanin. Biomacromolecules 2019; 20:4593-4601. [DOI: 10.1021/acs.biomac.9b01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Weiyao Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zhao Wang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xiao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Toshikazu Miyoshi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaozhou Yang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | | | - Cheng Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Steven S. C. Chuang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew D. Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Nathan C. Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Xiao M, Chen W, Li W, Zhao J, Hong YL, Nishiyama Y, Miyoshi T, Shawkey MD, Dhinojwala A. Elucidation of the hierarchical structure of natural eumelanins. J R Soc Interface 2019. [PMID: 29514988 DOI: 10.1098/rsif.2018.0045] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eumelanin is one of the most ubiquitous pigments in living organisms and plays an important role in coloration and UV protection. Because eumelanin is highly cross-linked and insoluble in solvents, the chemical structure is still not completely known. In this study, we used atomic force microscopy, X-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance (NMR) to compare intact eumelanosomes (pigment granules mostly made of eumelanin) from four phylogentically distant species: cuttlefish (Sepia officinalis) inks, black fish crow (Corvus ossifragus) feathers, iridescent wild turkey (Melleagris gallopavo) feathers and black human hair. We found that eumelanosomes from all four species are composed of subunit nanoparticles with a length of 10-60 nm, consistent with earlier observations in eumelanosomes from the sepia ink and human hair. The solid-state NMR results indicate the presence of quinone methide tautomers in all four eumelanins. We also found clear differences in the UV absorbance, the ratio of 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and protonated aryl carbon ratios in sepia eumelanin relative to the other three. This comparison of natural eumelanin across a phylogenetically broad group of organisms provides insights into the change in the eumelanin structure over the evolutionary history and enables the production of synthetic eumelanin with properties that are similar to natural eumelanin.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Wei Chen
- State Key Lab of Pollution Control and Resource Reuse Study, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Weiyao Li
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Jiuzhou Zhao
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - You-Lee Hong
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA.,RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama 230-0045, Japan.,JEOL RESONANCE Inc., Tokyo 196-8558, Japan
| | - Toshikazu Miyoshi
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ghent 9000, Belgium
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Crane SW, Ghafur O, Cowie TY, Lindsay AG, Thompson JOF, Greenwood JB, Bebbington MWP, Townsend D. Dynamics of electronically excited states in the eumelanin building block 5,6-dihydroxyindole. Phys Chem Chem Phys 2019; 21:8152-8160. [PMID: 30933211 DOI: 10.1039/c9cp00620f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first excited state dynamics study of gas-phase 5,6-dihydroxyindole (5,6-DHI), a key building block of eumelanin pigments that are found throughout nature and serve as important photo-protective compounds. Time-resolved ion-yield measurements over the 241-296 nm ultraviolet photoexcitation region revealed non-adiabatic processes occurring on up to three distinct timescales. These reflect ultrafast (i.e. sub-picosecond) internal conversion within the excited state singlet manifold, and much longer-lived processes ranging from 10 ps to in excess of 1 ns. Our investigation paves the way for precisely targeted future studies of 5,6-DHI that exploit more differential measurement techniques. The work was facilitated by the use of soft laser-based thermal desorption to introduce 5,6-DHI samples into the gas phase. This approach, based on low-cost, readily available diode lasers, is straightforward, easily controllable and potentially applicable to a wide range of non-volatile molecular species.
Collapse
Affiliation(s)
- Stuart W Crane
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Salomäki M, Ouvinen T, Marttila L, Kivelä H, Leiro J, Mäkilä E, Lukkari J. Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals. J Phys Chem B 2019; 123:2513-2524. [PMID: 30813731 PMCID: PMC6727379 DOI: 10.1021/acs.jpcb.8b11994] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV-vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5-15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1-2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.
Collapse
Affiliation(s)
- Mikko Salomäki
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Tuomo Ouvinen
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Lauri Marttila
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Henri Kivelä
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Jarkko Leiro
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Ermei Mäkilä
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| | - Jukka Lukkari
- Department
of Chemistry, Department of Physics and Astronomy, Turku University Centre for Surfaces
and Materials (MatSurf), and Doctoral Programme in Physical and Chemical
Sciences, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
11
|
Ghosh P, Ghosh D. Non-radiative decay of an eumelanin monomer: to be or not to be planar. Phys Chem Chem Phys 2019; 21:6635-6642. [DOI: 10.1039/c9cp00246d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The planar and nonplanar non-radiative decay channels of eumelanin monomer.
Collapse
Affiliation(s)
- Paulami Ghosh
- School of Mathematical and Computational Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Debashree Ghosh
- School of Mathematical and Computational Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
12
|
Ghosh P, Ghosh D. Effect of microsolvation on the non-radiative decay of the eumelanin monomer. Phys Chem Chem Phys 2019; 21:26123-26132. [DOI: 10.1039/c9cp05166j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A plethora of various low energy accessible deactivation modes of DHI were explored.
Collapse
Affiliation(s)
- Paulami Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Debashree Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
13
|
Sun Y, Pham AN, Hare DJ, Waite TD. Kinetic Modeling of pH-Dependent Oxidation of Dopamine by Iron and Its Relevance to Parkinson's Disease. Front Neurosci 2018; 12:859. [PMID: 30534046 PMCID: PMC6275323 DOI: 10.3389/fnins.2018.00859] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease. While age is the most significant risk factor, the exact cause of this disease and the most effective approaches to mitigation remain unclear. It has long been proposed that dopamine may play a role in the pathology of Parkinson's disease in view of its ability to generate both protein-modifying quinones such as aminochrome and reactive oxygen species, especially in the presence of pathological iron accumulation in the primary site of neuron loss. Given the clinically measured acidosis of post-mortem Parkinson's disease brain tissue, the interaction between dopamine and iron was investigated over a pH range of 7.4 to 6.5 with emphasis on the accumulation of toxic quinones and generation of reactive oxygen species. Our results show that the presence of iron accelerates the formation of aminochrome with ferrous iron (Fe[II]) being more efficient in this regard than ferric iron (Fe[III]). Our results further suggest that a reduced aminochrome rearrangement rate coupled with an enhanced turnover rate of Fe[II] as a result of brain tissue acidosis could result in aminochrome accumulation within cells. Additionally, under these conditions, the enhanced redox cycling of iron in the presence of dopamine aggravates oxidative stress as a result of the production of damaging reactive species, including hydroxyl radicals.
Collapse
Affiliation(s)
- Yingying Sun
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - A Ninh Pham
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J Hare
- Atomic Pathology Laboratory, Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Liu Z, Wu W, Liu Y, Qin C, Meng M, Jiang Y, Qiu J, Peng J. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sun Y, Pham AN, Waite TD. Effect of release of dopamine on iron transformations and reactive oxygen species (ROS) generation under conditions typical of coastal waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:232-244. [PMID: 29265130 DOI: 10.1039/c7em00497d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seasonally persistent blooms of Ulvaria obscura var. blyttii, the prominent species present in green tides in the northern Pacific and Atlantic, have been well documented in recent decades. The synthesis and release of dopamine (DA) by Ulvaria obscura var. blyttii has been proposed to be associated with the suppression and inhibition of the growth of other organisms competing for limited resources. To better understand the potential benefits obtained from the release of DA, the transformation of DA as well its concomitant impact on the local seawater environment are investigated in this study. The results show that, despite several toxic quinones being produced during the oxidation of DA, aminochrome (DAC) is likely to be the only quinone playing an allelopathic role in view of its expected accumulation in the surrounding environment. As a consequence of the direct oxidation of DA and DA induced generation of 5,6-dihydroxyindole (DHI), high concentrations of H2O2 accumulate over time, especially in the presence of elements including iron, calcium and magnesium. The oxidative stress to other organisms induced by the release of DA may be particularly detrimental as a result of H2O2 induced reduction in photosynthesis, inactivation of antioxidant systems or even the generation of ˙OH. DA induced iron mobilization may benefit the continuously persistent blooms of Ulvaria obscura var. blyttii or even the whole community via alleviation in iron deficiency within the bloom region.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
16
|
Crescenzi O, D'Ischia M, Napolitano A. Kaxiras's Porphyrin: DFT Modeling of Redox-Tuned Optical and Electronic Properties in a Theoretically Designed Catechol-Based Bioinspired Platform. Biomimetics (Basel) 2017; 2:biomimetics2040021. [PMID: 31105182 PMCID: PMC6352670 DOI: 10.3390/biomimetics2040021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
A detailed computational investigation of the 5,6-dihydroxyindole (DHI)-based porphyrin-type tetramer first described by Kaxiras as a theoretical structural model for eumelanin biopolymers is reported herein, with a view to predicting the technological potential of this unique bioinspired tetracatechol system. All possible tautomers/conformers, as well as alternative protonation states, were explored for the species at various degrees of oxidation and all structures were geometry optimized at the density functional theory (DFT) level. Comparison of energy levels for each oxidized species indicated a marked instability of most oxidation states except the six-electron level, and an unexpected resilience to disproportionation of the one-electron oxidation free radical species. Changes in the highest energy occupied molecular orbital (HOMO)–lowest energy unoccupied molecular orbital (LUMO) gaps with oxidation state and tautomerism were determined along with the main electronic transitions: more or less intense absorption in the visible region is predicted for most oxidized species. Data indicated that the peculiar symmetry of the oxygenation pattern pertaining to the four catechol/quinone/quinone methide moieties, in concert with the NH centers, fine-tunes the optical and electronic properties of the porphyrin system. For several oxidation levels, conjugated systems extending over two or more indole units play a major role in determining the preferred tautomeric state: thus, the highest stability of the six-electron oxidation state reflects porphyrin-type aromaticity. These results provide new clues for the design of innovative bioinspired optoelectronic materials.
Collapse
Affiliation(s)
- Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| | - Marco D'Ischia
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy.
| |
Collapse
|
17
|
Ghosh P, Ghosh D. Elucidating the Photoprotection Mechanism of Eumelanin Monomers. J Phys Chem B 2017; 121:5988-5994. [DOI: 10.1021/acs.jpcb.7b05123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paulami Ghosh
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
18
|
Datar A, Hazra A. Pathways for Excited-State Nonradiative Decay of 5,6-Dihydroxyindole, a Building Block of Eumelanin. J Phys Chem A 2017; 121:2790-2797. [DOI: 10.1021/acs.jpca.7b01110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
19
|
Marchetti B, Karsili TNV. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin. Phys Chem Chem Phys 2016; 18:3644-58. [PMID: 26753793 DOI: 10.1039/c5cp06767g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heteroaromatic molecules. Here we have used state-of-the-art electronic structure calculations and on-the-fly surface hopping molecular dynamics simulations to study the intrinsic deactivation paths of various building blocks of EU and PM. Ultrafast excited state decay, via electron-driven proton transfer (in EU and PM) and proton-transfer coupled ring-opening (in PM) reactions, have been identified to proceed along hitherto unknown charge-separated states in EU and PM oligomers. These results shed light on the possible relaxation pathways that dominate the photochemistry of natural skin melanins. Extrapolation of such findings could provide a gateway into engineering more effective molecular constituents in commercial sunscreens--with reduced phototoxicity.
Collapse
Affiliation(s)
| | - Tolga N V Karsili
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, D85747 Garching, Germany.
| |
Collapse
|
20
|
Assis Oliveira LB, L. Fonseca T, Costa Cabral BJ, Coutinho K, Canuto S. Hydration effects on the electronic properties of eumelanin building blocks. J Chem Phys 2016; 145:084501. [DOI: 10.1063/1.4961147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Leonardo Bruno Assis Oliveira
- Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
- Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
- Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO, Brazil
| | - Tertius L. Fonseca
- Instituto de Física da Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - Benedito J. Costa Cabral
- Grupo de Física Matemática da Universidade de Lisboa and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Kaline Coutinho
- Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP, Brazil
| |
Collapse
|
21
|
Jin Z, Fan H. The modulation of melanin-like materials: methods, characterization and applications. POLYM INT 2016. [DOI: 10.1002/pi.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaoxia Jin
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Hailong Fan
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| |
Collapse
|
22
|
Tuna D, Udvarhelyi A, Sobolewski AL, Domcke W, Domratcheva T. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin. J Phys Chem B 2016; 120:3493-502. [PMID: 27005558 DOI: 10.1021/acs.jpcb.6b01793] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.
Collapse
Affiliation(s)
- Deniz Tuna
- Department of Chemistry, Technische Universität München , 85747 Garching, Germany
| | - Anikó Udvarhelyi
- Department of Biomolecular Mechanisms, Max-Planck-Institut für Medizinische Forschung , 69120 Heidelberg, Germany
| | | | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München , 85747 Garching, Germany
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max-Planck-Institut für Medizinische Forschung , 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Prampolini G, Cacelli I, Ferretti A. Intermolecular interactions in eumelanins: a computational bottom-up approach. I. small building blocks. RSC Adv 2015. [DOI: 10.1039/c5ra03773e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Building eumelanin: from basic units to spectral properties.
Collapse
Affiliation(s)
- Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
| | - Ivo Cacelli
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
- Dipartimento di Chimica e Chimica Industriale
| | - Alessandro Ferretti
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR)
- Area della Ricerca
- I-56124 Pisa
- Italy
| |
Collapse
|
24
|
Pezzella A, Crescenzi O, Panzella L, Napolitano A, Land EJ, Barone V, d’Ischia M. Free Radical Coupling of o-Semiquinones Uncovered. J Am Chem Soc 2013; 135:12142-9. [DOI: 10.1021/ja4067332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Edward J. Land
- STFC Daresbury Laboratory, Daresbury, WA4 4AD, United
Kingdom
- Chemistry Section,
School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri
7, I-56126 Pisa, Italy
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| |
Collapse
|
25
|
Zangmeister RA, Morris TA, Tarlov MJ. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8619-28. [PMID: 23750451 DOI: 10.1021/la400587j] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Current interest in melanin films derived from the autoxidation of dopamine stems from their use as a universal adhesion layer. Here we report chemical and physical characterization of polydopamine films deposited on gold surfaces from stirred basic solutions at times ranging from 2 to 60 min, with a focus on times ≤10 min. Data from Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical methods suggest the presence of starting (dopamine) and intermediate (C=N-containing tautomers of quinone and indole) species in the polydopamine films at all deposition times. A uniform overlayer analysis of the XPS data indicates that film thickness increased linearly at short deposition times of ≤10 min. At deposition times ≥10 min, the films appeared largely continuous with surface roughness ≈ ≤ 2 nm, as determined by atomic force microscopy (AFM). Pinhole-free films, as determined by anionic redox probe measurements, required deposition times of 60 min or greater.
Collapse
Affiliation(s)
- Rebecca A Zangmeister
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
| | | | | |
Collapse
|
26
|
Chen CT, Ball V, de Almeida Gracio JJ, Singh MK, Toniazzo V, Ruch D, Buehler MJ. Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design. ACS NANO 2013; 7:1524-1532. [PMID: 23320483 DOI: 10.1021/nn305305d] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Eumelanin is a ubiquitous pigment in nature and has many intriguing physicochemical properties, such as broad-band and monotonous absorption spectrum, antioxidant and free radical scavenging behavior, and strong nonradiative relaxation of photoexcited electronic states. These properties are highly related to its structural and mechanical properties and make eumelanin a fascinating candidate for the design of multifunctional nanomaterials. Here we report joint experimental-computational investigation of the structural and mechanical properties of eumelanin assemblies produced from dopamine, revealing that the mass density of dry eumelanin is 1.55 g/cm³ and its Young's modulus is ≈5 GPa. We also find that wet eumelanin has a lower mass density and Young's modulus depending on the water-to-melanin ratio. Most importantly, our data show that eumelanin molecules tend to form secondary structures based on noncovalent π stacking in both dry and wet conditions, with an interlayer distance between eumelanin molecules of 3.3 Å. Corresponding transmission electron microscope images confirm the supramolecular organization predicted in our simulations. Our simulations show that eumelanin is an isotropic material at a larger scale when eumelanin molecules are randomly oriented to form secondary structures. These results are in good agreement with experimental observations, density functional theory calculations, and bridge the gap between earlier experimental and small-scale quantum mechanical studies of eumelanin. We use the knowledge acquired from the simulations to select a partner molecule, a cationic phthalocyanine, allowing us to produce layer-by-layer films containing eumelanin that display an electrical conductivity 5 orders of magnitudes higher than that of pure eumelanin films.
Collapse
Affiliation(s)
- Chun-Teh Chen
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
d'Ischia M, Napolitano A, Pezzella A. 5,6‐Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100796] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
28
|
Capelli L, Crescenzi O, Manini P, Pezzella A, Barone V, d’Ischia M. π-Electron Manipulation of the 5,6-Dihydroxyindole/Quinone System by 3-Alkynylation: Mild Acid-Mediated Entry to (Cross)-Conjugated Scaffolds and Paradigms for Medium-Tunable Chromophores. J Org Chem 2011; 76:4457-66. [DOI: 10.1021/jo200232t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | |
Collapse
|
29
|
Moraes ML, Gomes PJ, Ribeiro PA, Vieira P, Freitas AA, Köhler R, Oliveira ON, Raposo M. Polymeric scaffolds for enhanced stability of melanin incorporated in liposomes. J Colloid Interface Sci 2010; 350:268-74. [DOI: 10.1016/j.jcis.2010.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
30
|
Okuda H, Wakamatsu K, Ito S, Sota T. Regioselectivity on the cooxidation of 5,6-dihydroxyindole and its 2-carboxy derivative from the quantum chemical calculations. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Alcolea Palafox M, Iza N. Tautomerism of the natural thymidine nucleoside and the antiviral analogue D4T. Structure and influence of an aqueous environment using MP2 and DFT methods. Phys Chem Chem Phys 2010; 12:881-93. [DOI: 10.1039/b915566j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T. Chemische und strukturelle Vielfalt der Eumelanine - ein kaum erforschtes optoelektronisches Biopolymer. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803786] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T. Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem Int Ed Engl 2009; 48:3914-21. [PMID: 19294706 PMCID: PMC2799031 DOI: 10.1002/anie.200803786] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eumelanins, the characteristic black, insoluble, and heterogeneous biopolymers of human skin, hair, and eyes, have intrigued and challenged generations of chemists, physicists, and biologists because of their unique structural and optoelectronic properties. Recently, the methods of organic chemistry have been combined with advanced spectroscopic and imaging techniques, theoretical calculations, and methods of condensed-matter physics to gradually force these materials to reveal their secrets. Herein we review the latest advances in the field with a view to showing how the emerging knowledge is not only helping to explain eumelanin functionality, but may also be translated into effective strategies for exploiting their properties to create a new class of biologically inspired high-tech materials.
Collapse
Affiliation(s)
- Marco d'Ischia
- Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126, Naples, Italy.
| | | | | | | | | |
Collapse
|
34
|
Meng S, Kaxiras E. Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents. Biophys J 2008; 95:4396-402. [PMID: 18676639 PMCID: PMC2567931 DOI: 10.1529/biophysj.108.135756] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 07/28/2008] [Indexed: 11/18/2022] Open
Abstract
We investigate the relaxation dynamics of melanin model constituents including monomers, dimers, and tetramers, upon excitation, using state-of-the-art, time-dependent, density functional theory calculations. The results explain the ability of these molecules to transform photon energy into thermal energy in a remarkably short timescale of approximately 100 fs. We find that after electronic excitation by light absorption, ultrafast energy conversion takes place through two novel mechanisms: proton transfer on a timescale of 110 fs and state mixing upon oligomerization on a timescale of <50 fs. These results are in good agreement with available experiments and help elucidate melanin's role in photoprotection against ultraviolet radiation.
Collapse
Affiliation(s)
- Sheng Meng
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
35
|
Okuda H, Wakamatsu K, Ito S, Sota T. Possible Oxidative Polymerization Mechanism of 5,6-Dihydroxyindole from ab Initio Calculations. J Phys Chem A 2008; 112:11213-22. [DOI: 10.1021/jp711025m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hidekazu Okuda
- Integrative Bioscience and Biomedical Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Sota
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
36
|
d’Ischia M, Crescenzi O, Pezzella A, Arzillo M, Panzella L, Napolitano A, Barone V. Structural Effects on the Electronic Absorption Properties of 5,6-Dihydroxyindole Oligomers: The Potential of an Integrated Experimental and DFT Approach to Model Eumelanin Optical Properties. Photochem Photobiol 2008; 84:600-7. [DOI: 10.1111/j.1751-1097.2007.00249.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Meng S, Kaxiras E. Theoretical models of eumelanin protomolecules and their optical properties. Biophys J 2008; 94:2095-105. [PMID: 17993493 PMCID: PMC2257886 DOI: 10.1529/biophysj.107.121087] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022] Open
Abstract
The molecular structure of melanin, one of the most ubiquitous natural pigments in living organisms, is not known and its multifaceted biological role is still debated. We examine structural models for eumelanin protomolecules, based on tetramers consisting of four monomer units (hydroquinone, indolequinone, and its two tautomers), in arrangements that contain an interior porphyrin ring. These models reproduce convincingly many aspects of eumelanin's experimentally observed behavior. In particular, we present a plausible synthetic pathway of the tetramers and their further complexation through interlayer stacking, or through formation of helical superstructures, into eumelanin macromolecules. The unsaturated nature of C-C bonds in indolequinone units and the finite size of protomolecules introduce covalent bond formation between stacked layers. We employ time-dependent density functional theory to calculate the optical absorption spectrum of each molecule along the eumelanin synthesis pathway, which gradually develops into the characteristic broad-band adsorption of melanin pigment due to electron delocalization. These optical spectra may serve as signatures for identifying intermediate structures.
Collapse
Affiliation(s)
- Sheng Meng
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
38
|
|
39
|
Sobolewski AL, Domcke W. Photophysics of Eumelanin: Ab Initio Studies on the Electronic Spectroscopy and Photochemistry of 5,6-Dihydroxyindole. Chemphyschem 2007; 8:756-62. [PMID: 17279594 DOI: 10.1002/cphc.200600768] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excited-state reaction paths and energy profiles of 5,6-dihydroxyindole (DHI), one of the elementary building blocks of eumelanin, have been determined with the approximated singles-and-doubles coupled-cluster (CC2) method. 6-Hydroxy-4-dihydro-indol-5-one (HHI) is identified as a photochromic species, which is formed via nonadiabatic hydrogen migration from the dangling OH group of DHI to the neighboring carbon atom of the six-membered ring. It is shown that HHI is a typical excited-state hydrogen-transfer (ESIHT) system. HHI absorbs strongly in the visible range of the spectrum. A barrierless hydrogen transfer in the (1)pipi* excited state, followed by barrierless torsion of the hydroxyl group, lead to a low-lying S(1)-S(0) conical intersection and thus to ultrafast internal conversion. This very efficient mechanism of excited-state deactivation provides HHI with a high degree of intrinsic photostability. It is suggested that the metastable photochemical product HHI plays an essential role for the photoprotective biological function of eumelanin.
Collapse
|
40
|
Okuda H, Nakamura A, Wakamatsu K, Ito S, Sota T. Mid-infrared absorption spectrum of 5,6-dihydroxyindole-2-carboxylic acid. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.11.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Meredith P, Powell BJ, Riesz J, Nighswander-Rempel SP, Pederson MR, Moore EG. Towards structure-property-function relationships for eumelanin. SOFT MATTER 2006; 2:37-44. [PMID: 32646091 DOI: 10.1039/b511922g] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photo-protection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.
Collapse
Affiliation(s)
- Paul Meredith
- Soft Condensed Matter Physics Group, University of Queensland Department of Physics, St. Lucia Campus, Brisbane, QLD 4072, Australia.
| | - Ben J Powell
- Theory of Condensed Matter Physics Group, University of Queensland Department of Physics, St. Lucia Campus, Brisbane, QLD 4072, Australia
| | - Jennifer Riesz
- Soft Condensed Matter Physics Group, University of Queensland Department of Physics, St. Lucia Campus, Brisbane, QLD 4072, Australia.
| | - Stephen P Nighswander-Rempel
- Soft Condensed Matter Physics Group, University of Queensland Department of Physics, St. Lucia Campus, Brisbane, QLD 4072, Australia.
| | - Mark R Pederson
- Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Evan G Moore
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 70A1150, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Abstract
In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.
Collapse
Affiliation(s)
- Paul Meredith
- Soft Condensed Matter Physics Group, School of Physical Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
43
|
Kaxiras E, Tsolakidis A, Zonios G, Meng S. Structural model of eumelanin. PHYSICAL REVIEW LETTERS 2006; 97:218102. [PMID: 17155775 DOI: 10.1103/physrevlett.97.218102] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Indexed: 05/12/2023]
Abstract
Melanin is a ubiquitous pigment in living organisms with multiple important functions, yet its structure is not well understood. We propose a structural model for eumelanin protomolecules, consisting of 4 or 5 of the basic molecular units (hydroquinone, indolequinone, and its tautomers), in arrangements that contain an inner porphyrin ring. We use time-dependent density functional theory to calculate the optical absorption spectrum of the structural model, which reproduces convincingly the main features of the experimental spectrum of eumelanin. Our model also reproduces accurately other important properties of eumelanin, including x-ray scattering data, its ability to capture and release metal ions, and the characteristic size of the protomolecules.
Collapse
Affiliation(s)
- Efthimios Kaxiras
- Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
44
|
Edge R, d'Ischia M, Land EJ, Napolitano A, Navaratnam S, Panzella L, Pezzella A, Ramsden CA, Riley PA. Dopaquinone redox exchange with dihydroxyindole and dihydroxyindole carboxylic acid. ACTA ACUST UNITED AC 2006; 19:443-50. [PMID: 16965273 DOI: 10.1111/j.1600-0749.2006.00327.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A pulse radiolytic investigation has been conducted to establish whether a redox reaction takes place between dopaquinone and 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA) and to measure the rate constants of the interactions. To obviate possible confounding reactions, such as nucleophilic addition, the method employed to generate dopaquinone used the dibromide radical anion acting on dopa to form the semiquinone which rapidly disproportionates to dopaquinone. In the presence of DHI the corresponding indole-5,6-quinone (and/or tautomers) was also formed directly but, by judicious selection of suitable relative concentrations of initial reactants, we were able to detect the formation of additional indolequinone from the redox exchange reaction of DHI with dopaquinone which exhibited a linear dependency on the concentration of DHI. Computer simulation of the experimental time profiles of the absorption changes showed that, under the conditions chosen, redox exchange does proceed but not quite to completion, a forward rate constant of 1.4 x 10(6)/M/s being obtained. This is in the same range as the rate constants previously established for reactions of dopaquinone with cyclodopa and cysteinyldopa. In similar experiments carried out with DHICA, the reaction more obviously does not go to completion and is much slower, k (forward) =1.6 x 10(5)/M/s. We conclude that, in the eumelanogenic pathway, DHI oxidation may take place by redox exchange with dopaquinone, although such a reaction is likely to be less efficient for DHICA.
Collapse
Affiliation(s)
- R Edge
- Free Radical Research Facility, Daresbury Laboratory, Warrington, Cheshire, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Powell BJ, Baruah T, Bernstein N, Brake K, McKenzie RH, Meredith P, Pederson MR. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. J Chem Phys 2006; 120:8608-15. [PMID: 15267788 DOI: 10.1063/1.1690758] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, Delta(HL). We show that Delta(HL) is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in Delta(HL) to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.
Collapse
Affiliation(s)
- B J Powell
- Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
We report a detailed photoluminescence study of cysteinyldopa-melanin (CDM), the synthetic analogue of pheomelanin. Emission spectra are shown to be a far more sensitive probe of CDM's spectroscopic behavior than are absorption spectra. Although CDM and dopa-melanin (DM, the synthetic analogue of eumelanin) have very similar absorption spectra, we find that they have very different excitation and emission characteristics; CDM has two distinct photoluminescence peaks that do not shift with excitation wavelength. Additionally, our data suggest that the radiative quantum yield of CDM is excitation energy dependent, an unusual property among biomolecules that is indicative of a chemically disordered system. Finally, we find that the radiative quantum yield for CDM is approximately 0.2%, twice that of DM, although still extremely low. This means that 99.8% of the energy absorbed by CDM is dissipated via nonradiative pathways, consistent with its role as a pigmentary photoprotectant.
Collapse
Affiliation(s)
- Jennifer Riesz
- Soft Condensed Matter Physics Group and Centre for Biophotonics and Laser Science, School of Physical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
47
|
Riesz J, Gilmore J, Meredith P. Quantitative scattering of melanin solutions. Biophys J 2006; 90:4137-44. [PMID: 16565050 PMCID: PMC1459487 DOI: 10.1529/biophysj.105.075713] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 02/15/2006] [Indexed: 11/18/2022] Open
Abstract
The optical scattering coefficient of a dilute, well-solubilized eumelanin solution has been accurately measured as a function of incident wavelength, and found to contribute <6% of the total optical attenuation between 210 and 325 nm. At longer wavelengths (325-800 nm), the scattering was less than the minimum sensitivity of our instrument. This indicates that ultraviolet and visible optical density spectra can be interpreted as true absorption with a high degree of confidence. The scattering coefficient versus wavelength was found to be consistent with Rayleigh theory for a particle radius of 38 +/- 1 nm. Our results shed important light on the role of melanins as photoprotectants.
Collapse
Affiliation(s)
- Jennifer Riesz
- Soft Condensed Matter Physics Group, Condensed Matter Theory Group, Physics Department, University of Queensland, St. Lucia, Brisbane, Australia, QLD 4072.
| | | | | |
Collapse
|
48
|
Tran ML, Powell BJ, Meredith P. Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys J 2006; 90:743-52. [PMID: 16284264 PMCID: PMC1367100 DOI: 10.1529/biophysj.105.069096] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022] Open
Abstract
We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid (DHICA)-and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers (possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations (leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems.
Collapse
Affiliation(s)
- M Linh Tran
- Soft Condensed Matter Physics Group, and Theoretical Condensed Matter Physics Group, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
49
|
Nighswander-Rempel SP. Quantitative fluorescence spectra and quantum yield map of synthetic pheomelanin. Biopolymers 2006; 82:631-7. [PMID: 16575861 DOI: 10.1002/bip.20518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spectroscopic studies of pheomelanin and its constituents have been sparse. These data present what is by far the most complete description of the fluorescence characteristics of synthetic pheomelanin. Emission spectra between 260 and 600 nm were acquired for excitation wavelengths between 250 and 500 nm at 1-nm intervals. A quantum yield map is also presented, correcting the fluorescence intensities for differences in species concentration and molar absorptivity. These fluorescence features exhibit interesting similarities and differences to eumelanin, and these data are interpreted with respect to possible chemical structures. Overall, these data suggest that pheomelanin oligomers may be more tightly coupled than those of eumelanin. Finally, the quantum yield is shown to be on the order of 10(-4) and exhibit a complex dependence on excitation energy, varying by a factor of 4 across the energies employed here.
Collapse
Affiliation(s)
- S P Nighswander-Rempel
- Centre for Biophotonics and Laser Science, Department of Physics, University of Queensland, Brisbane, QLD Australia 4072
| |
Collapse
|
50
|
Nighswander-Rempel SP, Riesz J, Gilmore J, Meredith P. A quantum yield map for synthetic eumelanin. J Chem Phys 2005; 123:194901. [PMID: 16321107 DOI: 10.1063/1.2075147] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the "specific quantum yield": the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein.
Collapse
Affiliation(s)
- Stephen P Nighswander-Rempel
- Centre for Biophotonics and Laser Science, School of Physical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | |
Collapse
|