1
|
Buyens DMS, Pilcher LA, Roduner E. Reaction Kinetics of the Benzylation of Adenine in DMSO: Regio-Selectivity Guided by Entropy. Chemphyschem 2024:e202400561. [PMID: 39136932 DOI: 10.1002/cphc.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Indexed: 11/06/2024]
Abstract
The factors governing the regio-selectivity of the alkylation of adenine have been of interest for many years due to the biological importance of adenine derivatives, however, no reaction kinetic studies have been conducted. Herein, we report the rate constants and activation parameters of the benzylation of adenine under basic conditions in DMSO in the absence and presence of 15-crown-5 ether using real-time 1H NMR spectroscopy. The reaction is second-order for the formation of the N9- and N3-benzyladenine products, with a regio-selectivity factor 2.3 in favour of the N9-adduct. The Gibbs free energy of activation amounts to 87±2 kJ mol-1 for both reactions. The formation of the N9-adduct is more activated by 7 kJ mol-1, but its effect is offset by a less negative activation entropy, demonstrating that the long-contested reason for the regioselectivity in the benzylation of adenine is dominated by compensation of entropy and enthalpy in the transition state. The kinetic parameters obtained in the presence of the 15-crown-5 ether indicate that the crown ether forms a complex with an adenine-sodium ion-pair, increasing the activation barrier. However, the Gibbs free energy in the absence and presence of the crown ether remains constant.
Collapse
Affiliation(s)
- Dominique M S Buyens
- Department of Chemistry, University of Pretoria, Pretoria, 0002, Republic of South Africa
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, Republic of South Africa
| | - Emil Roduner
- Department of Chemistry, University of Pretoria, Pretoria, 0002, Republic of South Africa
- Institute of Physical Chemistry, University of Stuttgart, D-, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Density Functional Method Study on the Cooperativity of Intermolecular H-bonding and π-π + Stacking Interactions in Thymine-[C nmim]Br ( n = 2, 4, 6, 8, 10) Microhydrates. Molecules 2022; 27:molecules27196242. [PMID: 36234781 PMCID: PMC9572290 DOI: 10.3390/molecules27196242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The exploration of the ionic liquids’ mechanism of action on nucleobase’s structure and properties is still limited. In this work, the binding model of the 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) ionic liquids to the thymine (T) was studied in a water environment (PCM) and a microhydrated surroundings (PCM + wH2O). Geometries of the mono-, di-, tri-, and tetra-ionic thymine (T-wH2O-y[Cnmim]+-xBr−, w = 5~1 and x + y = 0~4) complexes were optimized at the M06-2X/6-311++G(2d, p) level. The IR and UV-Vis spectra, QTAIM, and NBO analysis for the most stable T-4H2O-Br−-1, T-3H2O-[Cnmim]+-Br−-1, T-2H2O-[Cnmim]+-2Br−-1, and T-1H2O-2[Cnmim]+-2Br−-1 hydrates were presented in great detail. The results show that the order of the arrangement stability of thymine with the cations (T-[Cnmim]+) by PCM is stacking > perpendicular > coplanar, and with the anion (T-Br−) is front > top. The stability order for the different microhydrates is following T-5H2O-1 < T-4H2O-Br−-1 < T-3H2O-[Cnmim]+-Br−-1 < T-2H2O-[Cnmim]+-2Br−-1 < T-1H2O-2[Cnmim]+-2Br−-1. A good linear relationship between binding EB values and the increasing number (x + y) of ions has been found, which indicates that the cooperativity of interactions for the H-bonding and π-π+ stacking is varying incrementally in the growing ionic clusters. The stacking model between thymine and [Cnmim]+ cations is accompanied by weaker hydrogen bonds which are always much less favorable than those in T-xBr− complexes; the same trend holds when the clusters in size grow and the length of alkyl chains in the imidazolium cations increase. QTAIM and NBO analytical methods support the existence of mutually reinforcing hydrogen bonds and π-π cooperativity in the systems.
Collapse
|
3
|
Datar A, Paithankar H, Deb P, Chugh J, Bagchi S, Mukherjee A, Hazra A. Water-Controlled Keto-Enol Tautomerization of a Prebiotic Nucleobase. J Phys Chem B 2022; 126:5735-5743. [PMID: 35895006 DOI: 10.1021/acs.jpcb.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barbituric acid is believed to be a proto-RNA nucleobase that was used for biological information transfer on prebiotic earth before DNA and RNA in their present forms evolved. Nucleobases have various tautomeric forms and the relative stability of these forms is critical to their biological function. It has been shown that barbituric acid has a tri-keto form in the gas phase and an enol form in the solid state. However, its dominant tautomeric form in aqueous medium that is most relevant for biology has been investigated only to a limited extent and the findings are inconclusive. We have used multiple approaches, namely, molecular dynamics, quantum chemistry, NMR, and IR spectroscopy to determine the most stable tautomer of barbituric acid in solution. We find a delicate balance in the stability of the two tautomers, tri-keto and enol, which is tipped toward the enol as the extent of solvation by water increases.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | | | - Pranab Deb
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | |
Collapse
|
4
|
Lucia-Tamudo J, Cárdenas G, Anguita-Ortiz N, Díaz-Tendero S, Nogueira JJ. Computation of Oxidation Potentials of Solvated Nucleobases by Static and Dynamic Multilayer Approaches. J Chem Inf Model 2022; 62:3365-3380. [PMID: 35771991 PMCID: PMC9326891 DOI: 10.1021/acs.jcim.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The determination
of the redox properties of nucleobases is of
paramount importance to get insight into the charge-transfer processes
in which they are involved, such as those occurring in DNA-inspired
biosensors. Although many theoretical and experimental studies have
been conducted, the value of the one-electron oxidation potentials
of nucleobases is not well-defined. Moreover, the most appropriate
theoretical protocol to model the redox properties has not been established
yet. In this work, we have implemented and evaluated different static
and dynamic approaches to compute the one-electron oxidation potentials
of solvated nucleobases. In the static framework, two thermodynamic
cycles have been tested to assess their accuracy against the direct
determination of oxidation potentials from the adiabatic ionization
energies. Then, the introduction of vibrational sampling, the effect
of implicit and explicit solvation models, and the application of
the Marcus theory have been analyzed through dynamic methods. The
results revealed that the static direct determination provides more
accurate results than thermodynamic cycles. Moreover, the effect of
sampling has not shown to be relevant, and the results are improved
within the dynamic framework when the Marcus theory is applied, especially
in explicit solvent, with respect to the direct approach. Finally,
the presence of different tautomers in water does not affect significantly
the one-electron oxidation potentials.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo Cárdenas
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Ree J, Kim YH, Shin HK. Intramolecular vibrational energy redistribution in nucleobases: Excitation of NH stretching vibrations in adenine–uracil + H 2O. J Chem Phys 2022; 156:204305. [DOI: 10.1063/5.0087289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Redistribution of vibrational energy in the adenine–uracil base pair is studied when the base pair undergoes an intermolecular interaction with an overtone-bending vibration excited H2O(2[Formula: see text]bend) molecule. Energy transfer is calculated using the structural information obtained from density functional theory in the solution of the equations of motion. Intermolecular vibrational energy transfer (VET) from H2O(2[Formula: see text]bend) to the uracil–NH stretching mode is efficient and rapidly followed by intramolecular vibrational energy redistribution (IVR) resulting from coupling between vibrational modes. An important pathway is IVR carrying energy to the NH-stretching mode of the adenine moiety in a subpicosecond scale, the energy build-up being sigmoidal, when H2O interacts with the uracil–NH bond. The majority of intermolecular hydrogen bonds between the base pair and H2O are weakened but unbroken during the ultrafast energy redistribution period. Lifetimes of intermolecular HB are on the order of 0.5 ps. The efficiency of IVR in the base pair is due to near-resonance between coupled CC and CN vibrations. The resonance also exists between the frequencies of H2O bend and NH stretch, thus facilitating VET. When H2O interacts with the NH bond at the adenine end of the base pair, energy flow in the reverse direction to the uracil–NH stretch is negligible, the unidirectionality discussed in terms of the effects of uracil CH stretches. The energy distributed in the CH bonds is found to be significant. The IVR process is found to be nearly temperature independent between 200 and 400 K.
Collapse
Affiliation(s)
- J. Ree
- Department of Chemistry Education, Chonnam National University, Gwangju 61186, South Korea
| | - Y. H. Kim
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - H. K. Shin
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
6
|
Investigation of interactions of doxorubicin with purine nucleobases by molecular modeling. J Mol Model 2022; 28:69. [PMID: 35218423 DOI: 10.1007/s00894-022-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
Doxorubicin, an anthracycline antibiotic with anti-tumor activity, is produced by the bacterium Streptomyces peucetius. The interactions between doxorubicin and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interactions of doxorubicin with purine nucleobases were studied by quantum mechanical methods. Initially, conformer analyses of doxorubicin were performed with Spartan 08 software and 319 different conformers from 422 initial structures for doxorubicin were obtained. Geometry optimizations and frequency analyses were performed for each structure using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. The most stable 20 conformers of doxorubicin and tautomers of purine nucleobases were optimized again with ɷB97XD/6-31G** level and their interactions were also analyzed at the same level. The Discovery Studio 3.5 Visualizer was used to draw the initial and optimized structures of investigated geometries. The noncovalent interactions (NCIs) were visualized by calculating reduced density gradient (RDG) with Multiwfn program. The color-filled isosurfaces and RDG scatter maps of most stable interaction geometries were plotted by Visual Molecular Dynamics (VMD) software and Gnuplot 5.3 software, respectively. This study showed that adenine, guanine, and hypoxanthine nucleobases interact with doxorubicin by forming strong hydrogen bonds and π-π interactions. Considering the normal cellular conditions, the effect of solvent (water) on the interaction geometries were also analyzed and when compared to gas phase it was determined that the movements of the molecules were restricted and there was a minimal change between initial and optimized structures in the aqueous phase.
Collapse
|
7
|
Comparing ultrafast excited state quenching of flavin 1,N 6-ethenoadenine dinucleotide and flavin adenine dinucleotide by optical spectroscopy and DFT calculations. Photochem Photobiol Sci 2022; 21:959-982. [PMID: 35218554 DOI: 10.1007/s43630-022-00187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Flavins are photoenzymatic cofactors often exploiting the absorption of light to energize photoinduced redox chemistry in a variety of contexts. Both flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are used for this function. The study of these photoenzymes has been facilitated using flavin analogs. Most of these analogs involve modification of the flavin ring, and there is recent evidence that adenine (Ade)-modified FAD can affect enzyme turnover, but so far this has only been shown for enzymes where the adenine and flavin rings are close to each other in a stacked conformation. FAD is also stacked in aqueous solution, and its photodynamics are quite different from unstacked FAD or FMN. Oxidized photoexcited FAD decays rapidly, presumably through PET with Ade as donor and Fl* as acceptor. Definitive identification of the spectral signatures of Ade∙+ and Fl∙- radicals is elusive. Here we use the FAD analog Flavin 1,N6-Ethenoadenine Dinucleotide (εFAD) to study how different photochemical outcomes depend on the identity of the Ade moiety in stacked FAD and its analog εFAD. We have used UV-Vis transient absorption spectroscopy complemented by TD-DFT calculations to investigate the excited state evolution of the flavins. In FAD*, no radicals were observed, suggesting that FAD* does not undergo PET. εFAD* kinetics showed a broad absorption band that suggests a charge transfer state exists upon photoexcitation with evidence for radical pair formation. Surprisingly, significant triplet flavin was produced from εFAD* We hypothesize that the dipolar (ε)Ade moieties differentially modulate the singlet-triplet energy gap, resulting in different intersystem crossing rates. The additional electron density on the etheno group of εFAD supplies better orbital overlap with the flavin S1 state, accelerating charge transfer in that molecule.
Collapse
|
8
|
Bin Mohd Yusof MS, Siow JX, Yang N, Chan WX, Loh ZH. Spectroscopic observation and ultrafast coherent vibrational dynamics of the aqueous phenylalanine radical. Phys Chem Chem Phys 2022; 24:2800-2812. [PMID: 35048090 DOI: 10.1039/d1cp04326a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenylalanine radical (Phe˙) has been proposed to mediate biological electron transport (ET) and exhibit long-lived electronic coherences following attosecond photoionization. However, the coupling of ultrafast structural reorganization to the oxidation/ionization of biomolecules such as phenylalanine remains unexplored. Moreover, studies of ET involving Phe˙ are hindered by its hitherto unobserved electronic spectrum. Here, we report the spectroscopic observation and coherent vibrational dynamics of aqueous Phe˙, prepared by sub-6 fs photodetachment of phenylalaninate anions. Sub-picosecond transient absorption spectroscopy reveals the ultraviolet absorption signature of Phe˙. Ultrafast structural reorganization drives coherent vibrational motion involving nine fundamental frequencies and one overtone. DFT calculations rationalize the absence of the decarboxylation reaction, a photodegradation pathway previously identified for Phe˙. Our findings guide the interpretation of future attosecond experiments aimed at elucidating coherent electron motion in photoionized aqueous biomolecules and pave way for the spectroscopic identification of Phe˙ in studies of biological ET.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Jing Xuan Siow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Ningchen Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Wei Xin Chan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
9
|
Laamiri K, Garcia GA, Nahon L, Ben Houria A, Feifel R, Hochlaf M. Threshold photoelectron spectroscopy of 9-methyladenine: theory and experiment. Phys Chem Chem Phys 2021; 24:3523-3531. [PMID: 34676858 DOI: 10.1039/d1cp03729c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a combined experimental and theoretical study of single-photon ionization of 9-methyladenine (9MA) in the gas phase. In addition to tautomerism, several rotamers due to the rotation of the methyl group may exist. Computations show, however, that solely one rotamer contributes because of low population in the molecular beam and/or unfavorable Franck-Condon factors upon ionization. Experimentally, we used VUV radiation available at the DESIRS beamline of the synchrotron radiation facility SOLEIL to record the threshold photoelectron spectrum of this molecule between 8 and 11 eV. This spectrum consists of a well-resolved band assigned mainly to vibronic levels of the D0 cationic state, plus a contribution from the D1 state, and two large bands corresponding to the D1, D2 and D3 electronically excited states. The adiabatic ionization energy of 9MA is measured at 8.097 ± 0.005 eV in close agreement with the computed value using the explicitly correlated coupled cluster approach including core valence, scalar relativistic and zero-point vibrational energy corrections. This work sheds light on the complex pattern of the lowest doublet electronic states of 9MA+. The comparison to canonical adenine reveals that methylation induces further electronic structure complication that may be important to understand the effects of ionizing radiation and the charge distribution in these biological entities at different time scales.
Collapse
Affiliation(s)
- K Laamiri
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs-sur-Marne, France. .,Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - G A Garcia
- Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin - BP 48 - 91192 Gif-sur-Yvette Cedex, France
| | - L Nahon
- Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin - BP 48 - 91192 Gif-sur-Yvette Cedex, France
| | - A Ben Houria
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - R Feifel
- University of Gothenburg, Department of Physics, 412 58 Gothenburg, Sweden
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs-sur-Marne, France.
| |
Collapse
|
10
|
Červinka C, Fulem M. Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics. Pharmaceutics 2021; 13:1253. [PMID: 34452214 PMCID: PMC8400648 DOI: 10.3390/pharmaceutics13081253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic;
| | | |
Collapse
|
11
|
Jezuita A, Wieczorkiewicz PA, Szatylowicz H, Krygowski TM. Effect of the Solvent and Substituent on Tautomeric Preferences of Amine-Adenine Tautomers. ACS OMEGA 2021; 6:18890-18903. [PMID: 34337229 PMCID: PMC8320138 DOI: 10.1021/acsomega.1c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Adenine is one of the basic molecules of life; it is also an important building block in the synthesis of new pharmaceuticals, electrochemical (bio)sensors, or self-assembling molecular materials. Therefore, it is important to know the effects of the solvent and substituent on the electronic structure of adenine tautomers and their stability. The four most stable adenine amino tautomers (9H, 7H, 3H, and 1H), modified by substitution (C2- or C8-) of electron-withdrawing NO2 and electron-donating NH2 groups, are studied theoretically in the gas phase and in solvents of different polarities (1 ≤ ε < 109). Solvents have been modeled using the polarizable continuum model. Comparison of the stability of substituted adenine tautomers in various solvents shows that substitution can change tautomeric preferences with respect to the unsubstituted adenine. Moreover, C8 substitution results in slight energy differences between tautomers in polar solvents (<1 kcal/mol), which suggests that in aqueous solution, C8-X-substituted adenine systems may consist of a considerable amount of two tautomers-9H and 7H for X = NH2 and 3H and 9H for X = NO2. Furthermore, solvation enhances the effect of the nitro group; however, the enhancement strongly depends on the proximity effects. This enhancement for the NO2 group with two repulsive N···ON contacts can be threefold higher than that for the NO2 with one attractive NH···ON contact. The proximity effects are even more significant for the NH2 group, as the solvation may increase or decrease its electron-donating ability, depending on the type of proximity.
Collapse
Affiliation(s)
- Anna Jezuita
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 113/15, 42-200 Czestochowa, Poland
| | | | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | |
Collapse
|
12
|
Matić J, Jukić M, Ismaili H, Saftić D, Ban Ž, Tandarić T, Vianello R, Opačak-Bernardi T, Glavaš-Obrovac L, Žinić B. 6-Morpholino- and 6-amino-9-sulfonylpurine derivatives. Synthesis, computational analysis, and biological activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:470-503. [PMID: 33709867 DOI: 10.1080/15257770.2021.1896001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of novel 6-chloro/morpholino/amino/-9-sulfonylpurine derivatives was accomplished in two ways, either (i) involving the condensation reaction of 6-chloropurine with commercially available arylsulfonyl chlorides in acetone and the presence of aqueous KOH at 0 °C, followed by the substitution of C6-chlorine with morpholine, or (ii) employing a reversed synthetic approach where 6-morpholinopurine and commercially available adenine bases were reacted with the corresponding alkyl, 2-arylethene and arylsulfonyl chlorides giving the N9 sulfonylated products, the latter particularly used where prior nonselective sulfonylation was observed. In both approaches, the sulfonylation reaction occurred regioselectively at the purine N9 position lacking any concurrent N7 derivatives, except in the case of a smaller methyl substituent on SO2 and the free amino group at C6 of the purine ring. The tautomeric features of initial N9 unsubstituted purines, as well as stability trends among the prepared N-9-sulfonylpurine derivates, were investigated using DFT calculations with an important conclusion that electron-donating C6 substituents are beneficial for the synthesis as they both promote the predominance of the desired N9 tautomers and help to assure the stability of the final products. The newly synthesized 6-morpholino and 6-amino-9-sulfonylpurine derivatives showed antiproliferative activity on human carcinoma, lymphoma, and leukemia cells. Among the tested compounds, 6-morpholino 17 and 6-amino 22 derivatives, with trans-β-styrenesulfonyl group attached at the N9 position of purine, proved to be the most effective antiproliferative agents, causing accumulation of leukemia cells in subG0 cell cycle phase.
Collapse
Affiliation(s)
- Josipa Matić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marijana Jukić
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Hamit Ismaili
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia.,Faculty of Mathematical and Natural Sciences, University of Prishtina, Prishtina, Kosovo
| | - Dijana Saftić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Željka Ban
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tana Tandarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Robert Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Teuta Opačak-Bernardi
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Biserka Žinić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
13
|
Hirao K, Nakajima T, Chan B, Song JW, Bae HS. Core-Level Excitation Energies of Nucleic Acid Bases Expressed as Orbital Energies of the Kohn–Sham Density Functional Theory with Long-Range Corrected Functionals. J Phys Chem A 2020; 124:10482-10494. [DOI: 10.1021/acs.jpca.0c07087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimihiko Hirao
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| | - Han-Seok Bae
- Department of Chemistry Education, Daegu University, Gyeongsan 113-8656, Korea
| |
Collapse
|
14
|
Padash R, Ramazani S. Investigation of stability of adenine and its tautomers in RNA and DNA, and their interaction with Na+, K+, Mg2+, Ca2+ and Zn2+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Sharafdini R, Ramazani S. A theoretical study on the role of stability of cytosine and its tautomers in DNA (deoxyribonucleic acid), and investigation of interactions of Na +, K +, Mg 2+, Ca 2+, Zn 2+ metal ions and OH radical with cytosine tautomers. J Biomol Struct Dyn 2020; 40:3819-3836. [PMID: 33252005 DOI: 10.1080/07391102.2020.1850526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, 21 cytosine tautomers were investigated so that some tautomers were reported for the first time in the gas phase and aqueous solution. C3 tautomer was the most stable tautomer in gas phase but C1 was the most stable structure in aqueous solution. The potential energy surface of all trajectories was determined for 21 tautomers and 22 transition states. Also, interactions of cytosine tautomers with Na+, K+, Mg2+, Ca2+ and Zn2+ metal ions were studied in gas phase and aqueous solution. Three types of interactions among metal ions and (N1 and O10), (N3 and O10) and (N3 and N9) of cytosine tautomers were investigated. The study of interaction energies of all complexes showed the stability of complexes in which interactions among Mg2+ and Zn2+ with tautomers were stronger than interactions among Ca2+, Na+ and K+ with tautomers, respectively. Some interactions of metal ions with cytosine tautomers made the most stable tautomers. So, the stability of rare tutomeric forms had a significant effect on stabilization of anomalous DNA (deoxyribonucleic acid) double helix and spontaneous mutations. Also, one of the most important causes of mutations in DNA (deoxyribonucleic acid) was the reaction of OH radical with nucleotide bases. So, interactions of OH radical with cytosine and its tautomers were investigated in gas phase and aqueous solution.Communicated by Ramaswamy H. Sarma.
Collapse
|
16
|
Huang SR, Dang A, Tureček F. Ground and Excited States of Gas-Phase DNA Nucleobase Cation-Radicals. A UV-vis Photodisociation Action Spectroscopy and Computational Study of Adenine and 9-Methyladenine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1271-1281. [PMID: 32324398 DOI: 10.1021/jasms.0c00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cation radicals of adenine (A•+) and 9-methyladenine (MA•+) were generated in the gas phase by collision-induced intramolecular electron transfer in copper-terpyridine-nucleobase ternary complexes and characterized by collision-induced dissociation (CID) mass spectra and UV-vis photodissociation action spectroscopy in the 210-700 nm wavelength region. The action spectra of both A•+ and MA•+ displayed characteristic absorption bands in the near-UV and visible regions. Another tautomer of A•+ was generated as a minor product by multistep CID of protonated 9-(2-bromoethyl)adenine. Structure analysis by density functional theory and coupled-clusters ab initio calculations pointed to the canonical 9-H-tautomer Ad1•+ as the global energy minimum of adenine cation radicals. The canonical tautomer MA1•+ was also calculated to be a low-energy structure among methyladenine cation radicals. However, two new noncanonical tautomers were found to be energetically comparable to MA1•+. Vibronic absorption spectra were calculated for several tautomers of A•+ and MA•+ and benchmarked on equation-of-motion coupled-clusters excited-state calculations. Analysis of the vibronic absorption spectra of A•+ tautomers pointed to the canonical tautomer Ad1•+ as providing the best match with the action spectrum. Likewise, the canonical tautomer MA1•+ was the unequivocal best match for the MA•+ ion generated in the gas phase. According to potential-energy mapping, MA1•+ was separated from energetically favorable noncanonical cation radicals by a high-energy barrier that was calculated to be above the dissociation threshold for loss of a methyl hydrogen atom, thus preventing isomerization. Structures and energetics of all four DNA nucleobase cation radicals are compared and discussed.
Collapse
Affiliation(s)
- Shu R Huang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Andy Dang
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
17
|
A Computational and Structural Database Study of the Metal-Carbene Bond in Groups IA, IIA, and IIIA Imidazol-2-Ylidene Complexes. J CHEM-NY 2019. [DOI: 10.1155/2019/5675870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Imidazol-2-ylidenes are important N-heterocyclic carbenes which have become universal ligands in organometallic and coordination chemistry. Generally classified as σ-donor ligands, these compounds have been used to stabilize various metal complexes which hitherto were less stable in their catalytic processes. Herein, the number and distribution of group IA, group IIA, and group IIIA metal-imidazol-2-ylidene complexes retrieved from the Cambridge Structural Database (CSD) are assessed. The data showed that the mean M-Ccarbene bond length increases with increasing ionic size but is similar across each diagonal. Dominant factors such as Lewis acidity and electrostatic attractions were found to control the bonding modes of the respective ions. Generally, the metal ions show preference for tetrahedral coordination with larger cations forming complexes with higher coordination numbers. For their high number of entries (101), tetrahedrally coordinated boron complexes with various electron withdrawing and electron donating groups were studied computationally at the DFT/B3LYP level of theory. The strength of the B-Ccarbene bond was found to depend on steric interactions between bulky groups on the borenium atom and substituents on the N-positions of the imidazol-2-ylidene ligand. This observation was further confirmed by estimation of the binding energy, natural charge, and the electron distribution in the B-Ccarbene bond.
Collapse
|
18
|
Kunin A, McGraw VS, Lunny KG, Neumark DM. Time-resolved dynamics in iodide-uracil-water clusters upon excitation of the nucleobase. J Chem Phys 2019; 151:154304. [PMID: 31640364 DOI: 10.1063/1.5120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of iodide-uracil-water (I-·U·H2O) clusters following π-π* excitation of the nucleobase are probed using time-resolved photoelectron spectroscopy. Photoexcitation of this cluster at 4.77 eV results in electron transfer from the iodide moiety to the uracil, creating a valence-bound anion within the cross correlation of the pump and probe laser pulses. This species can decay by a number of channels, including autodetachment and dissociation to I- or larger anion fragments. Comparison of the energetics of the photoexcited cluster and its decay dynamics with those of the bare iodide-uracil (I-·U) complex provides a sensitive probe of the effects of microhydration on these species.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Valerie S McGraw
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Katharine G Lunny
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
19
|
He Y, Buch A, Morisson M, Szopa C, Freissinet C, Williams A, Millan M, Guzman M, Navarro-Gonzalez R, Bonnet J, Coscia D, Eigenbrode J, Malespin C, Mahaffy P, Glavin D, Dworkin J, Lu P, Johnson S. Application of TMAH thermochemolysis to the detection of nucleobases: Application to the MOMA and SAM space experiment. Talanta 2019; 204:802-811. [DOI: 10.1016/j.talanta.2019.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
|
20
|
Semmeq A, Monari A, Badawi M, Ouaskit S. Ab Initio Study of the Stepwise versus Concerted Fragmentation Pathways in Microhydrated Thymine Radical Cations. Chemistry 2019; 25:15525-15534. [PMID: 31373410 DOI: 10.1002/chem.201902462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/31/2019] [Indexed: 11/08/2022]
Abstract
Thymine radiation-induced fragmentation is characterised by ring opening and the loss of HNCO/NCO. These pathways have been investigated using DFT calculations in the presence of zero, one and two water molecules. In addition to the already characterised stepwise fragmentation mechanism, we propose a novel concerted pathway reported here for the first time. We show that both the stepwise and concerted mechanisms are competitive with activation energies of 2.05 eV and 2.00 eV, respectively, in the gas phase. The effect of microhydration on these mechanisms are examined based on the most stable conformations found by an exploration of the potential energy surface performed by using DFT-based ab initio molecular dynamics. Microhydration is also accompanied by an increase in the activation energies, with respect to gas phase, amounting to 0.47 eV-an increase that is associated to a stabilising effect of water in agreement with recent experimental studies. However, we also point out that this effect is greatly dependent on the specific water arrangement around thymine and could be limited to only 0.13 eV for some configurations.
Collapse
Affiliation(s)
- Abderrahmane Semmeq
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France.,Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, B.P 7955, Av Driss El Harti, Sidi Othmane, Casablanca, Maroc
| | - Antonio Monari
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France
| | - Michael Badawi
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France
| | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, B.P 7955, Av Driss El Harti, Sidi Othmane, Casablanca, Maroc
| |
Collapse
|
21
|
Abstract
Vibrational spectroscopy provides a powerful tool to probe the structure and dynamics of nucleic acids because specific normal modes, particularly the base carbonyl stretch modes, are highly sensitive to the hydrogen bonding patterns and stacking configurations in these biomolecules. In this work, we develop vibrational frequency maps for the C═O and C═C stretches in nucleobases that allow the calculations of their site frequencies directly from molecular dynamics simulations. We assess the frequency maps by applying them to nucleobase derivatives in aqueous solutions and nucleosides in organic solvents and demonstrate that the predicted infrared spectra are in good agreement with experimental measurements. The frequency maps can be readily used to model the linear and nonlinear vibrational spectroscopy of nucleic acids and elucidate the molecular origin of the experimentally observed spectral features.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine , Rutgers University , 174 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine , Rutgers University , 174 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
22
|
Gavhane RJ, Madkar KR, Kurhe DN, Dagade DH. Room Temperature Ionic Liquids from Purine and Pyrimidine Nucleobases. ChemistrySelect 2019. [DOI: 10.1002/slct.201900626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Kavita R. Madkar
- Department of ChemistryShivaji University Kolhapur – 416004 INDIA
| | - Deepti N. Kurhe
- Department of BiochemistryShivaji University Kolhapur – 416004 INDIA
| | - Dilip H. Dagade
- Department of ChemistryShivaji University Kolhapur – 416004 INDIA
| |
Collapse
|
23
|
Ganyecz Á, Kállay M, Csontos J. Thermochemistry of Uracil, Thymine, Cytosine, and Adenine. J Phys Chem A 2019; 123:4057-4067. [DOI: 10.1021/acs.jpca.9b02061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ádám Ganyecz
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| | - József Csontos
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, PO Box 91, H-1521, Hungary
| |
Collapse
|
24
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
25
|
Shang L, Lyu Y, Han W. Microstructure and Thermal Insulation Property of Silica Composite Aerogel. MATERIALS 2019; 12:ma12060993. [PMID: 30917534 PMCID: PMC6471134 DOI: 10.3390/ma12060993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Tetraethyl orthosilicate was selected as a matrix of heat insulating materials among three silanes, and an anti-infrared radiation fiber was chosen as a reinforcement for silica aerogel insulation composite. The silica aerogel was combined well and evenly distributed in the anti-infrared radiation fiber. The heat insulation effect was improved with the increase in thickness of the aerogel insulation material, as determined by the self-made aerospace insulation material insulation performance test equipment. The 15 mm and 30 mm thick thermal insulation material heated at 250 °C for 3 h, the temperatures at the cold surface were about 80 °C and 60 °C, respectively, and the temperatures at 150 mm above the cold surface were less than 60 °C and 50 °C, respectively. The silica aerogel composites with various thicknesses showed good thermal insulation stability. The silica insulation composite with a thickness of 15 mm exhibited good heat insulation performance, meets the thermal insulation requirements of general equipment compartments under low-temperature and long-term environmental conditions. The thermal conductivity of prepared silica aerogel composite was 0.0191 W·m−1·k−1 at room temperature and 0.0489 W·m−1·k−1 at 500 °C.
Collapse
Affiliation(s)
- Lei Shang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
| | - Yang Lyu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
| | - Wenbo Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
26
|
Stacking of nucleic acid bases: optimization of the computational approach—the case of adenine dimers. Struct Chem 2018. [DOI: 10.1007/s11224-018-1253-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
28
|
Zhao HY, Lau KC, Garcia GA, Nahon L, Carniato S, Poisson L, Schwell M, Al-Mogren MM, Hochlaf M. Unveiling the complex vibronic structure of the canonical adenine cation. Phys Chem Chem Phys 2018; 20:20756-20765. [PMID: 29989120 DOI: 10.1039/c8cp02930j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.
Collapse
Affiliation(s)
- Hong Yan Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu K, Gardner WS, Liu Z. Molecular Structure Characterization of Riverine and Coastal Dissolved Organic Matter with Ion Mobility Quadrupole Time-of-Flight LCMS (IM Q-TOF LCMS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7182-7191. [PMID: 29870664 DOI: 10.1021/acs.est.8b00999] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Deciphering molecular structures of dissolved organic matter (DOM) components is key to understanding the formation and transformation of this globally important carbon pool in aquatic environments. Such a task depends on the integrated use of complementary analytical techniques. We characterize the molecular structure of natural DOM using an ion mobility quadrupole time of flight liquid chromatography mass spectrometer (IM Q-TOF LC/MS), which provides multidimensional structural information on DOM molecules. Geometric conformation of DOM molecules is introduced into molecular-level analysis via the ion mobility (IM) in the system, and an actual measurement of isomers is achieved for the first time. Our data show that natural DOM molecules from several south Texas rivers and adjacent coastal waters have smaller geometric conformation compared with standard biomolecules. Furthermore, about 10% of all DOM molecules resolved within the detection limit of IM-MS had at least one but no more than four isomers. With acquired geometric and isomeric information, we established a multidimensional database containing 89 natural DOM compounds. This database provides a foundation to expand further, or compare, with DOM data from different seasons and locations.
Collapse
Affiliation(s)
- Kaijun Lu
- Marine Science Institute, The University of Texas at Austin , Port Aransas , Texas , United States
| | - Wayne S Gardner
- Marine Science Institute, The University of Texas at Austin , Port Aransas , Texas , United States
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin , Port Aransas , Texas , United States
| |
Collapse
|
30
|
Cunha T, Mendes M, Ferreira da Silva F, Eden S, García G, Limão-Vieira P. Communication: Site-selective bond excision of adenine upon electron transfer. J Chem Phys 2018; 148:021101. [PMID: 29331144 DOI: 10.1063/1.5018401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.
Collapse
Affiliation(s)
- T Cunha
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Mendes
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - F Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - S Eden
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA Milton Keynes, United Kingdom
| | - G García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
31
|
Marchetti B, Karsili TNV, Ashfold MNR, Domcke W. A 'bottom up', ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Phys Chem Chem Phys 2018; 18:20007-27. [PMID: 26980149 DOI: 10.1039/c6cp00165c] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.
Collapse
Affiliation(s)
- Barbara Marchetti
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
32
|
Zhang C, Xie L, Ding Y, Xu W. Scission and stitching of adenine structures by water molecules. Chem Commun (Camb) 2018; 54:771-774. [PMID: 29308502 DOI: 10.1039/c7cc09086b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on high-resolution STM imaging/manipulations and DFT calculations, we display the dynamic hydration process of adenine networks on Au(111) in real space, which results in controllable scission and stitching of adenine structures by water molecules.
Collapse
Affiliation(s)
- Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | |
Collapse
|
33
|
Acres RG, Cheng X, Beranová K, Bercha S, Skála T, Matolín V, Xu Y, Prince KC, Tsud N. An experimental and theoretical study of adenine adsorption on Au(111). Phys Chem Chem Phys 2018; 20:4688-4698. [DOI: 10.1039/c7cp08102b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The parallel and upright adenine phases on Au(111) were studied by photoelectron and absorption spectroscopies in combination with density functional theory calculations.
Collapse
Affiliation(s)
| | - Xun Cheng
- Cain Department of Chemical Engineering
- Louisiana State University
- Baton Rouge
- USA
| | - Klára Beranová
- Elettra-Sincrotrone Trieste S.C.p.A
- Basovizza
- Italy
- Charles University
- Faculty of Mathematics and Physics
| | - Sofiia Bercha
- Charles University
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- 18000 Prague 8
- Czech Republic
| | - Tomáš Skála
- Charles University
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- 18000 Prague 8
- Czech Republic
| | - Vladimír Matolín
- Charles University
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- 18000 Prague 8
- Czech Republic
| | - Ye Xu
- Cain Department of Chemical Engineering
- Louisiana State University
- Baton Rouge
- USA
| | | | - Nataliya Tsud
- Charles University
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- 18000 Prague 8
- Czech Republic
| |
Collapse
|
34
|
Chakraborty R, Bose S, Ghosh D. Effect of solvation on the ionization of guanine nucleotide: A hybrid QM/EFP study. J Comput Chem 2017; 38:2528-2537. [PMID: 28856705 DOI: 10.1002/jcc.24913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/11/2022]
Abstract
Ionization of nucleobases is affected by their biological environment, which includes both the effect of adjacent nucleotides as well as the presence of water around it. Guanine and its nucleotide have the lowest ionization potentials among the various DNA bases. Therefore, the threshold of ionization is dependent on that of guanine and its characterization is crucial to the prediction of interaction of light with DNA. We investigate the effect of solvation on the vertical ionization energies (VIEs) of guanine and its nucleotide. In this work, we have used hybrid quantum mechanics/molecular mechanics (QM/MM) approach with effective fragment potential as the MM method of choice and equation-of-motion coupled-cluster for ionization potential with singles and doubles (EOM-IP-CCSD) as the QM method. The performance of the hybrid scheme with respect to the full QM method shows an accuracy of ≤ 0.02-0.04 eV. The lowest few ionizations of the nucleotide are found to be from different parts of the moiety, that is, the nucleic acid base, phosphate, or sugar, and these ionization energies are very closely spaced giving rise to a very complicated spectrum. Furthermore, microsolvation has large effects on these ionizations and can lead to red or blue shift depending on the position of the water molecule. Even a single water molecule can change the order of ionized states in the nucleotide. The VIEs of the bulk solvated chromophores are predicted and compared to existing experimental spectra. The predominant role of polarization in the solvatochromic shift is noticed. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Samik Bose
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debashree Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| |
Collapse
|
35
|
Mondal S, Puranik M. Ultrafast structural dynamics of photoexcited adenine. Phys Chem Chem Phys 2017; 19:20224-20240. [DOI: 10.1039/c7cp03092d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet Resonance Raman (UVRR) spectroscopy derives distinct electronic properties of adenine in the La (260 nm) and Bb (210 nm) excited states.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research
- Pune – 411008
- India
| |
Collapse
|
36
|
Nguyen DB, Joo SW, Choo J. Interfacial structures of 1-methyladenine, 3-methyladenine, 7-methyladenine, and 9-methyladenine on gold nanoparticles by Raman spectroscopy. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Nergui N, Chen MJ, Wang JK, Wang YL, Hsing CR, Wei CM, Takahashi K. Dependence of Adenine Raman Spectrum on Excitation Laser Wavelength: Comparison between Experiment and Theoretical Simulations. J Phys Chem A 2016; 120:8114-8122. [PMID: 27689391 DOI: 10.1021/acs.jpca.6b08311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We acquired the Raman spectra of adenine in powder and aqueous phase using excitation lasers with 532, 633, and 785 nm wavelengths for the region between 300 and 1500 cm-1. In comparison to the most distinct peak at 722 cm-1, the peaks between 1200 and 1500 cm-1 exhibited a characteristic increase in cross-section with decreasing excitation wavelength in both phases. This trend can be reproduced by different density functional theory (DFT) calculations for the adenine molecule in the gas phase as well as in the aqueous phase. Furthermore, from the calculation on the π-stacked dimer, hydrogen-bonded dimer, and trimer, we find that this trend toward excitation laser wavelength is not sensitive to the packing. When comparing the Raman spectra given by different excitation wavelength, one should take care in analyzing the cross-section, and present day DFT calculations are able to capture general trends in the excitation laser wavelength dependence of the Raman activity.
Collapse
Affiliation(s)
- Navchtsetseg Nergui
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan.,Department of Chemistry, National Taiwan University , 10617 Taipei, Taiwan.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University , 10617 Taipei, Taiwan
| | - Miin-Jang Chen
- Department of Materials Science and Engineering, National Taiwan University , 10617 Taipei, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan.,Center for Condensed Matter Sciences, National Taiwan University , 10617 Taipei, Taiwan
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan.,Department of Physics, National Taiwan University , 10617 Taipei, Taiwan
| | - Cheng-Rong Hsing
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan
| | - Ching-Ming Wei
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences, Academia Sinica , PO Box 23-166, 10617 Taipei, Taiwan
| |
Collapse
|
38
|
Stephansen AB, King SB, Yokoi Y, Minoshima Y, Li WL, Kunin A, Takayanagi T, Neumark DM. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. J Chem Phys 2016; 143:104308. [PMID: 26374036 DOI: 10.1063/1.4929995] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.
Collapse
Affiliation(s)
- Anne B Stephansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | - Sarah B King
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yuki Yokoi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Yusuke Minoshima
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Wei-Li Li
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Chen YL, Wu DY, Tian ZQ. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers. J Phys Chem A 2016; 120:4049-58. [PMID: 27243104 DOI: 10.1021/acs.jpca.6b03604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities.
Collapse
Affiliation(s)
- Yan-Li Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
40
|
Zhang C, Xie L, Ding Y, Sun Q, Xu W. Real-Space Evidence of Rare Guanine Tautomer Induced by Water. ACS NANO 2016; 10:3776-3782. [PMID: 26876579 DOI: 10.1021/acsnano.6b00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water is vital for life as a solvent. Specifically, it has been well established that DNA molecules are hydrated in vivo, and water has been found to be responsible for the presence of some noncanonical DNA base tautomers. Theoretical investigations have shown that the existence of water could significantly influence the relative stability of different DNA base tautomers, reduce the energy barrier of tautomeric conversions, and thus promote the formation of some rare base tautomers. In this work, we report the real-space experimental evidence of rare base tautomers. From the high-resolution scanning tunneling microscopy imaging, we surprisingly find the formation of the rare guanine tautomer, i.e., G/(3H,7H) form, on the Au(111) surface by delicately introducing water into the system. The key to the formation of this rare tautomer is proposed to be the "water bridge" that largely reduces the energy barriers of intramolecular proton-transfer processes as revealed by extensive density functional theory calculations. The real-space experimental evidence and the proposed mechanism make a step forward toward the fundamental understanding of water-assisted base tautomerization processes.
Collapse
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Yuanqi Ding
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Qiang Sun
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| |
Collapse
|
41
|
Du Y, Fang HX, Zhang Q, Zhang HL, Hong Z. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:580-585. [PMID: 26436846 DOI: 10.1016/j.saa.2015.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.
Collapse
Affiliation(s)
- Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China.
| | - Hong Xia Fang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Qi Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Hui Li Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
42
|
Wu RR, Rodgers MT. Mechanisms and energetics for N-glycosidic bond cleavage of protonated adenine nucleosides: N3 protonation induces base rotation and enhances N-glycosidic bond stability. Phys Chem Chem Phys 2016; 18:16021-32. [DOI: 10.1039/c6cp01445c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
N3 protonation induces base rotation and stabilizes the syn orientation of the adenine nucleobase of [dAdo+H]+ and [Ado+H]+via formation of a strong intramolecular N3H+⋯O5′ hydrogen-bonding interaction, which in turn influences the mechanisms and energetics for N-glycosidic bond cleavage.
Collapse
Affiliation(s)
- R. R. Wu
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| | - M. T. Rodgers
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| |
Collapse
|
43
|
Chaiwongwattana S, Sapunar M, Ponzi A, Decleva P, Došlić N. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates. J Phys Chem A 2015; 119:10637-44. [DOI: 10.1021/acs.jpca.5b07496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Marin Sapunar
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Aurora Ponzi
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Piero Decleva
- Dipartimento di
Scienze Chimiche, Università di Trieste, 34127 Trieste, Italy
| | - Nađa Došlić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Structure, stability, energy barrier and ionization energies of chemically modified DNA-bases: Quantum chemical calculations on 37 favored and rare tautomeric forms of tetraphosphoadenine. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Raczyńska ED, Makowski M, Hallmann M, Kamińska B. Geometric and energetic consequences of prototropy for adenine and its structural models – a review. RSC Adv 2015. [DOI: 10.1039/c4ra17280a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prototropy for adenine and its convenient models causes parallel changes of geometric (HOMED) and energetic (ΔE) parameters for neutral tautomers.
Collapse
Affiliation(s)
- Ewa D. Raczyńska
- Department of Chemistry
- Warsaw University of Life Sciences (SGGW)
- 02-776 Warszawa
- Poland
| | | | - Małgorzata Hallmann
- Department of Chemistry
- Warsaw University of Life Sciences (SGGW)
- 02-776 Warszawa
- Poland
| | - Beata Kamińska
- Department of Chemistry
- Warsaw University of Life Sciences (SGGW)
- 02-776 Warszawa
- Poland
| |
Collapse
|
46
|
Ortiz S, Alvarez-Ros MC, Palafox MA, Rastogi VK, Balachandran V, Rathor SK. FT-IR and FT-Raman spectra of 6-chlorouracil: molecular structure, tautomerism and solid state simulation. A comparison between 5-chlorouracil and 6-chlorouracil. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:653-668. [PMID: 24856263 DOI: 10.1016/j.saa.2014.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
A Raman and IR study of the biomolecule 6-chlorouracil was carried out in the solid state. The unit cell found in the crystal was simulated as a tetramer form by density functional calculations. Specific scale factors and scaling equations deduced from uracil molecule were employed in the predicted wavenumbers of 6-chlorouracil. The scaled wavenumbers were used in the reassignment of the IR and Raman experimental bands. Good reproduction of the experimental wavenumbers is obtained and the % error is very small in the majority of cases. A comparison between the molecular structure and charge distribution of 6-chlorouracil and 5-chlorouracil molecules was presented. The effect of the hydration with the PCM model in the molecular structure and charges was discussed. The optimum tautomers of 6-chlorouracil were optimized and analyzed. Six of them were related to those of uracil molecule. The effect of the halogen substitution in the sixth position of the pyrimidine ring in the stability of the different tautomers was evaluated. HOMO and LUMO orbital energy analysis were carried out.
Collapse
Affiliation(s)
- S Ortiz
- Departamento de Química-Física-I, Facultad de Ciencias Químicas, UCM, Madrid 28040, Spain
| | - M C Alvarez-Ros
- Departamento de Química-Física-I, Facultad de Ciencias Químicas, UCM, Madrid 28040, Spain
| | - M Alcolea Palafox
- Departamento de Química-Física-I, Facultad de Ciencias Químicas, UCM, Madrid 28040, Spain.
| | - V K Rastogi
- R.D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar, Ghaziabad, India; Indian Spectroscopy Society, KC-68/1, Old Kavinagar, Ghaziabad 201 002, India.
| | - V Balachandran
- Department of Physics, Arignar Anna Government Arts College, Musiri, Tiruchirappalli 621211, India
| | - S K Rathor
- Indian Spectroscopy Society, KC-68/1, Old Kavinagar, Ghaziabad 201 002, India
| |
Collapse
|
47
|
Acioli PH, Srinivas S. Silver- and gold-mediated nucleobase bonding. J Mol Model 2014; 20:2391. [DOI: 10.1007/s00894-014-2391-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
48
|
Das T, Ghosh D. Ionization-Induced Tautomerization in Cytosine and Effect of Solvation. J Phys Chem A 2014; 118:5323-32. [DOI: 10.1021/jp503947d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamal Das
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
49
|
Raczyńska ED, Makowski M. Geometric consequences of electron delocalization for adenine tautomers in aqueous solution. J Mol Model 2014; 20:2234. [PMID: 24842324 PMCID: PMC4072068 DOI: 10.1007/s00894-014-2234-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Geometric consequences of electron delocalization were studied for all possible adenine tautomers in aqueous solution by means of ab initio methods {PCM(water)//DFT(B3LYP)/6-311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6-311+G(d,p)}. To measure the consequences of any type of resonance conjugation (π-π, n-π, and σ-π), the geometry-based harmonic oscillator model of electron delocalization (HOMED) index, recently extended to the isolated (DFT) and hydrated (PCM//DFT) molecules, was applied to the molecular fragments (imidazole, pyrimidine, 4-aminopyrimidine, and purine) and also to the whole tautomeric system. For individual tautomers, the resonance conjugations and consequently the bond lengths strongly depend on the position of the labile protons. The HOMED indices are larger for tautomers (or their fragments) possessing the labile proton(s) at the N rather than C atom. Solvent interactions with adenine tautomers slightly increase the resonance conjugations. Consequently, they slightly shorten the single bonds and lengthen the double bonds. When going from the gas phase to water solution, the HOMED indices increase (by less than 0.15 units). There is a good relation between the HOMED indices estimated in water solution and those in the gas phase for the neutral and ionized forms of adenine. Subtle effects, being a consequence of intramolecular interactions between the neighboring groups, are so strongly reduced by solvent that the relation between the HOMED indices and the relative energies for the neutral adenine tautomers seems to be better in water solution than in the gas phase.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776, Warszawa, Poland,
| | | |
Collapse
|
50
|
Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 2014; 114:6383-422. [PMID: 24779633 DOI: 10.1021/cr400252h] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadeusz M Krygowski
- Department of Chemistry, Warsaw University , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|